Article

Analysis of candidate ergosterol-responsive and interacting proteins associated with the plasma membrane of Arabidopsis thaliana

Thembisile G. Khoza, Ian A. Dubery and Lizelle A. Piater*
Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa; tkhoza03@gmail.com (T.K); idubery@uj.ac.za (I.D.)
* Correspondence: lpiater@uj.ac.za; Tel.: +27-11-559-2403

Received: date; Accepted: date; Published: date

Supplementary Figures

Figure S1: Representative Western blot analysis for (a) Arabidopsis thaliana MAPKs (probed with antiactive MAPK pAb, rabbit (pTEpY) (Promega, USA)) in the isolated homogenate (HM), microsomal fraction (MF) and plasma membrane (PM-associated) subsequent to 6 h ergosterol treatment and (b) an Amido Black PVDF-stained loading control showing that lack of MAPK activity is not due to absence of proteins.

Figure S2: Representative 12\% 1D-SDS-PAGE subsequent to PM-associated fraction isolation of 24 h ergosterol-treated Arabidopsis leaves. The gel shows the different fractions obtained after each centrifugation step and the decreasing protein content between the homogenate (HM) -, microsomal (MF) - and the plasma membrane (PM-associated) fractions. Equal volumes were loaded for each fraction and electrophoresed at constant 90 V for 3 h .

Figure S3: Representation of a protein score plot generated by the Byonic ${ }^{\mathrm{TM}}$ software for protein identification. This shows differential abundance of proteins in sample.

Figure S4: Representation of a mass error loadings plot generated by the Byonic ${ }^{\mathrm{TM}}$ software for protein identification. This shows the difference between the calculated mass and the observed mass of the peptides.

Figure S5: Elution profile of binding events between ergosterol-immobilized MagResyn ${ }^{\mathrm{TM}}$ magnetic microspheres and A. thaliana PM-associated M proteins for the control. The blue curve represents the absorbance of the flow-through (unbound) fractions eluted with 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$. The green curve is the absorbance of the weakly bound proteins removed with 0.5 M NaCl and the grey curve represents absorbance of proteins desorbed from the column with 1% SDS solution.

Figure S6: Elution profile of binding events between ergosterol-immobilized MagResyn ${ }^{\mathrm{TM}}$ magnetic microspheres and A. thaliana PM-associated proteins for the 0 h time point. The blue curve represents the absorbance of the flow-through (unbound) fractions eluted with 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$. The green curve is the absorbance of the weakly bound proteins removed with 0.5 M NaCl and the grey curve represents absorbance of proteins desorbed from the column with 1% SDS solution

Figure S7: Elution profile of binding events between ergosterol-immobilized MagResyn ${ }^{\text {TM }}$ magnetic microspheres and A. thaliana PM-associated proteins for the 12 h time point. The blue curve represents the absorbance of the flow-through (unbound) fractions eluted with 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$. The green curve is the absorbance of the weakly bound proteins removed with 0.5 M NaCl and the grey curve represents absorbance of proteins desorbed from the column with 1% SDS solution.

Figure S8: Elution profile of binding events between ergosterol-immobilized MagResyn ${ }^{\mathrm{TM}}$ magnetic microspheres and A. thaliana PM-associated proteins for the 24 h time point. The blue curve represents the absorbance of the flow-through (unbound) fractions eluted with 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$. The green curve is the absorbance of the weakly bound proteins removed with 0.5 M NaCl and the grey curve represents absorbance of proteins desorbed from the column with 1% SDS solution.

Figure S9: Elution profile of binding events between MagResyn ${ }^{\mathrm{TM}}$ magnetic microspheres and A. thaliana PM-associated proteins for the negative control (no ergosterol immobilization). The blue curve represents the absorbance of the flow-through (unbound) fractions eluted with 10 mM Tris$\mathrm{HCl}, \mathrm{pH} 7.5$. The green curve is the absorbance of the weakly bound proteins removed with 0.5 M NaCl and the grey curve represents absorbance of proteins desorbed from the column with 1% SDS solution.

Table S1: LC-MS/MS identification of low score Arabidopsis thaliana PM-associated candidate proteins interacting with ergosterol immobilized on epoxide magnetic microspheres for control, 0-, 6-, 12- and 24 h samples subsequent to treatment.

