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Abstract: Non-coding RNAs with a length of more than 200 nucleotides are long non-coding
RNAs (lncRNAs), which have gained tremendous attention in recent decades. Many studies
have confirmed that lncRNAs have important influence in post-transcriptional gene regulation;
for example, lncRNAs affect the stability and translation of splicing factor proteins. The mutations
and malfunctions of lncRNAs are closely related to human disorders. As lncRNAs interact with
a variety of proteins, predicting the interaction between lncRNAs and proteins is a significant
way to depth exploration functions and enrich annotations of lncRNAs. Experimental approaches
for lncRNA–protein interactions are expensive and time-consuming. Computational approaches
to predict lncRNA–protein interactions can be grouped into two broad categories. The first
category is based on sequence, structural information and physicochemical property. The second
category is based on network method through fusing heterogeneous data to construct lncRNA
related heterogeneous network. The network-based methods can capture the implicit feature
information in the topological structure of related biological heterogeneous networks containing
lncRNAs, which is often ignored by sequence-based methods. In this paper, we summarize and
discuss the materials, interaction score calculation algorithms, advantages and disadvantages of
state-of-the-art algorithms of lncRNA–protein interaction prediction based on network methods to
assist researchers in selecting a suitable method for acquiring more dependable results. All the related
different network data are also collected and processed in convenience of users, and are available at
https://github.com/HAN-Siyu/APINet/.

Keywords: lncRNA–protein interaction prediction; computational model; biological network science;
machine learning

1. Introduction

Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts with a length of more
than 200 nucleotides, which can regulate gene expression at different levels [1]. LncRNAs were first
regarded as transcriptional noise, and later it was found that they can play an important role in cell
division, differentiation, metabolism and other physiological processes [2–4]. With the development
of biotechnology and the emergence of computational models, there is now a great deal of evidence
suggesting that lncRNAs are significant in diverse mechanisms and are involved in almost the whole
process of cells from one division to the next [5,6], such as in transcriptional and post-transcriptional
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regulation, epigenetic regulation, tissue development, the process of genome selective expression
in time and space and apotheosis, metabolic processes, cell cycle control and morphological and
structural changes in chromosomes [7–14]. More and more reports have indicated that lncRNAs
participate energetically in various stages of gene expression, including as signals, decoys, scaffolds,
and leaders [15]. Compared with the characteristics of protein coding genes, lncRNAs tend to
be less conserved across species and often show low expression level and high tissue specificity,
which make the research more challenging and have attracted the attention of scientists and given rise
to considerable discussions in recent decades.

Similar to protein-coding genes and microRNAs, lncRNAs have also been found in the regulation
of many human complex diseases, including various types of cancer. At present, there are many
databases of lncRNA associated with diseases, such as LncRNADisease database [16] and Lnc2Cancer
database [17], which can be used to collect many kinds of disease-related lncRNA. The LncRNADisease
database contains nearly 2000 lncRNA–disease associations, and Lnc2Cancer database contains
1488 lncRNA–cancer associations. It further confirms that lncRNA is closely related to diseases,
even cancer and prognosis regulation. Obviously, the number of annotated lncRNAs involved in these
two databases is relatively small compared with the number of identified lncRNAs, and most of the
functions of lncRNAs associated with diseases are unclear. It is worth mentioning that lncRNA–protein
interaction is a very important mechanism of lncRNAs. To fully understand function or molecular
mechanism of lncRNAs, it is necessary to mine interactions between lncRNAs and other molecules,
especially lncRNA–protein interactions.

It is of great importance to identify lncRNA–protein interactions to gain a comprehensive
and profound understanding of the potential functions encompassed in their molecular
mechanisms. At present, the main methods for identifying lncRNA–protein interactions
are based on experimental approaches and computational approaches. Several large-scale
experimental approaches for lncRNA–protein interaction prediction include RNAcompete [18], RNP
immunoprecipitation-microarray (RIP-Chip) [19], high-throughput sequencing of RNA isolated by
crosslinking immunoprecipitation (HITS-CLIP) [20] and photoactivatable ribonucleoside-enhanced
crosslinking and immunoprecipitation (PAR-CLIP) [21]. There are also many effective methods
for the analysis of experimental data, such as several methods for finding RNA motifs
from crosslinking-immunprecipitation and high-throughput sequencing (CLIP-Seq) or other
high-throughput experiments, such as BEAM (BEAr Motif finder) [22] and SMARIV (Sequence
and Structure Motif enrichment Analysis for Ranked RNA daTa generated from In-Vivo binding
experiments) [23]. NPInter database and StarBase database are built on these data, which are based
on high-throughput experiments and have a certain degree of false positivity. True interactions
may involve the integration of multi-source data, such as the STRING database containing
PPI (protein–protein interactions), which integrates information from various sources, including
experimental data, co-expression data, text mining, etc.

The methods of predicting lncRNA–protein interactions based on computational approaches are
mainly divided into machine-based learning methods and network-based methods. The methods
based on machine learning construct a classifier by fusing the features of sequence, structure and
physicochemical properties, so as to form an interactive or non-interactive classification model.
At present, the existing methods are RPISeq [24], de novo prediction [25], CatRAPID [26], LncPro [5],
RPI-Pred [27] and rpiCOOL [28]. Random Forest, Nave Bayesian, Extended Nave Bayesian and
SVM are the classifiers used in the above machine-based learning methods. There are also two
methods to construct classification model based on deep learning: IPMiner [29] and lncADeep [30].
Current network-based approaches include LPBNI [31], fusing multiple protein–protein similarity
networks (PPSNs) proposed by Zheng et al. [32], the method to predict lncRNA–protein interactions
based on the relevance search method proposed by Yang et al. [33], LPIHN [34] and PLPIHS [35].
Compared to machine learning-based methods, network-based methods can accommodate more
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heterogeneous data, not only avoiding ignoring the external links between molecules, but also mining
the hidden topological structure information in heterogeneous networks.

Nowadays, network science is being extensively used in biological and related fields. It provides
many practical descriptions to characterize various biological systems [36] and the relationships
between diseases and biological factors [37]. Network science is becoming more and more popular,
and has achieved remarkable results in various fields of bioinformatics. Network science has also
made rapid advances in disease gene prioritization [38], disease lncRNA prioritization [39–41],
disease-related miRNA identification [42–48], disease metabolite prioritization [49] and drug–target
interaction prediction [50–52]. In this paper, we focus on re-viewing network-based methods used
for integrating heterogeneous data to predict lncRNA–protein interactions directly. The materials,
interaction score calculation algorithms, and advantages and disadvantages of state-of-art algorithms
of lncRNA–protein interaction prediction based on network methods are summarized and discussed
to assist researchers in selecting a suitable method for acquiring more dependable results. This article
is organized as follows. Section 2 summarizes the relevant databases used for analyzing
lncRNA–protein interaction. Section 3 gives a brief introduction to experimental approaches
and machine learning-based computational approaches for studying lncRNA–protein interaction.
Section 4 systematically analyzes biological network-based computational models for lncRNA–protein
interaction prediction. Section 5 includes the performance comparison of different network-based
models for lncRNA-protein interaction prediction. And Section 6 briefly summarizes the discussion in
this paper and looks forward to the future feasible methods.

2. A Brief Introduction to the Relevant Databases Used for Analyzing LncRNA–Protein Interactions

The various databases discussed in this article incorporate lncRNAs from different tissues and
focus on lncRNAs as well as lncRNA-related interactions. Some of these databases are available
at RNAcentral [53]. Although there is a great deal of overlapping sections among these databases,
each database nonetheless offers considerable unique features. We present herein an overview of
their respective contents and search features in order that researchers can get a quick glance of what
each can offer. Then, we give a brief summary of the relevant databases mentioned in Table 1,
including the name and website of the database and a brief description. We provide data information
on all possible interactions between biomolecules that may be used in the research of lncRNA
functions (which users can browse and download from https://github.com/HAN-Siyu/APINet/),
that is, lncRNA–disease associations, lncRNA–lncRNA interactions, lncRNA–microRNA interactions,
lncRNA–gene interactions, lncRNA–Gene Ontology (GO) interactions, microRNA–microRNA
interactions, microRNA–disease associations, microRNA–gene interactions, microRNA–target
interactions, gene–gene interactions, gene–metabolite interactions, metabolite–metabolite interactions,
gene–GO interactions, gene–disease associations, gene–drug associations, metabolite–disease
associations, drug–disease associations, drug–drug interactions, drug–side-effect interactions and
and disease–disease interactions. The details of the data information are shown in Table 2. As some
interaction data are integrated by multi-source data, in Table 2, we can see the types of these interactive
data information, the number of sets of interaction data composed of several biological molecules and
the sources of these data, which determine association data that can be used to construct heterogeneous
networks, i.e., the composition of heterogeneous networks.

https://github.com/HAN-Siyu/APINet/
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Table 1. Description of lncRNA relevant databases.

