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1 Department of General Pathology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
renatalejkowska@gmail.com (R.L.); kawamilosz@gmail.com (M.P.K.); ewapius@wp.pl (E.P.-S.);
doroginska@gmail.com (D.R.); karolinaluczkowska58@gmail.com (K.Ł.)

2 First Department of Ophthalmology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
* Correspondence: machalin@pum.edu.pl (B.M.); annam@pum.edu.pl (A.M.);

Tel.: +48-914-661-546 (B.M.); +48-914-838-600 (A.M.)

Received: 7 January 2019; Accepted: 10 February 2019; Published: 12 February 2019
����������
�������

Abstract: This study aimed to investigate whether the transplantation of genetically engineered bone
marrow-derived mesenchymal stromal cells (MSCs) to overexpress brain-derived neurotrophic factor
(BDNF) could rescue the chronic degenerative process of slow retinal degeneration in the rd6 (retinal
degeneration 6) mouse model and sought to identify the potential underlying mechanisms. Rd6 mice
were subjected to the intravitreal injection of lentivirally modified MSC-BDNF or unmodified MSC
or saline. In vivo morphology, electrophysiological retinal function (ERG), and the expression of
apoptosis-related genes, as well as BDNF and its receptor (TrkB), were assessed in retinas collected at
28 days and three months after transplantation. We observed that cells survived for at least three
months after transplantation. MSC-BDNF preferentially integrated into the outer retinal layers and
considerably rescued damaged retinal cells, as evaluated by ERG and immunofluorescence staining.
Additionally, compared with controls, the therapy with MSC-BDNF was associated with the induction
of molecular changes related to anti-apoptotic signaling. In conclusion, BDNF overexpression
observed in retinas after MSC-BDNF treatment could enhance the neuroprotective properties of
transplanted autologous MSCs alone in the chronically degenerated retina. This research provides
evidence for the long-term efficacy of genetically-modified MSC and may represent a strategy for
treating various forms of degenerative retinopathies in the future.

Keywords: MSC; BDNF; rd6; retinal degeneration; regenerative medicine; tissue imaging; OCT;
lentiviral vectors

1. Introduction

Inherited or acquired retinal degeneration involving the retinal pigment epithelium (RPE) and
photoreceptors is a major cause of loss of vision leading to complete blindness throughout the world.
Retinal degeneration involves complex processes and the pathophysiological mechanisms are not
fully known. Since the human population is constantly aging, there is an enormous need to develop
new treatment approaches [1]. In the past, numerous strategies have been performed to stop the
degeneration process in the retina and to replace damaged cells, but their therapeutic effects were
very limited [2]. This inefficacy is because the genetic and phenotypic heterogeneity of the retinal
degeneration process makes the development of a single therapeutic approach a very challenging
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process [3]. Several factors that contribute to retinal neurodegeneration have been partially identified,
including augmented oxidative stress, and dynamic metabolic changes in retinal cells owing to the
activation of inflammatory responses and decreased availability of vital trophic factors.

Neurotrophins (NTs) are a large family of different growth factors, including main members such
as the neural growth factor (NGF), the brain-derived neurotrophic factor (BDNF), neurotrophin-3
(NT-3), and neurotrophin-4/5 (NT-4/5) [4]. The major role of NTs is the promotion of neuronal
survival, which is mediated through the interaction of NTs with receptor tyrosine kinases (TrkA,
TrkB, and TrkC) [5]. Stimulation of the TrkB receptor, which is a target for both NT-4 and BDNF,
results in activation of several intracellular signaling cascades that are responsible for cell survival and
proliferation together with cell migration, differentiation and neural tissue development [4]. Some of
the Trk-dependent cascades are also responsible for preventing apoptosis [6]. It was found that NTs
and their receptors are also locally produced in the retina and BDNF was detected in Müller cells [7],
retinal ganglion cells and cells of the inner nuclear layer [8]. It is postulated that several neurotrophic
factors may contribute to retinal cell survival and development and cell neuroprotection in case of
injury to the retina. Exogenously applied BDNF was reported to increase the number of neuronal
progenies [9]. In the retina, an intravitreal supplementation of exogenous BDNF enhanced the survival
of injured adult retinal cells [10,11], however this effect was only temporary and was unsuccessful in
the long-lasting prevention of retinal cell death [12].

