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Abstract: Non-coding RNAs (ncRNAs) play crucial roles in multiple fundamental biological
processes, such as post-transcriptional gene regulation, and are implicated in many complex human
diseases. Mostly ncRNAs function by interacting with corresponding RNA-binding proteins.
The research on ncRNA–protein interaction is the key to understanding the function of ncRNA.
However, the biological experiment techniques for identifying RNA–protein interactions (RPIs)
are currently still expensive and time-consuming. Due to the complex molecular mechanism of
ncRNA–protein interaction and the lack of conservation for ncRNA, especially for long ncRNA
(lncRNA), the prediction of ncRNA–protein interaction is still a challenge. Deep learning-based
models have become the state-of-the-art in a range of biological sequence analysis problems due
to their strong power of feature learning. In this study, we proposed a hierarchical deep learning
framework RPITER to predict RNA–protein interaction. For sequence coding, we improved the
conjoint triad feature (CTF) coding method by complementing more primary sequence information
and adding sequence structure information. For model design, RPITER employed two basic neural
network architectures of convolution neural network (CNN) and stacked auto-encoder (SAE).
Comprehensive experiments were performed on five benchmark datasets from PDB and NPInter
databases to analyze and compare the performances of different sequence coding methods and
prediction models. We found that CNN and SAE deep learning architectures have powerful fitting
abilities for the k-mer features of RNA and protein sequence. The improved CTF coding method
showed performance gain compared with the original CTF method. Moreover, our designed RPITER
performed well in predicting RNA–protein interaction (RPI) and could outperform most of the
previous methods. On five widely used RPI datasets, RPI369, RPI488, RPI1807, RPI2241 and NPInter,
RPITER obtained AUC of 0.821, 0.911, 0.990, 0.957 and 0.985, respectively. The proposed RPITER
could be a complementary method for predicting RPI and constructing RPI network, which would
help push forward the related biological research on ncRNAs and lncRNAs.
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1. Introduction

In human genome, protein-coding genes only account for about 2% and the vast majority are
non-coding RNAs (ncRNAs), which directly function at the RNA level [1,2]. Based on transcript
lengths, ncRNAs could be roughly divided into small ncRNAs below 200 nucleotides, such as siRNAs,
miRNAs, and piRNAs, and long non-coding RNAs (lncRNAs) over 200 nucleotides [3–7]. Recently,
increasing evidence suggests that lncRNAs play a crucial role in the physiological processes, such as
epigenetic regulation of gene expression [8], cell cycle regulation [9], and chromatin modification [10],
as well as pathological processes, such as cancer [11–13], diabetes [14], and Alzheimer’s disease [15].
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Nearly all lncRNAs function by interacting with corresponding RNA-binding proteins [16–18],
and ncRNA–protein interactions play an important role in transcriptional and post-transcriptional
gene regulation. Therefore, the effective identification of RNA–protein interaction (RPI) is essential for
pushing forward our currently still limited understanding of the biological functions of ncRNA.

Since the experimental techniques for detecting RPIs are expensive and time-consuming, many
computational methods have been proposed for RPI prediction in recent years. Bellucci et al. developed
catRAPID [19,20] based on the physiochemical properties of protein and RNA including secondary
structure, hydrogen bonding and van der Waals propensities. Muppirala et al. [21] put forward
RPISeq, which feeds the sequence coding vectors of RNA and protein by conjoint triad feature (CTF) [22]
to random forest (RF) and support vector machine (SVM) to make predictions. Wang et al. [23]
proposed methods based on Naive Bayes (NB) and Extended NB (ENB) classifiers and performed
similar work as Muppirala et al. Lu et al. [24] created a method named lncPro, which is based
on Fisher linear discriminant approach and uses secondary structure, hydrogen-bond and van der
Waals propensities as input features. RPI-Pred [25] combines the primary sequence information and
high-order 3D structure of RNA and protein to predict RPIs based on SVM. IPMiner [26] uses the
stacked auto-encoder (SAE) in deep learning to give high-level representations of the RNA and protein
coding features by CTF, then predicts the RNA–protein interactions by RF classifier, and finally further
improves the prediction accuracy by logistic regression (LR)-based model ensemble method.