Database Description Availability

ncRNA database (Especially lncRNAs):

NONCODE [54] Comprehensive knowledge database of non-coding RNAs, including lncRNAs from 17 species,
and predicted/validated lncRNA–disease relationships. http://www.noncode.org

MNDR [55] Database of ncRNA–disease associations in mammals. http://www.rna-society.org/mndr

deepBase [56] Database for identification, expression, evolution and function of small RNAs, lncRNAs and
circular RNAs from deep-sequencing data. http://rna.sysu.edu.cn/deepBase

NRED [57] Database integrating annotated human and mouse ncRNA expression data from various
resources. http://nred.matticklab.com

ChIPBase [58] Database on the transcriptional regulation of ncRNAs based on ChIP-sequencing data. http://rna.sysu.edu.cn/chipbase
SomamiR [59] Cancer somatic mutations with altering microRNA–ceRNA interactions. http://compbio.uthsc.edu/SomamiR

LncRNA2Function [60] Functional annotations and expression profiles (RNAseq) of human lncRNAs. http://mlg.hit.edu.cn/lncrna2function
LincSNP [61] A database containing human lncRNAs information about linking disease related SNPs. http://bioinfo.hrbmu.edu.cn/LincSNP

LncRNA-SNP [62] A database of SNPs in lncRNAs and their predicted effects in human and mouse. http://bioinfo.life.hust.edu.cn/lncRNASNP
LNCipedia [63] A database for annotated human lncRNA transcript sequences and structures. http://www.lncipedia.org

ALDB [64] A farm livestock lncRNA database. http://res.xaut.edu.cn/aldb/index.jsp

lncRNAtor [65] A database for functional investigation of lncRNAs that encompasses annotation, sequence
analysis, gene expression, protein binding and phylogenetic conservation. http://lncrnator.ewha.ac.kr

Co-LncRNA [66] A web-sever containing effects of lncRNAs in GO functions and KEGG pathways based on
co-expressed genes. http://www.bio-bigdata.com/Co-LncRNA

Lnc2Cancer [17] A database for experimentally validated associations between lncRNAs and cancers. http://www.bio-bigdata.net/lnc2cancer
LncRNADisease [16] A database for experimentally validated lncRNA-associated diseases. http://www.cuilab.cn/lncrnadisease

lncRNAMap [67] A map of putative regulatory functions in the long non-coding transcriptome. http://lncRNAMap.mbc.nctu.edu.tw/

TANRIC [34] A web-resource for interactive exploration of lncRNAs in cancer. http://ibl.mdanderson.org/tanric/_design/
basic/index.html

LncRNA ontology [64] A web-resource for inferring lncRNA functions based on chroma-tin states and expression
patterns. http://www.bio-bigdata.com/lncrnaontology/

LNCediting [68] A database for functional effects of RNA editing in lncRNAs. http://bioinfo.life.hust.edu.cn/LNCediting/
LncBase [69] A database of interactions between miRNAs and lncRNAs. http://www.microrna.gr/LncBase

TF2LncRNA [70] A Web-resource for the identification of common transcription factors for a list of lncRNA
genes. http://mlg.hit.edu.cn/tf2lncrna

LncSubpathway [71] A web server for the identification of dysfunctional subpathways associated with risk
lncRNAs. http://www.bio-bigdata.com/lncSubpathway/

LncRNA2Target [72] A database of differentially expressed genes after lncRNA knock-down or overexpression. http://lncrna2target.org
LncReg [73] A reference resource for lncRNA-associated regulatory networks. http://bioinformatics.ustc.edu.cn/lncreg/

lncRNAdb [74] An annotation database of eukaryotic lncRNAs. http://www.lncrnadb.org/

http://www.noncode.org
http://www.rna-society.org/mndr
http://rna.sysu.edu.cn/deepBase
http://nred.matticklab.com
http://rna.sysu.edu.cn/chipbase
http://compbio.uthsc.edu/SomamiR
http://mlg.hit.edu.cn/lncrna2function
http://bioinfo.hrbmu.edu.cn/LincSNP
http://bioinfo.life.hust.edu.cn/lncRNASNP
http://www.lncipedia.org
http://res.xaut.edu.cn/aldb/index.jsp
http://lncrnator.ewha.ac.kr
http://www.bio-bigdata.com/Co-LncRNA
http://www.bio-bigdata.net/lnc2cancer
http://www.cuilab.cn/lncrnadisease
http://lncRNAMap.mbc.nctu.edu.tw/
http://ibl.mdanderson.org/tanric/_design/basic/index.html
http://ibl.mdanderson.org/tanric/_design/basic/index.html
http://www.bio-bigdata.com/lncrnaontology/
http://bioinfo.life.hust.edu.cn/LNCediting/
http://www.microrna.gr/LncBase
http://mlg.hit.edu.cn/tf2lncrna
http://www.bio-bigdata.com/lncSubpathway/
http://lncrna2target.org
http://bioinformatics.ustc.edu.cn/lncreg/
http://www.lncrnadb.org/
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Table 1. Cont.

Database Description Availability

Database information on proteins or microRNAs that may be associated with lncRNAs:

NPInter [75] Database of noncoding RNA-associated interactions. http://www.bioinfo.org/NPInter
PRIDB [76] Comprehensive database of RNA–protein interfaces extracted from complexes in the PDB. http://bindr.gdcb.iastate.edu/PRIDB

PDB [77] A database of experimentally determined three-dimensional structures of proteins, nucleic
acids and other biomolecules. http://www.rcsb.org/

StarBase v 2.0 [78] A database of experimentally supported interactions from RBPs, mRNAs, miRNAs, RNAs,
proteins and so on. http://starbase.sysu.edu.cn/

Nucleic acid database
(NDB) [79]

A database about three-dimensional nucleic acid structures and their complexes, geometric
data, structure information. http://ndbserver.rutgers.edu/

http://www.bioinfo.org/NPInter
http://bindr.gdcb.iastate.edu/PRIDB
http://www.rcsb.org/
http://starbase.sysu.edu.cn/
http://ndbserver.rutgers.edu/
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Table 2. Details of interactions between biomolecules and the research of lncRNA functions.

Name Samples Interactions Source

LncRNA–Disease 804 × 288 1454 LncRNADisease [16], Lnc2Cancer [17]
LncRNA–LncRNA 1114 × 1114 1,179,256 LFSCM [80]

LncRNA–microRNA 1127 × 277 10,198 StarBase v2.0 [78]
LncRNA–Gene 240 × 15,527 6186 LncRNA2Target [72]
LncRNA–GO 240 × 6428 3094 GeneRIF [81]

MicroRNA–MicroRNA 271 × 271 24,062 Zhong et al. [82]
MicroRNA–Disease 1080 × 592 11,835 HMDD [83], miR2Disease [84], miRCancer [85]

MicroRNA–Gene 495 × 15,527 135,852 miRTarBase [86]
MicroRNA–Target 495 × 15,527 135,852 miRTarBase [86]

Gene–Gene 16,785 × 16,785 1,515,370 Yao et al. [49]
Gene–Metabolite 12,342 × 3278 192,763 Yao et al. [49]

Metabolite–Metabolite 3764 × 3764 74,667 Yao et al. [49]
Gene–GO 15,527 × 6428 1,191,503 GO Annotation [87]

Gene–Disease 1715 × 1886 2603 DisGeNET [88]
Gene–Drug 155,275 × 8283 3760 DrugBank [89]

Metabolite–Disease 388 × 149 664 HMDB [90]
Drug–Disease 15,527 × 412 115,317 CTD [91]

Drug–Drug 8283 × 8283 453,436 DrugBank [89]
Drug–Side-effects 1430 × 5880 140,064 SIDER [92]
Disease–Disease 5080 × 5080 20,280,092 Yao et al. [49]

3. A Brief Introduction of Experimental Approaches and Computational Approaches Based on
Machine Learning to Study LncRNA–Protein Interactions

3.1. LncRNA–Protein Interactions: From Experimental Approaches to Computational Models Based on
High-Throughput Experiments

Several large-scale experimental approaches for lncRNA–protein interaction prediction include
RNA immunoprecipitation (RIP) followed by mass spectrometry analysis, RNAcompete [18],
RIP-Chip [19], high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation
(HITS-CLIP) [20], and photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation
(PAR-CLIP) [21]. Although these approaches can provide valuable data to construct a network of
lncRNA–protein interactions, they are expensive and time-consuming, which are disadvantages that
cannot be ignored. It is therefore urgent to put forward the computational approaches.