Sample no.	Protein	Accession no.	$\begin{gathered} \text { Calculated } \\ \text { mass }^{a} \\ (\mathrm{M}+\mathrm{H}) \\ \hline \end{gathered}$	Mass error ${ }^{b}$ (ppm)	Byonic ${ }^{\text {TM }}$ score ${ }^{c}$	\| Log prob ${ }^{d}$
Signaling						
A13	Leucine-rich repeat receptor-like protein kinase PXC1 At2g36570	Q9SJQ1	736.424	0.7	292.90	0.72
A14	Probable LRR receptor-like serine/threonine-protein kinase At1g29720	Q9ASQ6	787.492	-0.2	290.10	0.67
A4	Receptor like protein 46 At4g04220	F4JGB6	1173.647	-1.1	268.3	0.55
A6	Leucine-rich repeat receptor-like serine/threonine/tyrosineprotein kinase SOBIR1 At2g31880	Q9SKB2	1005.573	-0.9	259.5	1.20
A14	Leucine-rich repeat receptor-like protein kinase At2g01210	Q9ZU46	870.541	-2.1	225.50	0.35
A3	Protein BRASSINOSTEROID INSENSITIVE 1 At4g39400	O22476	1043.548	-0.4	220.2	0.40
A10	Receptor-like protein kinase FERONIA At3g51550	Q9SCZ4	530.305	-0.3	188.2	0.77
A3, A8	Plasma membrane-associated cation-binding protein 1 At4g20260	Q96262	536.308	-1.0	178.1	0.48
A10	Tetraspanin-3 At3g45600	Q9M1E7	1186.533	-1.0	179.6	0.72
A12	14-3-3-like protein GF14 omega At1g78300	Q01525	907.525	-0.4	164.9	0.56
A9	Cysteine-rich receptor-like protein kinase 41 At4g00970	O23081	973.531	0.9	86.0	0.61
Membrane trafficking and transport						
A1	Ras-related protein RABG3f At3g18820	Q9LS94	1187.621	-0.1	297.6	6.66
A13	ABC transporter C family member 8 At3g21250	Q8LGU1	472.349	-1.0	283.4	0.73
A11	Syntaxin-22 At5g46860	P93654	820.456	-0.7	276.4	0.40
A10	Syntaxin-132 At5g08080	Q8VZU2	805.420	0.6	246.8	0.75
A4	Aluminum-activated malate transporter 5 At1g68600	Q93Z29	430.302	-0.5	246.5	0.98
A2	Copper ion transmembrane transporter At2g37920	Q8LG21	773.513	-0.8	241.6	0.47
A2	PRA1 family protein B4 At2g38360	O80915	1306.700	-1.1	222.0	2.42
A10	Sugar transporter ERD6-like 6 At1g75220	Q9FRL3	777.462	-0.3	221.4	0.83
A14	Patellin-2 At1g22530	Q56ZI2	1078.589	-0.9	198.50	0.37
A3, A4	Auxin transport protein BIG At3g02260	Q9SRU2	731.405	-1.4	196.1	0.16
A7	Putative ABC transporter B family member 8 At3g30875	Q9LHK4	502.324	-0.4	192.9	0.49
A5	ABC transporter C family member 2 At2g34660	Q42093	375.235	-1.6	186.3	0.54
A1	ABC transporter A family member 7 At3g47780	Q9STT5	401.287	-0.4	185.4	0.15
Structure						
A12	Actin-4 At5g59730	P53494	976.448	-0.5	197.2	0.69
$\begin{gathered} \text { A1, A9 } \\ \text { A10 } \\ \hline \end{gathered}$	Actin-3 At3g53750	P0CJ47	945.552	1.1	153.6	0.42
A10	Fasciclin-like arabinogalactan protein 9 At1g03870	Q9ZWA8	1238.586	-0.6	143.7	0.67
Defense						
A11	Germin-like protein subfamily 3 member 1 At1g72610	P94040	560.304	-0.9	237.5	0.23
A5	Protein BONZAI 1 At5g61900	Q941L3	1060.615	0.8	228.1	0.24
A12	Dehydrin ERD14 At1g76180	P42763	896.488	-0.9	174.5	0.64
A8	Temperature-induced lipocalin-1 At5g58070	Q9FGT8	1110.531	-0.1	168.0	1.97
A10	Jacalin-related lectin 22 At2g39310	O80950	1191.648	1.4	139.9	0.21