Nonetheless, the above methods have limitations in two main respects. First, the sequence
coding methods still have room for improvement. The widely-used sequence coding method of CTF
only counts the 3-mer frequency of protein and 4-mer frequency of RNA to form 343-dimensional
protein coding vector and 256-dimensional RNA coding vector. CTF ignores the 1–2-mer protein
sequence information and 1–3-mer RNA sequence information. Meanwhile, CTF does not take
sequence structure information into account. According to the consensus that structure determines
function in biological field, it is important to take the sequence structure information into consideration
in inferring the RNA–protein interactions. Although RPI-Pred considers the sequence structure
information, it only combines seven classes of clustered amino acids with 16 kinds of protein structure
blocks to form a 112-dimensional protein coding vector and combines four classes of nucleotides
with five kinds of RNA structures to form a merely 20-dimensional RNA coding vector. The too
short encoding vectors in RPI-Pred may fail to contain sufficient sequence information. The limited
sequence information in the feature vectors would restrict the prediction performance of the subsequent
classification model. Therefore, it is worth exploring more powerful sequence coding methods to
effectively integrate primary sequence information and sequence structure information; Second, nearly
all previous methods rely on conventional machine learning techniques to build prediction models
for RNA–protein interaction. Previous studies rely on models such as RF, SVM and NB to implement
interaction predictions: RPISeq employs RF and SVM; IPMiner uses RF in basic models and LR in
ensemble model; and RPI-Pred employs SVM. However, deep learning provides an approach to more
effectively extracting features from inputs and forming high-level representations. Moreover, deep
learning-based methods have achieved state-of-the-art performance in various biological sequence
analysis problems [27–32].

Recently, deep learning has obtained great success in a series of issues, such as image recognition [33,34],
speech recognition [35], machine translation [36] and so on. In the field of bioinformatics, increasing
works based on deep learning methods are also emerging. DeepBind [28] uses deep convolution neural
network (CNN) to catch sequence motifs and overcomes the conventional methods in predicting
the sequence specificities of DNA- and RNA-binding proteins. DeepSEA [29] depends on CNN to
analyze sequence information and performs well in predicting the effects of noncoding variants.
DeeperBind [31] adds long short-term memory (LSTM) [30] network layers on the basis of DeepBind
to enhance its effectiveness by capturing the positional dynamics in sequences. TITER [37] takes
advantage of CNN and LSTM to analyze the input of protein sequence vectors by one hot encoding
and attains the goal of predicting the translation initiation sites. Jurtz et al. [27] introduced several



Int. J. Mol. Sci. 2019, 20, 1070 3 of 14

protein sequence encoding methods and discussed how to use deep learning techniques including
CNN, LSTM and attention mechanism to tackle the biological sequence problems such as prediction of
subcellular localization and protein secondary structure. Xu et al. introduced a novel DNA sequence
encoding method by training k-mer embedding with Glove [38], a word embedding approach in natural
language processing (NLP) field, and then predicted chromatin accessibility based on the proposed
encoding method and via CNN and LSTM network. In view of the state-of-the-art performance of
deep learning-based methods on all kinds of biological sequence problems, it is feasible and valuable
to develop the specific deep learning model to implement the RPI prediction.

Deep learning allows computational models that are composed of multiple processing layers
to automatically discover representations of data with multiple levels of abstraction, which is one
major advantage compared with the domain-specific feature engineering essential for conventional
machine learning methods [39]. CNN in deep learning is good at extracting features from input
data, and multiple convolution and pooling layers enable the CNN network to form different levels
of feature abstraction. When dealing with raw biological sequence data, CNN is suited to locate
motifs. Recurrent neural network (RNN) in deep learning processes every step in the sequential input
recurrently, thus is ideally applied to speech, text and biological sequence data. LSTM, a variant of
RNN with the memory cell, is a popular architecture due to its effectiveness in learning the long-term
sequence dependency. Word2vec [40], similar to Glove, is an efficient approach in NLP for computing
numeric vector representations of words, word embedding, from raw text. If we regard the k-mer
information of biological sequence data as the word in natural language, we can naturally train the
k-mer embedding using the word2vec tool, which could provide a promising sequence encoding
method. SAE is composed of multiple auto-encoders by layer-wise unsupervised learning [41]. It can
automatically learn high-level features from raw data to form reduced dimensional representation,
which was used by Sun et al. [42] to process protein sequence vector coded by conjoint triad feature
method and auto-covariance method to finally predict protein–protein interactions.