There are many effective methods for the analysis of experimental data, such as several methods
for finding RNA motifs from CLIP-Seq or other high-throughput experiments, such as BEAM [22] and
SMARIV [23]. BEAM is a method for structural motif discovery from a set of unaligned RNAs. Tested in
various scenarios, BEAM is successful in retrieving structural motifs even in highly noisy datasets, such
as those that can arise in CLIP-Seq or other high-throughput experiments. To solve the problem that the
previous methods cannot provide information about protein structure preferences, the sequence and
structure preferences of RNA-binding proteins can be inferred based on the feasibility of obtaining RNA
structure information. SMARTIV is a novel computational tool for discovering combined sequence
and structure binding motifs from in vivo RNA binding data relying on the sequences of the target
sites, the ranking of their binding scores and their predicted secondary structures. The combined
motifs are presented in a unified form, which is rich in information and easy for visual perception.
These high-throughput experimental data can be used to predict the next step by developing machine
learning methods. The quality of these models depends directly on the experimental data. At present,
NPInter database and StarBase database are constructed from high throughput experimental data and
are existing databases for lncRNA–protein interactions.
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3.2. LncRNA–Protein Interactions: From Experimental Results to Computational Models Based on
Machine Learning

Computational approaches for lncRNA–protein interaction prediction can be grouped into the
following two ways of expressions. The first category is based on sequence and structural information
and physicochemical properties, including RPISeq [24], de novo prediction [25], CatRAPID [26],
LncPro [5], RPI-Pred [27], rpiCOOL [28], IPMiner [29] and lncADeep [30]. The second category
is based on the fusion of heterogeneous data to construct a network, such as the lncRNA–protein
bipartite network inference (LPBNI) method [31], fusing multiple protein–protein similarity networks
(PPSNs) [32], the method to predict lncRNA–protein interactions based on the relevance search method
proposed by Yang et al. [33], the prediction method of interactions between lncRNAs and proteins on
heterogeneous networks (LPIHN) [34] and the predicting lncRNA–protein interactions using HeteSim
scores (PLPIHS) method [35].

From the point of view of characteristics such as sequence information, various classical methods
have been proposed. RPISeq [24] is proposed to predict RNA–protein interactions only using sequence
information. The support vector machine (SVM) classifier and the random forest (RF) classifier,
which are supervised machine learning algorithms, are used in the RPISeq. De novo prediction of
RNA–protein interactions [25] also only considers sequence information. A set of known RNA–protein
interactions is collected as gold-standard positives, where sequence-based features are extracted for
each RNA–protein pair [25]. In the process of constructing the Bayes classifier, these effective features
are used to train an RNA–protein interaction prediction model. CatRAPID [26] is proposed by using
physicochemical properties, including the secondary structures of the molecules and their propensities
for hydrogen bonding and van der Waals interactions. Encoding the protein–RNA pairs into feature
vectors is the first step, followed by calculating the interaction score through the matrix computation.
LncPro [5] is proposed to predict ncRNA–protein interactions by using Fisher’s linear discriminant
approach. The training features are not only from protein secondary structures and their propensities
for hydrogen bonding and van der Waals interactions, but also from RNA secondary structures [93].
LncPro also requires the identification of a matrix and calculation of the interaction score to represent
degree of interactions through matrix computation by a simple machine-learning model for matrix
computation. RPI-Pred [27], a SVM-based machine-learning approach, is proposed by considering
sequence features and combining the high-order structures of both proteins and RNAs. This interaction
prediction considers protein blocks rather than classical three-state protein secondary structures.
Five classes of RNA secondary structures are regarded as high-order structures. RpiCOOL [28] is
a tool developed for detecting RNA–protein interactions in silico by using the RF classifier, which
classifies RNA and protein based on whether there are interactions between them. The sequence
composition and repetitive patterns are used as heterogeneous information of the protein and RNA,
which is then used to encode feature vectors to express pairs between RNA and protein. IPMiner [29],
a tool based on simple sequence composition features, integrates deep neural network and stacked
ensembling classifiers to identify RNA–protein interactions. The extracted original features, SDA
(stacked denoising autoencoder) and SDA-FT (SDA with fine tuning), are provided to the RF classifier,
respectively. The outputs of these three classifiers, which are trained by a logistic regression mode,
are integrated through superposition. These computational methods fill the broadening gap between
raw and annotated data that has been generated as a result of the large amount of data obtained by
high-throughput technologies. LncADeep is proposed to predict lncRNA-protein interactions based
on deep neural networks, using both sequence and structure information.

With the development of computational approaches, experimental methods are now suffering
the great disadvantage to predict lncRNA–protein interactions, such as high cost and long time.
Intrinsic features of lncRNA and protein have increasingly interested the researchers. The advantage of
intrinsic features has been demonstrated in the research of lncRNA identification. The methods
of lncRNA–protein interaction prediction focus on intrinsic features of lncRNA and protein,
such as sequence information, structure information, and physicochemical properties, including
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hydrogen-bond and van der Waals propensities. We analyzed the dataset of methods based on what
kind of information they use, such as sequence, structure and physicochemical information. We also
analyzed what machine learning algorithms are employed in the different methods. The comparison
of each method is shown in Table 3. In this article, we give a more detailed introduction to each
computational model for lncRNA–protein interaction prediction based on intrinsic features of lncRNA
and protein. To make it easier for users to use these computation models, we have supplemented the
availability network resources. We give more details about each computational method’s availability,
such as the web server or offline package for lncRNA–protein interaction prediction based on sequence
and structural information and physicochemical properties.

Whereas the machine learning-based methods only consider the properties of the RNAs or
proteins and neglect interactions between lncRNAs and proteins, the network-based methods pay
more attention to this kind of interactions, which are implicated in the topologies between nodes in the
heterogeneous networks of lncRNAs. When the sequence is too long or the randomness of structural
information is predicted, the computational models based on machine learning will be affected to
some extent.

4. Computational Models for LncRNA–Protein Interaction Prediction Based on Biological Networks

The previously described methods for predicting the interactions between lncRNAs and proteins
more focus on the intrinsic features of lncRNAs and proteins but do not take the topological structures
of biological networks associated with the lncRNAs into consideration. A biological network can
apply to biological systems. Nowadays, network science is being used extensively in the biological
and related fields. Network science provides many practical descriptions of biological systems and
relationships between diseases and other biomolecules as biological factors [33]. Moreover, we could
integrate known lncRNA–protein interaction networks, lncRNA–lncRNA similarity networks and
PPI networks that were downloaded in the databases and fused by multiple PPSNs to construct
heterogeneous networks and implement a model based on computing node similarity between
networks to discover possible interactions between lncRNAs and proteins, such as random walk on
heterogeneous networks and kinds of propagation algorithms that can discover potential associations.
The overview is presented in Figure 1. We analyzed which heterogeneous data are selected by each
method, how to fuse heterogeneous data to construct the network, and what methods are used to deal
with heterogeneous networks to predict lncRNA–protein interactions. We analyzed the differences
among the different network-based methods such as the datasets that are used in each method, how to
fuse heterogeneous data to construct the network and algorithms for specific computation interactions.
The differences of each network-based method are shown in Table 4. In this articl, we give a more
detailed introduction to each computational model for lncRNA–protein interaction prediction based
on biological networks.
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Table 3. The comparison of each method by analyzing the differences in intrinsic features and classifiers.