Several studies have reported that neuroprotective effects could be supported by adult stem cell
transplantation to the site of the damaged retina [13,14]. Mesenchymal stromal cells (MSCs) are one of
the most commonly tested cells and have been proven effective in preclinical studies of many disorders,
including neurodegenerative diseases [15]. In certain animal models of retinal degeneration, MSCs
therapies showed neuroprotective effects [16]. They have the capability to regulate the promotion of
photoreceptor survival by their anti-inflammatory, anti-apoptotic, immunomodulatory, and angiogenic
effects, which are based on their secretion of cytokines [17] and growth factors [18]. The most common
sources of MSCs are bone marrow and fat tissue [19], which provide an abundant source of those
cells in the clinical setting. Therefore, the genetic modification of MSC, permitting the production
of selected proteins, can provide cellular products of higher quality for therapeutic use, due to the
more stable expression profile and uniform secretion of the desired biologically active substances.
During the past decade several strategies for introducing growth factor genes into MSCs have been
developed, among which the lentiviral vectors transduction indicates much greater efficacy compared
to other vectors routinely used in gene therapy and MSCs modifications [20]. Regarding this notion,
a lentivirus-based engineering of MSCs for the constant production of neurotrophins has been proposed
as a promising method for the long-term delivery of neuroprotective substances to the damaged
retinas in various preclinical studies [15]. Likewise, our group previously found that NT-4-engineered
MSCs actively produced exogenous neurotrophin-4 after cell transplantation to the acutely-injured
retinas in vivo and significantly rescued the damaged retinal cells [21]. Moreover, the successful
transplantation of genetically engineered MSCs secreting BDNF in the central nervous system (CNS)
was already performed in axotomized retina and in laser induced injury [22,23]; however, to our
knowledge, there are no studies that have specifically analyzed the effect of the continuous delivery
of BDNF via combined cellular and gene-based therapy in a model of chronic retinal degeneration.
To investigate whether there is a rescue potential of MSC-BDNF in inherited retinal degeneration,
we used a well-established animal model of slow retinal degeneration—rd6 mutant mice. The rd6
mouse is a biologic model of retinal pigment epithelium-based autosomal recessive retinitis pigmentosa
caused by the mutation in the MFRP (membrane-type frizzled related protein) gene. In these animals,
the retina has a normal cell composition at birth, although during the postnatal life there is a continuous
degeneration of photoreceptors. Significant decrease in thickness of outer nuclear layer is reported in
four- and five-month old individuals, and even more by those aged seven months, especially due to
the reduction of the photoreceptor cell number. Near complete loss of vision (1 layer) is noted at the
age of 24 months [24,25]. Therefore, we chose this model to characterize the molecular mechanisms
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underlying the long-term protective effect of transplant therapy with MSC-BDNF and compare it with
the effect of MSCs alone.

2. Results

2.1. Evaluation of Ex Vivo Genetic Modification of MSCs for Effective BDNF Production

In our study we used two types of MSC—sunmodified MSCs and transduced ones,
both expressing green fluorescence. To infect the collected murine MSCs, the recombinant lentivirus
with expression of human BDNF (Lv-UbC-BDNF) was used. Both MSC forms used in this experiment
presented a typical MSC phenotype, according to their morphology (i.e., spindle-like shape and plastic
adherence) as shown in Figure 1D, and the expression of Sca-1, CD90 and CD105 antigens, with no
CD31 expression, as detected by flow cytometry (results were approximately the same as shown
in Reference [21]). Moreover, following the infection with the BDNF-encoding lentivirual vectors,
the vast majority of cultured MSCs were positive for BDNF protein (Figure 1D). Finally, ELISA results
revealed a significant increase in the BDNF concentration (over 35-fold increase, p < 0.0001) in medium
collected from the BDNF–positive MSC culture compared to the uninfected MSC in the same conditions
(Figure 1E).
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Figure 1. Characterization of lentiviral MSCs transduction efficiency. The schemes of plasmids used 
for lentivirus production for subsequent murine MSCs transduction are shown. The lentiviral 
backbone plasmid (FUGW) contained the green fluorescent protein (GFP) coding sequence (A) that 
was removed to insert the human BDNF sequence and then FUGW-BDNF plasmid was created (B) 
for relevant lentiviral vectors production. The correct band for BDNF insert (765 bp) was observed 
under ultraviolet (UV) light in agarose gel (C). Quantitative analysis of BDNF levels from MSC-BDNF 
and unmodified MSC cultures in vitro (D). Noninfected control MSCs produced only trace amount 
of BDNF, whereas production of BDNF in MSC-BDNF culture was approximately 35-fold increased. 
These data were corroborated by double immunofluorescent staining of BDNF and GFP proteins for 
their qualitative expression and co-expression analysis (E). Scale bar: 20 µm, *** p < 0.001.  