In this study, we proposed a fully deep learning-based hierarchical model, RPITER, which utilizes
the sequence and structure information of RNA and protein to predict the ncRNA–protein interactions.
The whole proposed model consists of four modules for analyzing the inputs from two sequence coding
parts and an ensemble module for integrating the outputs from basic modules to make a comprehensive
prediction result. The whole architecture is shown in Figure 1. First, apply two sequence encoding
methods to code the RNA and protein sequences with or without structure information; Second, use
CNN and SAE-based modules to form high-level feature representations and output prediction results.
Third, rely on ensemble module to combine the previous prediction results of four basic modules and
further improve the prediction performance.

2. Results

Comprehensive experiments were performed to compare the performance of different sequence
coding methods and RPI prediction methods. We employed six metrics to compare the method
performance, namely accuracy (Acc), sensitivity (Sn), specificity (Sp), precision (Pre), Matthews
correlation coefficient (MCC), and AUC (the area under the receiver operating characteristic
curve (ROC)).

2.1. Performance Comparison between Different Sequence Coding Methods

We improved the sequence coding method CTF by complementing more primary sequence
information and sequence structure information, noted as Improved CTF and Improved Struct CTF
(described in detail in Section 4.2). The performances of three sequence coding methods in five-fold
cross validation (CV) on dataset RPI2241 are shown in Table 1 and Figure 2a. CTF yielded an Acc
of 0.848, Sn of 0.826, Sp of 0.869, Pre of 0.864, MCC of 0.697 and AUC of 0.929. Improved CTF and
Improved Struct CTF achieved the same Acc of 0.852, 0.004 higher than the 0.848 obtained by CTF.
For Sn, Sp, Pre, MCC and AUC, Improved CTF and Improved Struct CTF also achieved similar
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performances and showed small advantages over CTF. As shown in Figure 2a, the ROC curves of three
methods were very close but the curves of Improved CTF (orange) and Improved Struct CTF (green)
were slightly higher than the curve of CTF (blue).
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Figure 1. The flowchart of RPITER. The input of RPITER involves two sequence coding parts.
The architecture of RPITER consists of four basic modules and an ensemble module. Dense-N means a
fully-connected layer with N neurons, while Conv-M indicates a convolution layer with M filters.

Table 1. Performance comparison between Conjoint Triad Feature (CTF) and our two improved coding
methods on dataset RPI2241 by five-fold cross validation.

Dataset Coding Method Acc Sn Sp Pre MCC AUC

RPI2241
CTF 0.848 0.826 0.869 0.864 0.697 0.929

Improved CTF 0.852 0.833 0.872 0.867 0.705 0.934
Improved Struct CTF 0.852 0.834 0.870 0.865 0.704 0.931

Moreover, we tried three commonly used deep learning sequence coding methods: one hot,
word2vec and doc2vec [43]. One hot coding encodes each element in sequence into a binary vector
and then concatenates all binary vectors successively to form the final sequence coding representation.
One hot coding is extensively used for sequence coding in the deep learning-based models for biological
sequence analysis [27,31,37]. Word2vec coding views k-mer in biological sequence as word in natural
language and encodes the biological sequence by concatenating the k-mer representation vectors
successively. Doc2vec coding directly transforms a biological sequence into a fix length vector of its
embedding representation. The sequence structure information has also been considered in these three
kinds of coding methods (the coding methods with “Struct” in name in Figure 2b). The ROC and
AUC of these coding methods on dataset RPI2241 in five-fold CV are shown in Figure 2b. On RPI2241,



Int. J. Mol. Sci. 2019, 20, 1070 5 of 14

one hot coding is superior to word2vec coding for having higher AUC, and word2vec coding is better
than doc2vec coding. The sequence structure information notably improved the performance of
doc2vec coding. The highest AUC achieved by these three coding methods is 0.872 (one hot coding),
but the CTF, Improved CTF and Improved Struct CTF coding methods obtained obviously better AUC
of 0.929, 0.934 and 0.931, respectively.
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Figure 2. ROC and AUC comparison between different sequence coding methods on dataset RPI2241
by five-fold cross validation. (a) CTF, Improved CTF and Improved Struct CTF; (b) One hot, word2vec
and doc2vec.