CatRAPID [26] RPISeq [24] De novo [25] LncPro [5] RPI-Pred [27] rpiCOOL [28] IPMiner [29] lncADeep [30]

Feature

RNA Sequence
√ √ √ √ √ √

Protein Sequence
√ √ √ √ √ √

3D Structure(RNA)
√

3D Structure (protein)
√

The secondary structure (RNA)
√ √

The secondary structure(protein)
√

Hydrogen-Bonding Propensities
√ √

van der Waals’ Propensities
√ √

Classifier

Random Forest
√ √ √

Naive Bayesian
√

Extended NB
√

SVM
√ √

Fisher’s linear
√

automatic encoder
√

deep neural network
√

p-values
√ √

Web server or offline package
√ √ √ √ √ √ √

1 http://s.tartaglialab.com/page/catrapid_group (web server); 2 http://pridb.gdcb.iastate.edu/RPISeq (web server); 3 http://bioinfo.bjmu.edu.cn/lncpro/ (offline package and
web server); 4 http://ctsb.is.wfubmc.edu/projects/rpi-pred (web server); 5 http://biocool.ir/softs/rpicool.html (offline package); 6 https://github.com/xypan1232/IPMiner
(offline package); 7 https://github.com/cyang235/LncADeep (offline package).

http://s.tartaglialab.com/page/catrapid_group
http://pridb.gdcb.iastate.edu/RPISeq
http://bioinfo.bjmu.edu.cn/lncpro/
http://ctsb.is.wfubmc.edu/projects/rpi-pred
http://biocool.ir/softs/rpicool.html
https://github.com/xypan1232/IPMiner
https://github.com/cyang235/LncADeep
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Table 4. Differences in each network-based methods.

Method Dataset Algorithm AUC

LPBNI [31]
LPI 4870 lncRNA–protein interactions from NPInter database

Bipartite Network 0.8780(2380 lncRNAs and 106 proteins)
PPI ×
LLI ×

Yang et al. [33]
LPI 4883 lncRNA–protein interactions from NPInter database

A random walk model HeteSim 0.7972(1116 lncRNAs and 99 proteins)
PPI 1608 protein–protein interactions from STRING database
LLI ×

LPIHN [34]

LPI 10232 lncRNA–protein interactions from NPInter database

Random Walk with Restart 0.8839
(1113 lncRNAs and 99 proteins)

PPI 804 protein–protein interactions from STRING database

LLI lncRNA expression similarity from NONCODE 4.0 database
(1113 lncRNA expression profiles)

Zheng et al. [32]

LPI 4467 lncRNA–protein interactions from NPInter database

SNF; A random walk model HeteSim 0.9068

(1050 lncRNAs and 84 proteins)

PPI

Sequence similarity from UniProt database;
Functional annotation similarity from GO database;

Protein domain similarity from Pfam database;
STRING similarity from STRING database;

LLI ×

PLPIHS [35]

LPI

lncRNA–protein interactions from GENCODE Release 24

SVM; A random walk model HeteSim 0.9678

(15941 lncRNAs and 20284 proteins)
Co-expression data from COXPRESdb;

Co-expression data from ArrayExpress and GEO;
lncRNA–protein interactions from NPInter database;

PPI Protein–protein interactions from STRING database

LLI lncRNA co-expression similarity from NONCODE database
(lncRNA expression profiles)

Bold representation performs best in AUC values and we found that the performance of the method is better when the heterogeneous network is composed by more sources. When heterogeneous
networks are constructed by the same sources, the performance will be better for the heterogeneous networks constructed by weighted networks. 1 https://github.com/USTC-HIlab/LPBNI
(offline package); 2 https://github.com/cyang235/LncADeep (offline package); 3 lncRNA–protein interactions; 4 protein–protein interactions; 5 lncRNA–lncRNA interactions; 6 A relevance
search based on random walk in heterogeneous network to evaluate the relevance between a pair of lncRNA and protein, and a large relevance score means a high possibility that the lncRNA and
protein interacts [94]. 7 Similarity Network Fusion: It is a nonlinear message-passing based method that iteratively updates each network and makes it more and more similar to the other [95].

https://github.com/USTC-HIlab/LPBNI
https://github.com/cyang235/LncADeep
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Figure 1. Overview of five computational models for lncRNA–protein interaction prediction based
on network method, including data collection and core algorithm. Illustration: The specific algorithm
implementation of each method is represented by rectangular boxes with dotted lines of different
colors, and the solid lines with different colors outside the rectangular boxes of dotted lines represent
the data sources used by different methods. These colors are the same as the colors used by method
names. In addition, the solid line color in the dotted rectangular frame is used to distinguish the
interaction of lncRNA–lncRNA, protein–protein or lncRNA–protein.

4.1. LPBNI: A Bipartite Network-Based Method for the Prediction of LncRNA–Protein Interactions

Inspired by resource methods in dynamically allocated networks, Zhou et al. [96] proposed
algorithms based on the propagation process of the LPBNI method. Li et al. [34] developed this
method on the basis of an lncRNA–protein bipartite network to predict lncRNA–protein interactions.
A graph G can be used to represent the lncRNA–protein interaction network. The structure of the
bipartite network of lncRNA–protein is simply shown in graphic language, as shown in Figure 2.
Finally, they chose to apply the propagation method on the constructed network and calculated the
degree of lncRNA–protein interactions as a score. In the G(L, P, E), the propagation matrix is used
as W, where Wik represents the information transferred from the pk node to the pi node, and the
transmission of key information between two nodes represents the importance of nodes. For each
lncRNA lj, they defined S0(i) = sij, i ∈ {1, 2, . . . , m} as the first information on protein P, where sij = 1
if pi interacts with lj; otherwise, si,j = 0. SL(lj), j ∈ {1, 2, . . . , n} represents the score on lj after the first
step of information propagation, which can be calculated as
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SL =
m

∑
i=1

aijS0(i)
d(pi)

. (1)

In the formula above, d(pi) = ∑n
j=0 aij is the number of lncRNAs that interact with pi.
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Figure 2. Framework of LPBNI mainly including four modules: (1) Data collection: the lncRNA–protein
interaction network is from NPInter and NONCODE. (2) Bipartite network construction (a toy example
in Figure 1). (3) Two-step propagation on the bipartite network: (A) The process of the initial
information propagated from proteins to their direct neighbor lncRNAs. For example, the initial
information of three proteins is 1, 1 and 0, respectively. (B) The score on red circles is the information
of each lncRNA received from proteins. (C) The process of the information propagated from lncRNAs
back to proteins. The score on blue hexagon in (C) is the final information of each protein after the
two-step propagation. The red circles represent lncRNAs and the blue hexagons represent proteins.
(4) Model validation based on leave one out cross validation (LOOCV), the area under the receiver
operating characteristic curve (AUC) and Matthew’s correlation coefficient (MCC).
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In the next step, all the information in L propagates back to P. SF(pi) is defined as the final
information on protein pi, signifying the interaction score of protein pi with lj. SF can be defined as

SF(i) =
n

∑
j=1

aijSL(lj)

d(lj)
=

n

∑
j=1

aij

d(lj)

m

∑
k=1

akjS0(k)
d(pk)

, (2)

where d(lj) = ∑m
l=0 aij is the number of proteins that interact with lj. The final information SF can be

defined in the matrix as

~SF = W~S0, (3)

where ~S0 is the column vector of S0, and ~SF is the final score of the lncRNA that users query after the
two-step information propagation in the lncRNA–protein interaction network. SF can be represented as

SF(i) =
m

∑
k=1

wikS0(k), Wij =
1

d(pi)

n

∑
j=1

aijakj

d(lj)
. (4)

After calculations, the protein sorted by the final score SF for lj is obtained. All the candidate
proteins are ranked in decreasing order, and proteins with a high ranking are considered to interact
with lncRNA lj.