2.2. Homing, Migration, and Survival of Transplanted MSC within Injured Retina 

Figure 1. Characterization of lentiviral MSCs transduction efficiency. The schemes of plasmids used for
lentivirus production for subsequent murine MSCs transduction are shown. The lentiviral backbone
plasmid (FUGW) contained the green fluorescent protein (GFP) coding sequence (A) that was removed
to insert the human BDNF sequence and then FUGW-BDNF plasmid was created (B) for relevant
lentiviral vectors production. The correct band for BDNF insert (765 bp) was observed under ultraviolet
(UV) light in agarose gel (C). Quantitative analysis of BDNF levels from MSC-BDNF and unmodified
MSC cultures in vitro (D). Noninfected control MSCs produced only trace amount of BDNF, whereas
production of BDNF in MSC-BDNF culture was approximately 35-fold increased. These data were
corroborated by double immunofluorescent staining of BDNF and GFP proteins for their qualitative
expression and co-expression analysis (E). Scale bar: 20 µm, *** p < 0.001.
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2.2. Homing, Migration, and Survival of Transplanted MSC within Injured Retina

First, we wondered whether any differences in the homing mechanisms between infected and
uninfected GFP positive MSCs exist and if they could be efficiently delivered to the retina of rd6
mice using intravitreal pars plana injection. The main goal was to assess the MSCs ability to traffic
from the vitreous body to damaged retina and their final homing in retina. Thus, we monitored the
eyes on the 28th day and at three months after transplantation of the cells using the spectral domain
optical coherence tomography (SD-OCT) technique. After MSC-BDNF transplantation, the OCT
B-scans showed hyperreflective streaks at the vitreoretinal interface (Figure 2A), which were detectable
throughout the entire experimental period. Importantly, the intensity of that bright streak representing
the injected MSC cells decreased during the time course of the experiment in the case of MSC-BDNF
but not in MSC alone. This might indicate that a strong overexpression of BDNF stimulates the effective
migration of transplanted MSC-BDNF from the vitreous body toward the degenerated retinal tissue
in rd6 mice, whereas unmodified MSCs are not able to migrate towards the deep retinal layers and
remain in the vitreoretinal interface.

To confirm this observation and to better define the localization of transplanted MSCs,
we analyzed the histologic specimens of retinas from rd6 mice after transplantation using
immunofluorescence technique. We applied the endogenously expressed fluorescent GFP protein
as a marker to evaluate the migration, location, and long-term survival of MSC after their grafting.
We observed that on the 28th day, the transplanted MSC-GFP cells were still located in the posterior
eyecup at the vitreoretinal interface and in the superficial ganglion cell layer (Figure 2B). In contrast,
in the course of the experiment, MSC-BDNF migrated toward different retinal layers and were mostly
found in the RPE layer and among photoreceptors (Figure 2C), where they were able to survive for up to
three months in a good metabolic state expressing marker GFP. Furthermore, the immunofluorescence
analysis of the retinas after the intravitreal administration of MSC-BDNF showed double-positive
cells stained for BDNF and GFP together, indicating the localization of MSC-BDNF cells along the
RPE-photoreceptor junction on the third month of the experiment (Figure 2C). These results may
suggest that MSC after intravitreal transplantation preferentially migrates toward the deep retinal
layers selectively damaged in the rd6 mouse model, and they could maintain their biological activity
of BDNF production in vivo for a longer period of time, up to several months.