2.2. Performance Comparison between Different Basic Prediction Models

RF and SVM were employed to build RPISeq’s classifiers; IPMiner fed the RNA and protein
features into RF to make predictions. Our proposed RPITER employed CNN and SAE architectures
in four basic prediction modules to map input features into high-level feature representations and
generate prediction results. RPISeq, IPMiner and RPITER all rely on the CTF form sequence coding
features. Therefore, we compared the performances of different prediction models, namely RF, SVM,
CNN and SAE, using same CTF coding features on datasets RPI1807, RPI2241 and NPInter. For SVM,
we adopted the parameter setting in [21] (kernel = “polynomial”, degree = 2, C = 1.0, and tolerance =
0.001). For RF, we set the number of decision trees to 100. The Acc of four basic prediction models on
the three datasets in five-fold CV are shown in Figure 3. The detailed performances of these methods
on dataset NPInter are listed in Table 2.
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Figure 3. Performance comparison among different basic prediction models on datasets RPI1807,
RPI2241 and NPInter by five-fold cross validation.
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Table 2. Performance comparison between convolution neural network (CNN), stacked auto-encoder
(SAE), random forest (RF), and support vector machine (SVM) on dataset NPInter by five-fold
cross validation.

Dataset Models Acc Sn Sp Pre MCC AUC

NPInter

CNN 0.953 0.974 0.932 0.935 0.907 0.984
SAE 0.941 0.967 0.915 0.920 0.884 0.982
RF 0.943 0.945 0.941 0.941 0.886 0.943

SVM 0.933 0.940 0.925 0.926 0.866 0.933

On dataset NPInter, CNN obtained an Acc of 0.953 with 0.012, 0.010 and 0.020 increase over
SAE (0.941), RF (0.943) and SVM (0.933), respectively. On dataset RPI1807, the differences of accuracy
among CNN (0.967), SAE (0.965) and RF (0.970) were slight, and SVM (0.956) obtained the lowest
accuracy. On dataset RPI2241, SAE, RF and SVM achieved Acc of 0.859, 0.855 and 0.805, respectively,
whereas CNN model yielded an Acc of 0.887 (about 0.03 increase over SAE and RF, and 0.08 increase
over SVM).

2.3. Performance Comparison between Different Modules of RPITER

Our whole model RPITER consist of four basic prediction modules, namely Conjoint-CNN,
Conjoint-SAE, Conjoint-Struct-CNN, and Conjoint-Struct-SAE (described in detail in Section 4.4).
The prediction accuracy of our four basic modules and whole architecture RPITER on five benchmark
datasets by five-fold CV are shown in Figure 4.
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Figure 4. Performance comparison among different prediction modules of RPITER.

Comparing the performance of modules using different architectures of CNN and SAE but the
same sequence coding inputs, it was found that the CNN-based modules have advantages over the
SAE-based modules when the training samples are sufficient. On the two smallest datasets RPI369 and
RPI488, the Acc of Conjoint-CNN and Conjoint-Struct-CNN were slightly inferior to Conjoint-SAE and
Conjoint-Struct-SAE. On the two medium size datasets RPI1807 and RPI2241 and the largest dataset
NPInter, the Acc of Conjoint-CNN and Conjoint-Struct-CNN had advantages over Conjoint-SAE and
Conjoint-Struct-SAE. On RPI2241, Conjoint-CNN and Conjoint-Struct-CNN obtained 0.885 and 0.879
Acc, respectively, which notably better than Conjoint-SAE (0.859) and Conjoint-Struct-SAE (0.857).
On NPInter, Conjoint-CNN (0.953) and Conjoint-Struct-CNN (0.953) both yielded a 0.011 higher Acc
than Conjoint-SAE (0.942) and Conjoint-Struct-SAE (0.942).
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No individual module can always surpass all other modules on all datasets. The architecture of our
proposed RPITER combines the advantages of four basic modules with different architectures and
sequence coding methods, which can provide a more comprehensive RPI prediction result.