LOOCV was performed on the heterogenous network containing lncRNA–protein interactions,
leaving only one sample for the test set at a time, and the other samples were used as the training set.
Although the calculation was more complicated than other verification methods, the sample utilization
rate was the highest. LOOCV aws used to evaluate the performance of the proposed method. In the
course of the calculation, each lncRNA–protein pair was omitted as a test sample by changing the
value in the adjacency matrix A to 0. The performance of LPBNI could be estimated by the ratio of its
predicted interactions to the originally known lncRNA-protein. A receiver operating characteristic
(ROC) curve was selected as a criterion to evaluate the LPBNI and random walk with restart methods.
The propagation matrix W proposed in the LPBNI method is dependent on the adjacency matrix A
of the bipartite network. When applying LOOCV, multiple values of W were obtained, owing to
the change of A values during each step of the cross-validation. Consequently, the value of W was
recalculated for each lncRNA–protein pair that was left out as a test sample. In addition, nodes that do
not propagate information are not considered when evaluating the performance of the method, where
nodes with fewer than two links are defined as nodes that do not propagate information in the process
of cross-validation.

4.2. Fusing Multiple Protein–Protein Similarity Networks to Effectively Predict LncRNA–Protein Interactions

To improve the performance of lncRNA–protein interaction prediction, Zheng et al. [32] fused
multiple PPSNs to construct a multilevel heterogeneous network. New lncRNA–protein interaction
predictions are inferred by integrating the fused PPSNs with known lncRNA–protein interaction
predictions (Figure 3). Protein sequences, protein domains, GO terms, and the STRING database
are first used to construct four Protein–Protein Similarity Networks (PPSNs), following which the
SNF algorithm [95] is employed to combine the four protein–protein similarity networks into a
fused protein–protein similarity network. Then, a heterogeneous lncRNA–protein network is built
including based on the fused protein–protein similarity network and the known lncRNA–protein
interactions. Finally, the HeteSim algorithm [94] is used to infer new lncRNA–protein interaction
predictions. Extensive experiments show that this approach outperforms not only the existing methods
for predicting the lncRNA–protein interactions, but also performs well by using only one PPSN as
a protein–protein interaction network without fusing four different aspects of the protein–protein
similarity network into a protein–protein interaction network. After fusing all the four matrices,
the area under the curve (AUC) value of 0.9068 indicates the best performance. This result shows that
a more reliable and informative network can be obtained by fusing multiple matrices.
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Figure 3. Framework of the proposed method by Zheng et al. [32] mainly containing four modules.
(1) (A) Data collection: The lncRNA–protein network is from NPInter and NONCODE. The datasets
from Uniprot, GO, Pfam and STRING database are collected for protein–protein similarity network
construction. (B) Protein–protein similarity network construction: based on similarity network
fusion (SNF) algorithm by integration of multi-resource information. (2) A heterogeneous network
construction. (3) HeteSim computation on the heterogeneous network. (4) Model validation based on
LOOCV and AUC.

The advantage of SNF algorithm is that it can obtain valuable information from a relatively small
number of samples, and it has strong robustness in dealing with noise and data heterogeneity. It is
a nonlinear method based on the typical nature of the complexity of the natural world based on
message-passing. The nonlinear method is closer to the nature of the objective thing itself. It is one
of the important methods to quantitatively study and understand complex knowledge. This method
iteratively updates each network and makes it more and more similar to other networks. A protein
similarity network can be represented as a graph G = (V, E), where V = {v1, v2, . . . , vn} represents
a set of corresponding proteins in the network, and E represents a set of edges, each of which has a
similarity weight. The authors denoted the corresponding similarity matrix as W, where W(i, j) is the
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similarity between proteins vi and vj. They defined a full and sparse kernel on each matrix in order
to compute the fused network from four protein similarity matrices. The full kernel is a normalized
weight matrix P = D−1W, where D is a diagonal matrix and D(i, j) = ∑j W(i, j). Because P involves
self-similarities on the diagonal entries of W, a better form for avoiding numerical instability is
as follows [96]:

P(i, j) =


W(i,j)

2 ∑k 6=i W(i,k) , j 6= i

1
/

2, j = i.
(5)

Protein vi’s neighbors are denoted as Ni and use k nearest neighbors (kNN) to measure the local
part as follows:

S(i, j) =


W(i,j)

∑k∈Ni
W(i,k) , j ∈ Ni

0, otherwise.
(6)

A protein has much better similarities to its neighbors than it has to remote proteins.
Similarity based on graph diffusion principle can be propagated to remote proteins. Matrix P provides
all the information of the PPSN, whereas S provides the local similarity information of the network.
Then, iterative computation can occur as follows:

P(i)
t = S(i) ×

∑k 6=i P(k)
t−1

m− 1

× (S(i)
)T

, i = 1, 2, 3, 4, (7)

where P(i)
t is the ith similarity matrix after t(≥ 0) iterations, and S(i) is the kNN matrix of the similarity

matrix or network. Following that, m is the number of PPSNs used. As S is the kNN matrix of P,
it contains the most important information of P and also alleviates the noise effect of P. In each
iteration, each similarity matrix can get more reliable information from other similarity matrices, at the
same time, it will update its own matrix based on other similarity matrices. After t iterations, the fusion
network can be replaced by a fusion matrix, which is defined as follows:

P =

(
m

∑
i=1

P(i)
t

)/
m. (8)

Note that the authors normalized matrix Pt after each iteration, each protein has a higher degree of
similarity to itself in order to ensure that the matrix is in a full rank state than other proteins. With the
known lncRNA–protein interactions and the fused PPSN, they built a lncRNA–protein heterogeneous
network, on which a random walk model HeteSim was used to infer new lncRNA–protein interactions.
HeteSim is used to evaluate the relevance between a lncRNA–protein pair, where a large relevance
score means the lncRNA and protein have more interactions.

For this method, 15 settings made up of different combinations of the similarity matrices
(Seqs, Pfam, GO, and STRING, respectively) were implemented. The path selection is very important
since HeteSim is a path-constrained relevance measure. In the fusion work, the relevance path was
chose as lncRNA-protein-protein, which was the same as that used in the work of Yang et al. [33].
With the proof of the experiment and more matrix merging, the AUC value becomes more ideal.
For example, the AUC value of GO + Pfam + STRING is 0.9066, which is larger than the AUC value of
GO + Pfam, GO + STRING and Pfam + STRING. When all four protein similarity matrices were fused,
AUC achieved the best result of 0.9068. This shows that, with the increase of the number of fusion
matrices, we could get more specific information of protein similar network. This multi-matrix fusion
method is convenient to get more reliable and informative data representation.
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4.3. Prediction of Interactions between lncRNA and Protein by Using Relevance Search in a Heterogeneous
LncRNA–Protein Network

Yang et al. [33] tried to use the possible hidden information in the biological network topologies
containing lncRNA layer networks. Thus, an algorithm named HeteSim is introduced to measure the
relevance between lncRNAs and proteins on the basis of the heterogeneous lncRNA–protein network,
which integrates the known lncRNA–protein interaction networks and PPSNs. Figure 4 shows a
network model and the schema of the interaction network. The AUC of HeteSim for the lncRNA
MALAT1 is 0.955. The performance results of network-assisted method confirm a difficult problem.
It is difficult to break through the low conservatism of lncRNAs by traditional methods to predict the
interactions between lncRNAs and proteins, which is a challenge to propose new methods to predict
lncRNA–protein interactions, which generally uses information from intrinsic features of the RNA and
protein alone. Their approach also demonstrates the tremendous value of the network-based approach
in lncRNA-related fields, and has valuable implications for predicting interactions in heterogeneous
networks constructed from biomolecules.