Essentially, the volume intensity projections of OCT scans of chronically degenerated retinas
in rd6 mice revealed an abundant number of distinct subretinal white spots oriented in a regular
pattern across the retina that correspond to macrophages and monocytes typically juxtaposed to
the retinal pigment epithelium (Figure 2D). In contrast, we observed that on the third month after
intravitreal MSC-BDNF injection, there was a notably decreased quantity of such white visible spots
detected in the volume intensity projections of OCT scans (Figure 2E). These results may account for
the corresponding local macrophage depletion at the site of retinal degeneration after MSC-BDNF
transplantation. This may indicate a reduction in proinflammatory and scavenging functions related to
favorable local activity of transplanted MSC-BDNF, which in turn decrease a stimulus for macrophage
and other inflammatory effector cells infiltration.
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of chronically degenerated retina of rd6 mouse at the 28th day after intravitreal MSC-BDNF injection 
(A). A hyperreflective streak of the accumulated MSC (white arrow) at the vitreoretinal interface is 
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(green) were found to be located at the vitreoretinal interface and in the superficial ganglion cell layer. 

Figure 2. Long-term follow-up of genetically modified MSC-BDNF and MSC trafficking and homing
at different time points post-intravitreal transplantation in rd6 mice. A representative SD-OCT image
of chronically degenerated retina of rd6 mouse at the 28th day after intravitreal MSC-BDNF injection
(A). A hyperreflective streak of the accumulated MSC (white arrow) at the vitreoretinal interface is
observed. A representative fluorescence image of degenerated retina of rd6 mouse at 28 days after
intravitreal MSC injection (B). At this time point, the vast majority of the injected GFP-positive cells
(green) were found to be located at the vitreoretinal interface and in the superficial ganglion cell layer.
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A representative fluorescence images of degenerated retina of rd6 mouse at three months after
intravitreal MSC-BDNF injection (C). At this time of the experiment, the injected GFP-positive
cells (green) were found to be aligned along the RPE-photoreceptor junction and showed double
immunostaining against BDNF (red). A representative retinal volume intensity projections of OCT scans
of rd6 control mouse (D), after intravitreal MSC-BDNF injection (E) and MSC alone transplantation
(F) at the third month of the experiment. At this time of the experiment, the considerable reduction of
the retinal white spots that correspond to macrophages and monocytes at the level of retinal pigment
epithelium was observed only in eyes after intravitreal MSC-BDNF injection. Green lines indicate the
retinal level where the volume intensity projection image (VIP) was captured. Scale bar: 20 µm.

2.3. Long-Lasting BDNF Secretion by Engineered MSC and Its Biological Effects

On the 28th day and three months post-MSC administration, the expression of BDNF was
analyzed in the retinas collected from the following groups of rd6 mice: (1) With transplantation of
MSC-BDNF alone, (2) with transplantation of MSC alone (unmodified cells), and (3) with injection
of phosphate buffered saline (PBS) alone (control for the cell administration procedure). Four weeks
after unmodified MSCs transplantation, the retinal expression of BDNF was low, both at the mRNA
(Figure 3A) and protein (Figure 3B) level. In contrast, the retinas transplanted with MSC-BDNF
presented a significantly increased expression of mRNA for BDNF compared to those transplanted
with other treatments (Figure 3A). Similarly, the BDNF protein expression was strongly augmented in
the eyes treated with MSC-BDNF compared with that in eyes injected with MSC alone or with PBS
alone (Figure 3B). However, during the third month of the experiment, the mRNA transcripts encoding
BDNF decreased significantly compared to day 28 post-transplantation (Figure 3A). The expression
of BDNF protein remained at a constant expression level (Figure 3B). These results indicate that
genetically modified MSC used to express exogenous BDNF, which were transplanted into slowly
degenerating retinas of rd6 mice, may produce the neurotrophic growth factor—BDNF—locally at the
protein level for at least three months after their transplantation.

Next, we sought to analyze whether locally produced BDNF may biologically act in the target
retinal tissue. Therefore, we examined the expression of the TrkB receptor, which is specific for BDNF,
using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Indeed, we observed a
significantly increased expression of mRNA encoding TrkB in retinas after MSC-BDNF transplantation
both at day 28 and at the third month of the experiment compared to that after the transplantation of
MSCs alone or PBS control (Figure 3C). This finding indicates that BDNF could induce its activity in
retinal tissue due to the availability of transcripts of its specific receptor and potentially might activate
it in the cells.