2.4. Performance Comparison with Other Previous RNA–Protein Interaction (RPI) Prediction Methods

To further evaluate our proposed RPITER, we also compared our method with other previous
RPI prediction methods. Since catRAPID and RPI-Pred do not offer standalone packages, we could
only compared our methods with RPISeq, lncPro and IPMiner. For RPISeq, Muppirala et al. [21]
proposed RPISeq-RF and RPISeq-SVM using RF and SVM, respectively, but RPISeq-RF outperformed
RPISeq-SVM on RPI369 and RPI2241 according to their reported performances. Thus, in this study,
RPISeq-RF was chosen for comparison. lncPro only provided the prediction source code of a trained
model on their dataset. Thus, we directly tested the performance of their model on our five benchmark
datasets. For IPMiner, RPISeq-RF and RPITER, the same data pre-processing and k-mer counting
manner were conducted under the same five-fold CV condition. The prediction accuracy of the above
four methods on five datasets are shown in Figure 5, and the detailed performance are listed in Table 3.

As shown in Figure 5, on datasets RPI369 and RPI2241, RPITER had a notable accuracy increase
over all other methods, and the standard deviations of accuracy in five-fold CV (gray lines on the top
of accuracy columns) were obviously smaller than IPMiner and RPISeq-RF. On datasets RPI488 and
NPInter, RPITER also performed better than RPISeq-RF and lncPro and had similar prediction accuracy
as IPMiner. On dataset RPI1807, RPITER, IPMiner and RPISeq-RF achieved similar accuracy and all
outperformed lncPro. Moreover, on datasets RPI369, RPI1807, RPI2241 and NPInter, RPITER yielded
the highest Sn and AUC among all methods. It should be noted that the dataset used to train the
lncPro model overlapped with RPI488 [26]. Thus, lncPro performed well on RPI488 but showed poor
performances on other datasets. IPMiner employed complex stacked ensembling [26] technique to
increase the performance over its basic predictors including RPISeq-RF. In implementation, each of the
three basic predictors of IPMiner was trained three times by a three-fold cross validation to generate
the training and testing data for the LR-based ensemble part. As shown in Figure 5, this complicated
ensemble manner brought about noteworthy Acc increase over RPISeq-RF on datasets RPI488 (0.010),
RPI2241 (0.010) and NPInter (0.014). Nonetheless, the ensemble manner was too time-consuming for
deep learning-based models. In contrast, RPITER directly trained each basic module one time, and
then concatenated the outputs of four basic modules and trained the whole architecture one time again
to make RPI predictions.
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Figure 5. Performance comparison among different RNA–protein interaction (RPI) prediction methods
on datasets RPI369, RPI488, RPI1807, RPI2241 and NPInter.
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Table 3. Performance comparison of different RNA–protein interaction (RPI) prediction methods on
five benchmark datasets by five-fold cross validation.

Dataset Method Acc Sn Sp Pre MCC AUC

RPI369

RPITER 0.728 0.797 0.659 0.701 0.461 0.821
IPMiner 0.700 0.784 0.560 0.840 0.428 0.700

RPISeq-RF 0.713 0.716 0.702 0.724 0.426 0.713
lncPro 0.502 0.237 0.771 0.512 0.009 0.468

RPI488

RPITER 0.893 0.839 0.947 0.943 0.793 0.911
IPMiner 0.893 0.946 0.835 0.951 0.793 0.893

RPISeq-RF 0.883 0.928 0.831 0.935 0.771 0.883
lncPro 0.856 0.770 0.947 0.940 0.725 0.929

RPI1807

RPITER 0.968 0.986 0.946 0.959 0.936 0.990
IPMiner 0.968 0.965 0.978 0.955 0.935 0.966

RPISeq-RF 0.970 0.970 0.976 0.962 0.939 0.969
lncPro 0.472 0.445 0.506 0.532 -0.049 0.506

RPI2241

RPITER 0.890 0.917 0.863 0.871 0.781 0.957
IPMiner 0.861 0.877 0.841 0.882 0.724 0.861

RPISeq-RF 0.851 0.861 0.838 0.863 0.702 0.851
lncPro 0.606 0.518 0.695 0.632 0.216 0.644

NPInter

RPITER 0.955 0.973 0.937 0.939 0.910 0.985
IPMiner 0.957 0.956 0.958 0.956 0.914 0.957

RPISeq-RF 0.943 0.937 0.949 0.936 0.885 0.943
lncPro 0.508 0.739 0.276 0.505 0.017 0.517

The boldface indicates the highest metric performance among the compared methods on specific
dataset.

3. Discussion

In this study, we proposed a hierarchical deep learning-based framework RPITER, which contains
two sequence coding parts as inputs and involves two basic CNN and SAE network architectures to
generate comprehensive prediction result.