NONCODE 3.0

Database 

NPInter v2.0 

database

4883 lncRNA-protein interactions

1116 lncRNAs

99 proteins

1608 protein-protein interactions

99 proteins

（2）A lncRNA-protein heterogenous network with HeteSim based on the relevance path

lncRNA

protein

New lncRNA-protein 

interactions 
A random walk 

model HeteSim

（3）Model validation

  Leave-one-out cross validation (LOOCV)
  Area under the curve (AUC) of receiver operation characteristic (ROC）

（1）Data collection

Figure 4. Pipeline of the method proposed by Yang et al. [33]. (1) Data collection: lncRNA–protein
interactions from NPInter and NONCODE and protein–protein interactions from STRING database.
(2) HeteSim computation based on relevance path of heterogenous network for lncRNA–protein
interaction predictions. (3) Model validation based on LOOCV and AUC.

In the HeteSim algorithm [94], relevance paths are defined. A relevance path P, denoted as

A1
R1−→ . . .

Rl−→ Al+1, is a path defined over the schema TG = (A, R). A composite relation R = R1 ◦
R2 ◦ · · · ◦ Rl between node types A1 and Al+1 is revealed by the symbolization of the relevance path,
where ◦ denotes the composition operator of relations. For a given relevance path R = R1 ◦R2 ◦ · · · ◦Rl ,
HeteSim can measure the similarity between two objects x and y (x ∈ R1.X and y ∈ R1.Y) according to
the relevance score:
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HeteSim(x, y
∣∣R1 ◦ R2 ◦ · · · ◦ Rl−1 ◦ Rl) =

1∣∣O(x|R1)
∣∣∣∣I(y|Rl)

∣∣ ,
O(x|R1)

∑
I(v|Rl)

HeteSim(Oi(x|R1), Ij(y|Rl)
∣∣R1 ◦ R2 ◦ · · · ◦ Rl−1 ◦ Rl).

(9)

O(x|R1) represents the out-neighbors of x based on relation R1
⋃

R2, and I(y|Rl) represents the
neighbors of y based on relation Rl−1 ◦ Rl . In fact, x and y can also be the same type according to the
random walk model pair. For an arbitrary relevance path P = A1 A2 · · · Al+1, the HeteSim relevance
between any two objects a ∈ A1 and b ∈ Al+1 is the corresponding component in the score matrix
named HeteSim (A1, Al+1

∣∣P). Finally, the relatedness between A1 and Al+1 in the relevance path
P = A1 A2 · · · Al+1 is defined as follows:

HeteSim(A1, Al+1
∣∣P)

= HeteSim(A1, Al+1
∣∣PLPR)

= PMPR ∗ PM′
P−1

R

= UA1 A2 · · ·UAmid−1 MVMAmid+1 · · ·VAl Al+1

= UA1 A2 · · ·UAmid−1 MU′Amid+1 M · · ·U′Al+1 Al

= UA1 A2 · · ·UAmid−1 M(UAl+1 Al · · ·UAmid+1 M).

(10)

Based on the random walk model [37], P is divided into two equal path lengths PL and PR, where
PL = A1 A2 · · · Amid−1M and PR = MAmid+1 · · · Al+1. Depending on whether the length of P is even
or odd, the node type of M is impacted differently. If the length of P is even, M is the middle position
node type, which could be one of A. Otherwise, it is just the defined middle type. PR is equal to
P−1

L . The transition probability matrix of Ai → Aj denoted as UAi Aj is the normalized matrix of the
adjacent matrix WAi Aj that contains the row vector, and the transition probability matrix of Ai → Aj
denoted as VAi Aj is the normalized matrix of WAi Aj that contains the column vector. It easily proves
that VAi Aj is equal to U′Ai Aj

. Finally, the score between two objects is normalized to ensure that the
correlation between the same objects is 1. Based on HeteSim algorithm in the heterogeneous network
of lncRNA–protein, the lncRNA–protein-related pathway is considered. In this network, a group of
data is randomly extracted from the measured data as a training dataset, and the rest of the data are
used as the test dataset. The AUC of HeteSim achieved on the lncRNA–protein–protein path is 0.879.

4.4. LPIHN: LncRNA–Protein Interaction Prediction Based on Heterogeneous Network Models

Based on this assumption, interrelated lncRNAs tend to exhibit interaction patterns that have
similarities with proteins. Li et al. [34] proposed the network-based computational method LPIHN
for predicting new lncRNA–protein interactions. The LPIHN procedure is shown in Figure 5.
A heterogeneous network is constructed, which is integrated by a similarity network containing
lncRNA–lncRNA expression data, a lncRNA–protein interaction network and a PPI network.
The similarity network containing lncRNA–lncRNA expression data is calculated by the Pearson’s
correlation coefficient [97–102] between the expression profiles of each lncRNA–lncRNA interaction.
The lncRNA–protein interaction network is constructed from NPInter, by Shang et al. [103], who
made a detailed and comprehensive analysis of it. The protein–protein interaction network is not a
single source; it is based on computational prediction methods, and some of the interaction data are
obtained through high-throughput experiments, from the STRING v9.1 database [104] to text mining,
data obtained from the three weighted protein interaction degrees. Then, they walk randomly over the
heterogeneous network to infer and predict the interaction between new lncRNAs and proteins.



Int. J. Mol. Sci. 2019, 20, 1284 18 of 30

NPInter v2.0

database

NONCODE 4.0

database
STRING v9.1

database

 Homo sapiens  and  NONCODE 

Map the lncRNA ID and protein ID into 

NONCODE 4.0 ID and STRING ID 

The expression profiles of 

89639 lncRNAs in 24 human 

tissues or cell types

The weight protein intercations

804 PPIs data and corresponding 

interaction scores without the 

redundant PPI data

Pearson correlation coefficient (PCC)

Known lncRNA-protein interactions
LncRNA co-expression similarity 

matrix Protein-protein interaction matrix

(1)  Data collection

(2)  A heterogeneous network construction  

i

c

b

n

a

lncRNA

protein

(3) Random walk with restart  on the heterogenous network

Score candidates proteins       Setup ranking based on score      Candidates proteins of lncRNA 

. . .

. . .

0.002

0.084

0.134

0.034 0.002

0.134

0.084

0.034

i

a

b

c

n

c

b

n

a

. . .

a

b

c

n

(4) Model validation

     The leave-one-out cross validation (LOOCV)
     Area under the curve (AUC) of receiver operation characteristic (ROC）
     The sensitivity, accuracy, precision and Matthew s correlation coefficient (MCC) 

Each known lncRNA-protein interaction is used as test data and the rest are taken as training dataset

Figure 5. Pipeline of LPIHN, containing three modules: (1) Data collection: lncRNA–protein
interactions from NPInter, protein–protein interactions from STRING database and lncRNA–lncRNA
similarity network computed based on lncRNA expression profile from NONCODE. (2) A heterogeneous
network construction. (3) LncRNA–protein interactions prediction based on the random walk with
restart. A score is assigned to each candidate protein of a query lncRNA, by the random walk
with restart on the heterogeneous network. The candidate proteins are ranked based on the scores.
(4) Model validations based on LOOCV and AUC. For LPIHN, the lncRNA–lncRNA similarity
network is calculated by using the lncRNA expression profiles based on the PCC of each pair of
lncRNAs. The heterogeneous network is constructed by connecting the lncRNA–lncRNA similarity
network and PPI network together with the known lncRNA–protein interaction network. Blue circles
indicated lncRNAs, orange squares indicated proteins, blue edges indicated lncRNA–lncRNA
similarities, orange edges indicated protein–protein interactions, and blue dotted edges indicated
known lncRNA–protein interactions.
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In the RWR procedure [37], an iterative walker starts at a source node with the first probability,
and then it can either move to a randomly selected direct neighbor in the process of random walking or
restart at a source node with probability δ in each step. Therefore, when random walks are completed on
heterogeneous networks, researchers can determine the initial probability, transfer matrix, and restart
probability. However, it is based on information provided by heterogeneous networks. During the
process of predicting the potential proteins for lncRNA li, Y0 represents the first probability of the
walker starting at every node, where li and the proteins that are known to interact with li are assigned
positive values, and the nodes that remain are assigned as zero. It means that the node where the
random walk begins is li, or that the protein interacts with li. Yi represents the relevance of li to
all other nodes, where j represents the node and t represents the step. Yt+1 can be defined by the
following equation:

Yt+1 = (1− δ)WTYt + δY0,

where δ ∈ (0, 1) represents the restart probability of the random walk. W is the transition matrix and
Y0 is the first probability of the random walk. For a given lncRNA li, li is the seed node in the lncRNA
network, the probability of vertex li is 1, and other elements in the lncRNA network are assigned as
zero, which forms the first probability of the lncRNA network v0. When protein pj interacts with
lncRNA li, pj becomes the seed node in the protein network. The first probability vector of the protein
network u0 is formed by assigning equal probabilities to the protein seed nodes. For the heterogeneous
network, the first probability is

Y0 =

[
(1− β)u0

βv0

]
. (11)

The parameter β ∈ (0, 1) can decide whether to focus more on lncRNA networks or more on
protein networks. When β = 0.5, failure to focus more on one side of a similar network means that the
lncRNA–lncRNA similarity network and the PPI network are given the same weight. With β < 0.5,
the random walk tended to return to the protein network. The transition matrix was defined in order

to complete the random walk on the heterogeneous network. The authors defined W =

[
WP WPL
WLP WL

]
as the transition matrix, where WP is the subnetwork transition matrix showing the probability of the
random walker transiting between the protein and another protein in the random walking process.
WL between lncRNA and another lncRNA can be calculated in a similar way. WPL represents the
probability of the random walker transiting from the protein network to the lncRNA network, and WLP
represents the relationship of the lncRNA network to the protein network. In the process of transition,
they defined γ as the probability of the random walker transiting from the protein network to the
lncRNA network, where the reverse is also true. W, the probability of the random walker transiting
from protein pi to pj, is defined as

WP(i, j) = p(pj|pi) =


SP′(i,j)

∑j SP′(i,j) , ∑k I(i, k) = 0
(1−γ)SP′(i,j)

∑j SP′(i,j) , otherwise,
(12)

where ∑k I(i, k) = 0 means that pi can bind to multiple lncRNAs and at least one lncRNA, and can be
transferred from pi to a similar network of lncRNA–lncRNA at random. In this case, the probability
with γ of pi transferring to li can be further calculated. The probability of pi transiting to pj should
multiply 1− γ. The probability of transiting from lncRNA li to lj can be defined as:

WL(i, j) = p(lj|li) =


SL(i,j)

∑j SL(i,j) , ∑k I(k, i) = 0
(1−γ)SL(i,j)

∑j SL(i,j) , otherwise.
(13)
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The probability of transiting from protein pi to lncRNA lj is defined as

WPL(i, j) = p(lj|pi) =


γI(i,j)

∑j I(i,j) , ∑k I(i, k) 6= 0

0, otherwise,
(14)

where ∑k I(i, k) 6= 0 means that pi is bound to at least one lncRNA, and the walker can transit to the
lncRNA–lncRNA network from pi with probability γ; under that condition, one can further calculate
the probability of pi transiting to lj. The probability of transiting from lncRNA li to protein pj can be
defined in a similar manner as

WLP(i, j) = p(pj|li) =


γI(j,i)

∑j I(i,j) , ∑k I(k, i) 6= 0

0, otherwise.
(15)

As the first probability Y0 and the transition matrix W were defined, the RWR procedure [37] could
be used for the heterogeneous network. After multiple iterations, the change between Yt and Yt+1 was
less than 10−10, which meant that a stable probability Y∞ = [(1− β)u∞, βv∞]T had been obtained.

The result of the LOOCV test showed that the approach could achieve 0.96 with an AUC
value. Some predicted interactions between lncRNAs and proteins have been confirmed in recent
research studies and databases, indicating the strong influence of LPIHN in predicting lncRNA–protein
interactions. In each cross-validation experiment, the test dataset was associated with each known
lncRNA–protein interaction, while the rest was used as a training dataset. The method has been
successfully reconstructed and possible interactions have been evaluated. In particular, the authors use
curves and fold enrichment to measure performance, and it is worth mentioning that the average-fold
enrichment of all test data is also used to evaluate the model.

4.5. PLPIHS: Prediction of LncRNA–Protein Interactions Using HeteSim Scores Based on
Heterogeneous Networks

Predicting the association between biological molecules based on biological networks has been
widely used in many types of research, such as searching for gene sequencing of a disease [27] and
predicting drug target interactions. Some of them have achieved good prediction results and good
performance. Xiao et al. [35] proposed the PLPIHS method (Figure 6) to predict lncRNA–protein
interactions using HeteSim scores and they used a path metric to calculate the interrelationship between
nodes in heterogeneous networks. Zeng et al. [105] inferred the association between heterogeneous
nodes by means of uniform and symmetric metrics of random paths, regardless of whether they are
the same or different types according to the score. Because the relevance path captures the semantic
information and also also restricts the wandering path, the score depends on the similarity measure of
the path. A heterogeneous network is first constructed with an lncRNA–lncRNA similarity network,
which uses the Pearson’s correlation coefficient between the expression profiles of each pair of lncRNAs
to calculate the lncRNA–protein association network downloaded from GENCODE Release 24 [106]
and a PPI network obtained from the STRING v10.0 database [107]. Then, they used the HeteSim to
measure the degree of interaction of each lncRNA–protein in the network and showed it in fractions.
The SVM classifier is built on the basis of the scores of different paths.

LOOCV is carried out to evaluate the performance of PLPIHS [108]. The results show that the
AUC of PLPIHS for the network cutoff value of 0.3 is 96.8%, which is higher than LPIHN. Similarly,
PLPIHS outperforms other methods in the 0.5 network and 0.9 network as well. A total of 2000
lncRNA–protein associations from positive samples of the 0.9 network and 2000 interactions from the
remaining negative samples of the 0.3 network are randomly selected to construct an independent test
set to further conduct the performance evaluation. Using this independent test set, PLPIHS achieves
an AUC value of 0.879.
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Figure 6. Flowchart of PLPIHS, including four modules: (1) Data collection. (2) Heterogeneous network
construction consisting of a lncRNA–lncRNA similarity network, a lncRNA–protein interaction network
and a protein–protein interaction network. (3) HeteSim measure is used to calculate a score for each
lncRNA–protein pair in each path. (4) LncRNA–protein prediction based on SVM classifier combining
the scores of different paths. (5) Model validations based on LOOCV, AUC and MCC.

5. Results of Comparisons of the Network-Based Models for Predicting LncRNA–Protein
Interactions

To compare the network-based methods, the fusion of heterogeneous data and performance
evaluation were analyzed. All of the above-described methods used LOOCV to validate their respective
performances. The test results of the network-based methods are shown in Table 5.
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Table 5. Differences in evaluation measures by the network-based methods.

Method
Measure for the Evaluation

Test Dataset
Measurement or Illustration

LOOCV Precision Versus Fold Enrichment AUC SPE ACC PRE MCC REC F1-Score SEN

LPBNI [31]
√ √ 4870 lncRNA–protein interactions

from NPInter v2.0 0.878
0.99 0.873 0.852 0.449

− −
0.288

0.95 0.880 0.681 0.534 0.532

Zheng et al. [32]
√

4467 lncRPIs, including 1050
lncRNAs and 84 proteins

AUC values of 15 settings: Seqs-0.8565, Pfam-0.8459, GO-0.8584,
STRING-0.7972; Seqs+Pfam-0.8689, Seqs+GO-0.8626,
Seqs+STRING-0.8762, Pfam+GO-0.8677, Pfam+STRING-0.8977, and
GO+STRING-0.8814; Seqs+Pfam+GO-0.8704,
Seqs+Pfam+STRING-0.9023, Seqs+GO+STRING-0.8904,
Pfam+GO+STRING-0.9066; Seqs+Pfam+GO+STRING-0.9068.

Yang et al. [33]
√ MALAT1 with all 99 proteins 0.955

− − − − − − −
AK0951949 with all 99 proteins 0.973

LPIHN [34]
√ √ √ The test dataset is the interaction of

each known lncRNA–protein, and
the rest is used as training dataset.