$a=$ the computed $\mathrm{M}+\mathrm{H}$ precursor mass for the peptide spectrum matches (PSMs).
$b=$ a calculated mass error (parts per million) after correcting the observed $\mathrm{M}+\mathrm{H}$ (single charged) precursor mass and the computed $\mathrm{M}+\mathrm{H}$ precursor mass.
$c=$ Byonic score, primary indicator of PSM correctness. Score of 300 is considered to be a significant hit [35].
$d=$ the $\log \mathrm{p}$-value of the PSM, which the value should be ≥ 1 for hit to be significant

Table S2: LC-MS/MS identification of Arabidopsis thaliana PM-associated candidate proteins interacting with magnetic microspheres for the negative control (no ergosterol immobilization)
subsequent to ergosterol treatment.

Protein name	Accession no.	Calculated mass ${ }^{a}$ $(\mathrm{M}+\mathrm{H})$	$\begin{gathered} \text { Mass error }^{b} \\ \text { (ppm) } \end{gathered}$	$\begin{gathered} \text { Byonic }^{\mathrm{TM}} \\ \text { score }^{\text {c }} \end{gathered}$	\mid Log prob\|d
Photosystem I reaction center subunit XI At4g12800	Q9SUI4	1527.801	0.9	543.30	9.73
Cytochrome b6-f complex subunit 4 Atcg00730	P56774	1166.653	-0.7	521.40	7.89
Chlorophyll A-B binding protein At1g15820	Q9LMQ2	741.451	-1.6	501.90	7.38
NAD(P)-linked oxidoreductase-like protein At1g14345	Q949S6	1232.648	-0.6	451.30	8.20
Photosystem II $22 \mathrm{kDa} \mathrm{protein} \mathrm{At1g44575}$	Q9XF91	1123.578	-1.2	385.10	7.16
Protein translocase subunit SECA1 At4g01800	Q9SYI0	1059.543	-0.2	345.90	7.40
UPF0603 protein At1g54780 At1g54780	Q9ZVL6	1057.662	0.8	327.20	6.29
Photosystem I reaction center subunit III At1g31330	Q9SHE8	1225.715	-1.2	331.00	8.35
Chlorophyll a-b binding protein CP29.1 At5g01530	Q07473	1061.522	-0.5	330.00	5.60
Photosystem I reaction center subunit psaK At1g30380	Q9SUI5	932.495	-0.9	329.50	7.35
Photosystem II D2 protein Atcg00270	P56761	1041.605	0.4	320.90	6.70
Protein ACCLIMATION OF PHOTOSYNTHESIS TO ENVIRONMENT At5g38660	Q2HIR7	918.453	-0.2	317.60	7.00
Phytosulfokine receptor 1 At2g02220	Q9ZVR7	1169.664	0.3	283.10	2.25
Acetyl-CoA carboxylase 1 At1g36160	Q38970	401.287	-0.3	172.70	3.42

$a=$ the computed M+H precursor mass for the peptide spectrum matches (PSMs).
$b=$ a calculated mass error (parts per million) after correcting the observed $\mathrm{M}+\mathrm{H}$ (single charged) precursor mass and the computed $\mathrm{M}+\mathrm{H}$ precursor mass.
$c=$ Byonic score, primary indicator of PSM correctness. Score of 300 is considered to be a significant hit [35]
$d=$ the $\log \mathrm{p}$-value of the PSM, which the value should be ≥ 1 for hit to be significant.

Figure S10: Representative thin-layer chromatogram (TLC) of ergosterol and ergosterol-hemisuccinate analyzed with HPTLC. The derivatization of ergosterol was confirmed by comparing $30 \mathrm{mg} / \mathrm{mL}$ ergosterol (Erg) and $30 \mathrm{mg} / \mathrm{mL}$ ergosterol-hemisuccinate (Erg*), both dissolved in toluene:acetone (70:30, v/v). One $\mu \mathrm{L}$ of each solution was spotted on the plate and the mobile phase was toluene:acetone $(70: 30, \mathrm{v} / \mathrm{v})$. The plate was visualized under UV at 254 nm .