For sequence coding, we adjusted the CTF coding methods by adding more primary sequence
information and sequence structure information into the coding vectors. According to the performance
comparison on dataset RPI2241, our Improved CTF and Improved Struct CTF showed advantages
over the previous CTF coding method. Besides, we tried three commonly used deep learning sequence
coding methods of one hot, word2vec and doc2vec, but they performed worse than CTF form
coding methods in this RPI prediction problem and were abandoned in this study. The sequence
structure used in our coding method was predicted by the software, thus might only contain limited
information. We noticed that RPI-Pred achieved 93% Acc using the experimentally validated structure
but only 83% Acc using the predicted sequence structure on dataset RPI1807 [25]. Thus, more
experimentally validated sequence structure data would contribute to more effective RNA–protein
interaction prediction.

For model design, we found CNN architecture has a powerful fitting ability for the k-mer features
of protein and RNA sequence compared with SAE architecture and machine learning models RF
and SVM. We infer that our CNN-based modules using convolution neural networks are more
complicated than our SAE-based modules using simple fully-connected layers, thus the CNN-based
modules have larger sample demands for effective training than the SAE-based modules. Nonetheless,
when sufficient samples are available, our CNN-based architecture can perform better in feature
extraction and high-level feature representation than the SAE-based architecture. In 2017, Sun et al. [42]
employed SAE architecture to process the conjoint triad features of protein sequence for protein–protein
interaction prediction. Their model would probably have a performance increase if the SAE architecture
were replaced by the CNN architecture, since CNN is more effective.
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The designed deep learning model RPITER could integrate the advantages of four different basic
predict modules and provide a comprehensive RPI prediction result. Based on experiments on five
benchmark datasets, the proposed RPITER showed good performance in predicting RPI compared
with the previous methods.

4. Materials and Methods

4.1. Benchmark Datasets

We employed five benchmark datasets (Table 4) from previous studies to validate the proposed
method. Datasets RPI369, RPI488, RPI1807 and RPI2241 are extracted from the RNA–protein interaction
complexes in the RNA–protein interaction database PRIDB [44] or PDB [45]. These four datasets are
constructed following the criterion of least atom distance: if there exist a protein atom and a RNA
atom with the distance between being less than the specified distance threshold, then the protein and
RNA become an interaction pair. Additionally, RPI488 is comprised of lncRNA–protein interaction
pairs, that is, the RNAs are ncRNAs longer than 200 nt. In contrast, rather than judging interaction
by the atom distances in RPI complexes, the dataset NPInter contains the experimentally verified
interactions between ncRNAs, especially lncRNAs, and proteins from the NPInter2.0 database [46].
Because RPI369, RPI2241 and NPInter datasets lack non-interaction pairs to work as negative samples
in training model, the same number of non-interaction pairs were generated by randomly pairing the
RNAs and proteins in positive samples and further discarding similar known interaction pairs [21,26]
(a randomly generated pair R1–P1 was discarded if there existed an interaction pair R2–P2 with R1
and R2 shared >80% sequence identity and P1 and P2 shared >40% sequence identity). The cd-hit
and cd-hit-est programs in CD-HIT version 4.6.8 [47,48] were applied to cluster RNA and protein
sequences with identity thresholds being 0.4 and 0.8, the smallest clustering cutoff values in CD-HIT
tool for protein and RNA, respectively.

Table 4. The five benchmark RPI datasets used in this study.

Dataset Interaction Pairs Non-Interaction Pairs RNAs Proteins Reference

RPI369 369 0 332 338 [21]
RPI488 243 245 25 247 [26]

RPI1807 1807 1436 1078 3131 [25]
RPI2241 2241 0 841 2042 [21]
NPInter 10,412 0 4636 449 [46]

RPI369, RPI2241 and NPInter lack non-interaction pairs to serve as negative training samples, thus
we randomly paired the RNAs and proteins in positive interaction samples and discarded existing pairs to
generate the same number of negative samples and construct the balanced training datasets [21,26].