0.96
√ √ √ √ √ √

PLPIHS [35]
√

The remaining positive samples
found in the 0.9 network had 2000
lncRNA–protein interactions and
the same number of negative
interactions in the 0.3 network

0.879 −
√ √ √ √ √

LOOCV, leave-one-out cross validation; AUC, area under the curve; SPE, specificity; ACC, accuracy; PRE, precision; MCC, Matthew’s correlation coefficient; REC, recall; SEN, sensitivity; OMIM,
Online Mendelian Inheritance in Man compendium.
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Yang et al. [33] proposed that the relevance path is the same as fusing multiple PPSNs.
They extracted MALAT1 and AK0951949, respectively, with all 99 proteins as two experimental
datasets. Known interactions data between two lncRNAs and their protein chaperones are considered
as positive samples, while negative samples are new pairs of lncRNA–protein interactions that have
not been experimentally verified. From the ROC curves of the prediction results, the AUC is 0.955 for
MALAT1 with all 99 proteins and 0.973 for AK0951949 with all 99 proteins.

LPBNI obtained 4870 lncRNA–protein interactions data from NPInter 2.0. The method used
the propagation matrix and the lncRNA–protein interaction networks to set the test sample. First,
the test sample is set according to the interaction pair of each lncRNA–protein in the adjacent matrix,
leaving a node and setting one at the zero corresponding value of the adjacent matrix. In this process,
some nodes will be deleted during the evaluation process. Considering that these nodes do not have
more than two connection nodes, it is considered that there is no information dissemination between
them. Compared with random walk with restart, it is clear that LPBNI showed the highest true positive
rate in each false positive rate, and the AUC value was 0.878.

PLPIHS selected data samples in different cutoff values of networks and obtained 2000 positive
samples from 0.9 network and randomly selected 2000 negative samples from 0.3 network.
PLPIHS calculated the AUC in different network cutoff values (0.3 and 0.9), where that for the
0.3 network was 0.968, which was higher than the value calculated by LPIHN. To verify that PLPIHS has
better performance, the authors select the same number of positive and negative samples from different
cutoff values of the network, respectively, and use this random selection to construct independent
test datasets. Compared with the values generated by LPIHN, the AUC value of PLPIHS was 0.879.
The accuracy, sensitivity, precision, Matthew’s correlation coefficient, and F1-Score were also chosen as
measurements to evaluate performance.

Fusing multiple PPSNs to effectively predict lncRNA–protein interactions was from the
perspective of a fusion protein. The best relevance path was lncRNA–protein–protein according to
HeteSim. The fusion matrix is an effective means for users to get more reliable and richer information
matrix or network. The best AUC value was 0.9068 with Go+Pfam, Go+String, and Pfam+String.
The AUC values of the 15 settings implemented in the paper by Zheng et al. [32] are shown in Table 5,
which included using only one similarity matrix, fusing two similarity matrices, fusing three similarity
matrices, and fusing all four similarity matrices.

In the LPIHN model, the determination of test datasets is consistent with other interaction
prediction methods, leaving a cross-validation method. This model used not only LOOCV but also
precision versus recall curves and fold enrichment to measure the performance, whereas the average
fold enrichment of all test data was used for assessment. The LOOCV results showed that LPIHN
obtained an AUC of 0.96. When more attention was paid to the predicted first 4870 lncRNA–protein
interactions, 802 of the predicted LPIHN interactions were within this ranking.

To better understand the performance of network-based computational models to predict
lncRNA–protein interactions, we divided the heterogeneous network into three cases according to the
source of components: (1) only the lncRNA–protein interaction network; (2) the network combining
the interactions of lncRNA–protein and protein–protein; and (3) the network with the integration of
the interactions of lncRNA–protein, protein–protein and lncRNA–lncRNA. For each case, different
methods were validated with the same set of test datasets, and the performances are compared
by AUC in Figure 7. LPBNI (green) used leave-one-out cross validation on 4796-lncRNA–protein
interaction network. The method proposed by Yang et al. [33] and method (orange) by Zheng et al. [32]
used leave-one-out cross validation on 4467 lncRNA–protein interaction networks. The remaining
two methods (blue) used leave-one-out cross validation on the dataset which 2000 lncRNA–protein
interactions from network of PLPIHS with cutoff of 0.9 were extracted as positive samples, 2000
negative samples were randomly selected in 0.3 network. The gold set containing 185 lncRNA–protein
interactions downloaded from NPInter database. In Figure 7, different colors represent different
network types, and the same color bar graphs represent the verification results under the same set of
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data. In Figure 7, the performance of the method is better when the heterogeneous network is composed
by more sources. When heterogeneous networks are constructed by the same sources, the performance
will be better for the heterogeneous networks constructed by weighted networks. (The implication
of more data here can be illustrated by the interactions of lncRNA–lncRNA. The interactions of
lncRNA–lncRNA can be considered from many perspectives. It can be calculated from expression
profile data, sequence alignment or experiment.) For example, the method proposed by Yang et al.
and method (orange) by Zheng et al. both integrated the interactions of lncRNA–protein and
protein–protein to construct a heterogeneous network, and both methods were based on the relevant
path of HeteSim random walk in the heterogeneous network. However, for protein–protein interaction
networks construction, Yang et al. only considered the protein–protein interactions from STRING
database. Zheng et al. considered not only the protein–protein interactions from STRING database, but
also the sequence similarity, functional annotation semantic similarity and protein domain similarity
protein–protein interactions constructed based on. The method (orange) by Zheng et al. with AUC
0.9068 is better than the method proposed by Yang et al. with AUC 0.7972.
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Figure 7. The AUC value of five methods under at three different levels of heterogeneous networks.
Different colors represent different network cases, and the same color bar graphs represent the
verification results on the same set of data.

6. Discussion

Prediction of the interactions between lncRNAs and proteins is a very important step for research
about lncRNAs. Based on the results of lncRNA–protein interactions, the functions as well as the
associated diseases of lncRNAs can be inferred. The lncRNA–protein interaction is a very significant
molecular mechanism. Computational approaches to predict lncRNA–protein interactions can be
grouped into two broad categories. The first category is based on intrinsic features of the lncRNAs and
proteins, including the sequence, structural information, and physicochemical property. The second
category is based on the fusion of heterogeneous data to construct a network.

Whereas the sequence-based methods only consider the properties of the RNA and neglect the
internal relationship between the lncRNAs and proteins, the network-based methods have paid more
attention to this kind of internal relationship. The main advantage of a network-based computational
model is that it can predict lncRNA–protein interactions with heterogeneous data. Predictions using
the intrinsic features of sequences alone may lead to more false-positive interaction pairs than that
obtained using a network-based method. Unavoidably, the network-based computational model
can have some disadvantages. The prediction of the network-based computational model can be
affected when it is carried out in the case of finite interactions. When there are no interaction data,
the network-based computational model cannot be used to predict interactions.

New lncRNA–protein interactions are predicted more effectively by using several kinds of
heterogeneous data sources. As the study of proteins becomes ever more comprehensive, the proposed
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effective computational models for predicting lncRNA–protein interactions from heterogeneous
biological data can benefit our understanding of more comprehensive annotations for lncRNAs.

Currently, there is very limited information on the interaction between lncRNAs and proteins,
but computational methods can provide us with a large number of interaction pairs that can be
further regarded as valuable material for the inference of lncRNA functions. First, a great deal of
lncRNA–protein interactions can be provided by computational models based on intrinsic features.
Second, since predictions using the intrinsic features of sequences alone may lead to some false-positive
interaction pairs, computational models based on biological networks can be chosen to obtain more
reliable predictions. In the future, a deep-learning-based framework can be considered to optimize
the sequence-based and network-based computational models. Hopefully, long-short-term memory
models can be employed to build a more advanced framework to build classifiers and achieve a more
reliable classification model. We also can integrate machine learning with ab initio computing and
network representation learning methods, and apply them to the prediction model of relationships
between biological macromolecules. The interactions between lncRNAs and other molecules may
enrich the functional annotations of lncRNAs. First, researchers can extract the characteristics of the
molecules themselves by machine learning algorithm, and then they can use the appropriate algorithm
in network representation learning to represent the feature vectors of relationships between nodes
in heterogeneous networks. In this way, researchers can not only understand the internal features
of molecules, but also not ignore the hidden topological information between molecules. This will
overcome the weakness of most current research methods which only consider ab initio prediction or
network-based methods.
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