To more closely examine the BDNF-dependent signaling network, we analyzed the expression
of key members of signal transduction pathways related to the TrkB receptor and its ligand, BDNF.
Analysis of Western blot membranes demonstrated substantial increases in the expression levels of
phosphorylated protein kinase B (Akt) and mitogen-activated protein kinase (MAPK) in the retinas
from MSC-BDNF-treated mice, and to a lesser extent in retinas from unmodified MSC, compared with
those levels in control rd6 retinas (Figure 3C). These data suggest that BDNF abundantly released
from genetically-engineered MSCs is highly bioactive and may induce the persistent activation of Akt
and MAPK-related pathways through their phosphorylation during long-term observation and thus
contribute to the neuroprotective and survival functions of BDNF-related signaling.

Furthermore, to determine whether the TrkB-dependent signaling pathways are biologically
active after MSC-BDNF transplantation, we assessed the proliferative potential in the target tissue
after MSC-BDNF transplantation. Therefore, we analyzed the expression of proliferating cell
nuclear antigen (PCNA) by determining the level of its mRNA transcripts. We found that at
28 days post transplantation, the PCNA mRNA quantity was significantly increased in the eyes
treated with MSC-BDNF compared with those control eyes injected with MSC alone or PBS
(Figure 3D). Additionally, the precise localization of the PCNA-positive cells was determined by
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an immunohistofluorescence analysis of retinas collected from MSC-BDNF-treated mice using the
anti-PCNA antibody. We found that PCNA protein was present mainly in the MSCs expressing BDNF,
which were migrating across the degenerated retinas of rd6 mice (Figure 3E). The results may suggest
the beneficial role of exogenous BDNF expression for cell proliferation, especially through the autocrine
mode of its actions.
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Figure 3. Long-term follow-up of BDNF production and its biological function at different time
points post-intravitreal MSC-BDNF transplantation. BDNF mRNA (A), BDNF, phosphoAkt, totalAkt,
phosphoMAPK and totalMAPK protein (B) expression was detected in retinas from eyes treated with
MSC-BDNF, and their levels were significantly increased post-transplantation compared to other
groups: at 28 days in case of mRNA and protein and at three months in the case of BDNF protein
only. We also observed increased TrkB gene expression in retinas at 28 days and three months after
MSC-BDNF and MSC alone transplantation compared to rd6 and wild type (WT) (C). The follow-up
of retinal cell proliferation at different time points post-intravitreal transplantation in rd6 mice was
also performed. Quantitative analysis of proliferating cell nuclear antigen (PCNA) mRNA expression
revealed that their levels were significantly increased in retinas from eyes treated with MSC-BDNF at
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28 days post transplantation compared with those in eyes treated with the PBS and MSCs alone (D).
Double-stained sections for PCNA and GFP (endogenous marker of transplanted MSC) used to
visualize and localize proliferating cells revealed the extraordinary PCNA protein concentration in
MSC-BDNF transplanted 28 days previously (E). Representative images of the performed analyses are
shown. Scale bar: 20 µm. Reference gene used for qRT-PCR analysis was glyceraldehyde 3-phospate
dehydrogenase (GAPDH). Mean values ± SD are presented in the diagrams, * p < 0.05, ** p < 0.01,
*** p < 0.001 (n = 7/group/time point).