In this study, the protein and RNA sequence data of RPI488 and NPInter were downloaded from
https://github.com/xypan1232/IPMiner. The sequence data of RPI369, RPI1807 and RPI2241 were
retrieved from PDB. The structure information of protein sequence used in our study was predicted
by SOPMA [49]. We employed their web server (https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.
pl?page=npsa_sopma.html) to calculate the classical three state protein secondary structures: α-helix,
β-sheet and coil. For RNA structure prediction, we used RNAfold program in ViennaRNA Package
version 2.4.3 [50] to calculate the two state dot-bracket representation of RNA secondary structure
with min free energy. The sequence data and predicted sequence structure data of five RPI datasets are
organized and available at https://github.com/Pengeace/RPITER.

4.2. Sequence Coding Method

To input RNA and protein sequences into deep learning or conventional machine learning models,
the sequence data must first be transformed into numerical representations. Because the RNA and
protein sequence length vary in a large range (0–4000) in our datasets, the commonly used fixed

https://github.com/xypan1232/IPMiner
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
https://github.com/Pengeace/RPITER
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length sequence encoding methods for deep learning models, such as one hot encoding, do not fit our
problem. Therefore, we adopted and improved the CTF method, which counts k-mer frequency in
sequence to form fixed length vector representation.

In previous CTF methods [21,26], the 3-mer frequency of protein and 4-mer frequency of RNA
are calculated to form the sequence coding vectors. For protein, 20 amino acids are classified into
seven groups based on their dipole moments and the volume of side chains: {A, G, V}, {I, L, F, P},
{Y, M, T, S}, {H, N, Q, W}, {R, K}, {D, E}, and {C}. Then, each protein sequence is represented by the
reduced seven-letter alphabet. Thus, by calculating the 3-mer frequency, the protein sequence can be
transformed into a numeric vector with 343 (73) elements. For RNA, using four kinds of ribonucleotides
(A, U, C, G), a RNA sequence can be represented by a numeric vector with 256 (44) elements.

In this study, when only considering the sequence information, we extended the range of k to
1–3 in the k-mer frequency coding process for protein, and extend the range of k to 1–4 in the k-mer
frequency coding process for RNA. That is, for protein, we computed the 1-mer, 2-mer and 3-mer
frequency information to form an extended coding vector with 399 (∑3

i=1 7i) elements. For RNA, we
compute the 1-mer, 2-mer, 3-mer and 4-mer frequency information to form an extended coding vector
with 340 (∑4

i=1 4i) elements. By adding more sequence information into its coding vector, we hoped to
enhance the model input to finally improve the model prediction performance. This sequence coding
method is referred as Improved CTF.

When taking the sequence structure information into consideration, we calculated the 1–3-mer
frequency of protein secondary structure and the 1–4-mer frequency of RNA secondary structure to
complement the sequence coding vectors. For protein, combining the 1–3-mer frequency of three
kinds of secondary structure (α-helix, β-sheet and coil) with previous reduced seven-letter alphabet
would generate the protein coding vector with 438 (∑3

i=1 3i + 7i) elements. For RNA, integrating the
1–4-mer frequency of two kinds of secondary structure (dot and bracket) with four ribonucleotides
would produce the RNA coding vector with 370 (∑4

i=1 2i + 4i) elements. This sequence coding method
is noted as Improved Struct CTF. Table 5 summaries the coding length of protein and RNA by the
above three different sequence coding methods.

Table 5. The sequence coding lengths for protein and RNA of different encoding methods.

Sequence CTF Improved CTF Improved Struct CTF

RNA 44 = 256 ∑4
i=1 4i = 340 ∑4

i=1(2
i + 4i) = 370

Protein 73 = 343 ∑3
i=1 7i = 399 ∑3

i=1(3
i + 7i) = 438

4.3. Performance Evaluation

In this study, we evaluated the performance of RPITER and other methods by six metrics, Acc,
Sn, Sp, Pre, MCC, and AUC. The formulas of the first five measurements are as follows:

Acc =
TP + TN

P + N
, Sn =

TP
TP + FN

,

Sp =
TN

TN + FP
, Pre =

TP
TP + FP

,

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where TP and TN mean the number of correctly predicted positive and negative samples, respectively;
FP and FN denote the number of wrongly predicted positive and negative samples, respectively;
and P and N represent the total number of positive and negative samples, respectively. All these
evaluation metrics were calculated by five-fold CV and no overlap between training and testing data.
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4.4. Model Design