Figure S11: Elution profile of binding events between ergosterol-hemisuccinate immobilized on EAH Sepharose $4 B$ resin and A. thaliana PM -associated proteins for the control. The blue curve represents the flow-through (unbound) fractions eluted with 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$ buffer. The green curve represents the non-specifically bound fractions removed with 0.5 M NaCl in buffer and the grey curve represents the proteins of interest eluted with 1% SDS in buffer.

Figure S12: Elution profile of binding events between ergosterol-hemisuccinate immobilized on EAH Sepharose 4B resin and A. thaliana PM-associated proteins for the 0 h time point. The blue curve represents the flow-through (unbound) fractions eluted with 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$ buffer. The green curve represents the non-specifically bound fractions removed with 0.5 M NaCl in buffer and the grey curve represents the proteins of interest eluted with 1% SDS in buffer.

Figure S13: Elution profile of binding events between ergosterol-hemisuccinate immobilized on EAH Sepharose 4B resin and A. thaliana PM-associated proteins for the 12 h time point. The blue curve represents the flow-through (unbound) fractions eluted with 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$ buffer. The green curve represents the non-specifically bound fractions removed with 0.5 M NaCl in buffer and the grey curve represents the proteins of interest eluted with 1% SDS in buffer.

Figure S14: Elution profile of binding events between ergosterol-hemisuccinate immobilized on EAH Sepharose 4B resin and A. thaliana PM-associated proteins for the 24 h time point. The blue curve represents the flow through fractions removed with 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$ buffer. The green curve represents the non-specifically bound fractions removed with 0.5 M NaCl in buffer and the grey curve represents the protein(s) of interest eluted with 1% SDS in buffer.

Figure S15: Elution profile of binding events between EAH Sepharose 4B resin and A. thaliana PMassociated proteins for the negative control (no ergosterol immobilization). The blue curve represents the flow-through (unbound) fractions eluted with 10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5$ buffer. The green curve represents the non-specifically bound fractions removed with 0.5 M NaCl in buffer and the grey curve represents the proteins of interest eluted with 1% SDS in buffer.

Table S3: LC-MS/MS identification of low score Arabidopsis thaliana PM-associated candidate proteins, interacting with ergosterol-hemisuccinate immobilized on EAH Sepharose 4B resin for control, $0-, 6-12$ - and 24 h samples subsequent to treatment.

| Sample no. | Protein name | Accession no. | $\begin{gathered} \text { Calculated } \\ \text { mass }^{a} \\ (\mathrm{M}+\mathrm{H}) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { Mass } \\ & \text { error }{ }^{b} \\ & \text { (ppm) } \end{aligned}$ | $\begin{gathered} \text { Byonic }^{\mathrm{TM}} \\ \text { score }^{c} \end{gathered}$ | \| Log prob| ${ }^{d}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signaling | | | | | | |
| A6 | MAP3K epsilon protein kinase 2 At3g07980 | Q9SFB6 | 1187.699 | -0.3 | 268.00 | 0.33 |
| A5 | Serine/threonine-protein kinase ATM At3g48190 | Q9M3G7 | 418.230 | -0.2 | 191.00 | 0.36 |
| A1 | Putative GTP-binding protein ara-3 At5g59840 | Q9FJF1 | 1316.659 | -2.4 | 158.4 | 0.46 |
| A6 | LRR receptor-like serine/threonine-protein kinase GSO2 At5g44700 | Q9FIZ3 | 379.209 | -0.5 | 118.00 | 0.44 |
| Membrane trafficking and transport | | | | | | |
| A4 | Auxin transport protein BIG At3g02260 | Q9SRU2 | 409.219 | -0.4 | 308.30 | 0.78 |
| A2 | ABC transporter B family member 15 At3g28345 | Q9LHD1 | 386.240 | -0.3 | 72.40 | 0.33 |
| $\begin{gathered} \text { A3, A5, } \\ \text { A9 } \\ \hline \end{gathered}$ | ABC transporter B family member 19 At3g28860 | Q9LJX0 | 487.324 | -0.2 | 196.90 | 0.33 |
| A9 | Potassium channel AKT6 At2g25600 | Q8GXE6 | 729.462 | -0.1 | 279.30 | 0.29 |
| A10 | Phospholipid-transporting ATPase 1 At5g04930 | P98204 | 501.340 | 0.3 | 273.80 | 0.34 |
| A7 | ABC transporter G family member 41 At4g15215 | Q7PC83 | 401.287 | -0.8 | 197.80 | 0.54 |
| A5 | Protein NRT1/ PTR FAMILY 6.3 At1g12110 | Q05085 | 515.330 | -0.7 | 164.10 | 0.42 |
| A4 | Putative ABC transporter B family member 8 At3g30875 | Q9LHK4 | 502.324 | -0.2 | 150.00 | 0.86 |
| A5 | Auxin transport protein BIG At3g02260 | Q9SRU2 | 373.208 | -0.5 | 70.10 | 0.38 |
| Defense | | | | | | |
| A6 | Disease resistance protein At4g27190 | Q9T048 | 635.304 | 1.8 | 340.80 | 0.35 |
| Structure | | | | | | |
| A10 | Actin-3 At3g53750 | P0CJ47 | 945.552 | 0.3 | 159.5 | 0.58 |