2.4. Induction of Anti-Apoptotic Signaling in Degenerated Retinas during Long-Term Observation

Next, we continued to characterize the biologic activity of long-lasting BDNF secretion by
analyzing cardinal cellular processes, such as programmed the cell death signaling and activity.
Therefore, to determine whether the TrkB-dependent signal transduction pathway controlling
apoptosis is also biologically active after MSC-BDNF transplantation, we analyzed the expression of
several important anti- and pro-apoptotic factors in retinas collected from all experimental groups of
rd6 mice in this study. Apoptosis is strictly controlled by the balance between pro- and anti-apoptotic
members of the Bcl-2 protein family. Therefore, we performed a quantitative molecular analysis
of mRNA expression for the important anti-apoptotic gene BCL-XL (B-cell lymphoma-extra-large
protein) and the main pro-apoptotic gene BAX (Bcl-2 associated X protein). We observed an increased
expression of anti-apoptotic genes in the mRNA from retinas after MSC transplantation compared
to that in untreated retinas. Next, we compared the value of the Bcl-xL/BAX mRNA ratio that
defines tissue propensity to block apoptosis, and it was significantly higher in MSC-BDNF-treated mice
compared with that in mice injected with MSC alone or PBS (Figure 4A). This finding suggests that local
exogenous BDNF production and its secretion from MSC-BDNF is strongly involved in modulating
the expression of selected genes encoding apoptosis-regulating proteins. To further confirm this study,
we analyzed protein lysates from retinas treated with MSC-BDNF and compared them with retinas
injected with unmodified MSC or PBS. As shown in Figure 4B,C, we performed immunoassays and
observed the significantly increased concentration of the Bcl-xL/Bak (Bcl-2 homologous antagonist
killer) and the Mcl-1 (induced myeloid leukemia cell differentiation protein)/Bak protein dimers,
respectively, in the MSC-BDNF-treated group compared to that in the other examined groups at both
time points analyzed in the experiment. Next, to finally confirm the anti-apoptotic activity of BDNF
produced locally in the retina, we used a Western blot analysis to compare the expression of Caspase-3
protein. As shown in Figure 4D, we were not able to detect Caspase-3 in immunoblots of the lysates
from retinas treated with MSC-BDNF as well as treated with MSC alone both at day 28 and month
3. In contrast, the Caspase-3 was expressed in degenerated retinas of animals in the control group.
Overall, these results indicate that MSC-BDNF transplantation may potentially reduce the activity of
apoptosis in degenerated retinas of mature rd6 mutant mice. These findings also suggest that BDNF
locally released from MSC-BDNF after their transplantation is biologically active, affecting the crucial
cellular processes in the retinal tissue, such as proliferation and apoptosis, for at least three months
after the experimental therapy onset.
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Figure 4. The expression profile of selected apoptosis-related molecules in retinas treated with
MSC-BDNF or MSC alone at different time points (at 28 days and three months post transplantation)
and compared to WT and rd6 mice. The mRNA expression of Bcl-xL and BAX genes was determined
by the quantitative PCR and the relative ratio Bcl-xL/BAX was calculated (A). The concentration of
Bcl-xL and Bak protein dimer was determined by specific Luminex (B) Similarly, the concentration of
Mcl-1/Bak dimer protein was measured (C). Caspase-3 protein expression was determined by Western
blot, which revealed a lack of expression of this form in WT mice and rd6 after cell transplantation
compared to rd6 mice with no treatment (D). GAPDH served as loading. A representative image
is shown. Mean values ± SDs are presented in the diagrams, * p < 0.05, ** p < 0.01 (n = 7/group
/time point).