We designed a deep-learning framework, RPITER (Figure 1), to tackle the RNA–protein interaction
problem. Our two sequence coding methods are used in the two sequence coding parts: Improved
CTF coding and Improved Struct CTF coding. After each coding part, two different network
architectures, CNN and SAE, are employed in two modules to extract features from the input and
form high-level representations. In each module, the protein and RNA coding vectors are analyzed
by two similar parts separately to form respective sequence embedding representations. Finally, an
ensemble module integrates the outputs from the four basic modules (Conjoint-CNN, Conjoint-SAE,
Conjoint-Struct-CNN, and Conjoint-Struct-SAE) to form the whole architecture of RPITER. The source
code of RPITER can be freely download from https://github.com/Pengeace/RPITER.

In module Conjoint-CNN and Conjoint-Struct-CNN, first, two similar sequence embedding parts
using CNN analyze the RNA and protein input vectors separately and form two sequence embeddings.
Then, a three-layer fully-connected part concatenates the two sequence embeddings as input and make
the interaction prediction. Each sequence embedding part with CNN has three convolution layers
with filter numbers being 45, 64 and 45, thus is denoted as Conv-45-64-45. Between two convolution
layers, max-pooling layer is used to reduce the representation dimension and introduce an invariance
to noises. After the last convolution layer in Conv-45-64-45, the output two-dimensional tensor is
flattened and further serves as the input of a fully connection layer with 128 neurons, denoted as
Dense-128. Then, the two sequence embedding representations of RNA and protein are output by the
two Dense-128 layers separately. Finally, a three-layer fully-connected part with 128, 64 and 2 neurons
in each layer, Dense-128-64-2, takes the previous two sequence embeddings and makes the interaction
prediction. In Dense-128-64-2, the input of the first Dense layer is the concatenation of the protein
and RNA embeddings, and the output of the last Dense layer is the prediction result, which is further
integrated by the later ensemble module.

In module Conjoint-SAE and Conjoint-Struct-SAE, first, two similar sequence embedding parts
using SAE analyze the RNA and protein input vectors separately and generate two sequence
embeddings. Then, a three-layer fully-connected part concatenates the two sequence embeddings
as input and makes the interaction prediction. Each sequence embedding part with SAE has three
fully-connected layers with neuron numbers being 256, 128 and 64, thus is denoted as Dense-256-128-64.
After dimension reduction and high-level feature abstraction by the two three-layer SAE parts,
the sequence embedding representations of RNA and protein are output by the last layers of two
Dense-384-256-128 parts. Finally, a three-layer fully-connected part Dense-128-64-2 concatenates the
previous two sequence embeddings as input for its first layer and makes the interaction prediction for
a specific RNA–protein pair at the third layer. Similar to previous CNN-based modules, the prediction
results of the two SAE-based modules are further integrated by the later ensemble module.

The last ensemble module concatenates the prediction results of former two CNN modules and
two SAE modules as its input tensor and generates a more comprehensive prediction result for a
given RNA–protein pair. The ensemble module is designed as a three-layer architecture, Dense-16-8-2,
with three fully-connected layers in which the neuron numbers are 16, 8, and 2, respectively.

The four basic modules and ensemble module use the Softmax [51] activation function at their
last layers to make binary predictions, and use back-propagation algorithm [52] to minimize loss
function of binary cross entropy. Two optimization methods, Adam [53] and stochastic gradient descent
(SGD) [54], are employed successively to train each module, among which Adam first gives the module
a quick converge and then SGD is used to fine tune the module after. In Conv-45-64-45, Dense-128-64-2,
and Dense-16-8-2, batch normalization [55] is employed to reduce internal covariate shift and help
train the designed deep network, and ReLU [56] activation function is used to speed up the supervised
train process. During the unsupervised pre-training process of the three-layer SAE, its parameters are
optimized by greedy layer-wise training. To avoid over-fitting problem, the techniques of dropout [57]
and early stopping [58] are also used. After each training epoch on the training data, the Acc of a
training module is recorded. If the prediction Acc this time is higher than the highest Acc record in

https://github.com/Pengeace/RPITER
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previous epochs, then the whole module parameters are saved and the highest Acc record is updated.
If the highest Acc record on training data has not been updated for specific epochs, the train process
is stopped and the module loads the previous lastly saved weights and tests once on the test data.
Our model was implemented by the Keras2.0 library (https://keras.io/).
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