$a=$ the computed $\mathrm{M}+\mathrm{H}$ precursor mass for the peptide spectrum matches (PSMs).
$b=$ a calculated mass error (parts per million) after correcting the observed $\mathrm{M}+\mathrm{H}$ (single charged) precursor mass and the computed $\mathrm{M}+\mathrm{H}$ precursor mass.
$c=$ Byonic score, primary indicator of PSM correctness. Score of 300 is considered to be a significant hit [35].
$d=$ the $\log \mathrm{p}$-value of the PSM, which the value should be ≥ 1 for hit to be significant.

Table S4: LC-MS/MS identification of Arabidopsis thaliana PM-associated candidate proteins interacting with the EAH Sepharose 4B resin for the negative control (no ergosterol immobilization) subsequent to ergosterol treatment.

Protein name	Accession no.	Calculated mass ${ }^{a}$ $(\mathrm{M}+\mathrm{H})$	Mass error ${ }^{b}$ (ppm)	Byonic $^{\text {TM }}$ score ${ }^{c}$	\mid Log prob\| ${ }^{\text {d }}$
Chlorophyll a-b binding protein 3 At1g29910	Q8VZ87	1265.555	-0.1	590.70	9.62
Photosystem I chlorophyll a/b-binding protein 3-1 At1g61520	Q9SY97	1629.903	-1.3	491.90	9.13
Cytochrome b6-f complex subunit 4 Atcg00730	P56774	1166.653	-0.8	438.10	8.30
Photosystem I reaction center subunit III At1g31330	Q9SHE8	1080.594	0.5	435.50	9.10
$\mathrm{NAD}(\mathrm{P})$-linked oxidoreductase-like protein At1g14345	Q949S6	1232.648	-1.0	413.60	9.43
Photosystem I reaction center subunit XI At4g12800	Q9SUI4	883.536	-0.4	412.00	8.87
TIR-NBS-LRR class disease resistance protein At5g45240	F4KD49	573.361	-0.5	406.10	1.37
Cytochrome b559 subunit alpha Atcg00580	P56779	954.573	0.1	395.10	8.36
Photosystem II protein D1 Atcg00020	P83755	963.453	1.0	365.80	6.71

Nucleoside diphosphate kinase III At4g11010	O49203	529.371	-1.6	361.30	0.67
Rhodanese-like domain-containing protein 9 At2g42220	O48529	900.551	0.4	350.60	7.91
Probable plastid-lipid-associated protein 4 At3g26070	Q9LU85	1130.544	-1.7	341.20	
At3g27700	Q9XF87	3555.753	-2.2	334.20	8.00
Ribulose bisphosphate carboxylase small chain 3B At5g38410	P10798	935.495	1.6	316.60	1.79
Glutamyl-tRNA reductase 2 At1g09940	P49294	1130.642	515.330	-1.0	305.20
C2 and GRAM domain-containing protein	Q9ZVT9	0.1	305.00	7.06	
At1g03370	Q9LXG1	1047.583	-0.1	304.80	2.62

$a=$ the computed $\mathrm{M}+\mathrm{H}$ precursor mass for the peptide spectrum matches (PSMs).
$b=$ a calculated mass error (parts per million) after correcting the observed $\mathrm{M}+\mathrm{H}$ (single charged) precursor mass and the computed $\mathrm{M}+\mathrm{H}$ precursor mass.
$c=$ Byonic score, primary indicator of PSM correctness. Score of 300 is considered to be a significant hit [35].
$d=$ the $\log p$-value of the PSM, which the value should be ≥ 1 for hit to be significant.