2.5. Neuroprotective Properties of Transplanted Cells after MSC-BDNF Treatment during Long-
Term Observation

To assess whether the local production of BDNF exogenously provided to the retinal level in the
eye can induce prolonged changes in retinal biology and function, we monitored the bioelectrical retinal
response using sensitive ERG equipment at day 28 and month 3 after transplantation. We observed
that mean values of b-wave amplitudes both in rod and cone responses were noticeably higher in
MSC-BDNF-treated retinas (mostly in the MSC-BDNF-treated group) than in control eyes both at
day 28 (Figure 5A) and month 3 (Figure 6A) after injection. To determine the cellular basis of this
considerable functional rescue, we analyzed collected retinas immunohistochemically with antibodies
specific for rod or cone opsins. The analysis of double immunohistofluorescence staining for rhodopsin
with opsin blue or with opsin red/green at day 28 (Figure 5B,C) and month 3 (Figure 6B,C) after
transplantation confirmed the ERG recordings. We noticed the increased expression of the tested
light-sensitive proteins in retinas after cell administration compared to that after the control, in which
the presence of opsins was almost undetectable in our analysis. The increased expression of opsin
proteins responsible for both rods and cones responses (but mainly cones) was especially seen in
retinas after MSC-BDNF transplantation and continued for at least three months after cell injection.
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Figure 5. Effects of in vivo experimental therapy with genetically transduced MSC-BDNF and
unmodified MSC on the retinal function and OCT-based retinal morphology at 28 days post
transplantation compared to rd6 mice with no treatment and WT mice. The representative ERG
responses recorded after cell injection are shown (A). The b-wave amplitude measurements are
presented as the mean± SD immunohistofluorescence co-staining for rhodopsin (green) with opsin blue
(red) in (B) and rhodopsin (green) with opsin red/green (red) in (C) are displayed in the representative
retinal specimens from all the groups with semi quantitative evaluation (signal intensity was marked
with subsequent methodology: “+” when less than 5 immunopositive cells present in the image,
“++” for 6–15 of visible positive cells, “+++” for 16–30 of positive stained cells, “++++” more than
30 immunopositive cells. The control rd6 mouse retinas (left column) are almost completely negative
for both cone opsins, whereas MSC-BDNF-treated retinas displayed regeneration of cones as evidenced
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by positive immunoreactivity for red/green cone opsin (middle column). The representative OCT
images of the retinal sections with their typical layered structure are presented in (D). Retinal layers
were marked both at histological images and OCT as follows: IR- inner retina, INL- inner nuclear
layer, OPL- outer plexiform layer, ONL- outer nuclear layer, RPE-PR–retinal pigment epithelium and
photoreceptors. Scale bar: 20 µm. * p < 0.05; ** p < 0.01.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 12 of 25 

 

“++++” more than 30 immunopositive cells. The control rd6 mouse retinas (left column) are almost 
completely negative for both cone opsins, whereas MSC-BDNF-treated retinas displayed regeneration 
of cones as evidenced by positive immunoreactivity for red/green cone opsin (middle column). The 
representative OCT images of the retinal sections with their typical layered structure are presented in 
(D). Retinal layers were marked both at histological images and OCT as follows: IR- inner retina, INL- 
inner nuclear layer, OPL- outer plexiform layer, ONL- outer nuclear layer, RPE-PR – retinal pigment 
epithelium and photoreceptors. Scale bar: 20 µm. * p < 0,05; ** p < 0,01. 

 
Figure 6. Effects of in vivo experimental therapy with genetically transduced MSC-BDNF and 
unmodified MSC on the retinal function and OCT-based retinal morphology at three months post 
transplantation compared to rd6 mice with no treatment and WT mice. The representative ERG 
responses recorded after cell injection are shown (A). The b-wave amplitude measurements are 

Figure 6. Effects of in vivo experimental therapy with genetically transduced MSC-BDNF and
unmodified MSC on the retinal function and OCT-based retinal morphology at three months post
transplantation compared to rd6 mice with no treatment and WT mice. The representative ERG
responses recorded after cell injection are shown (A). The b-wave amplitude measurements are
presented as the mean ± SD. Immunohistofluorescence co-staining for rhodopsin (green) with opsin
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blue (red) in (B) and rhodopsin (green) with opsin red/green (red) in (C) are displayed in the
representative retinal specimens from all the groups with semi quantitative evaluation (signal intensity
was marked with subsequent methodology: “+” when less than 5 immunopositive cells present in the
image, “++” for 6-15 of visible positive cells, “+++” for 16-30 of positive stained cells, “++++” more than
30 immunopositive cells. The control rd6 mouse retinas (left column) are almost completely negative for
both cone opsins, whereas MSC-BDNF-treated retinas displayed a regeneration of cones as evidenced
by the positive immunoreactivity for red/green cone opsin (middle column). The representative OCT
images of the retinal sections with their typical layered structure are presented in (D). Retinal layers
were marked both at histological images and OCT as follows: IR- inner retina, INL- inner nuclear
layer, OPL- outer plexiform layer, ONL- outer nuclear layer, RPE-PR–retinal pigment epithelium and
photoreceptors. Scale bar: 20 µm. * p < 0.05.

3. Discussion

Retinal degeneration is caused by a series of metabolic disturbances in the retina, which leads to
progressive retinal atrophy and eventually to the complete degeneration of photoreceptors causing
sight worsening and subsequent blindness. Therefore, searching for innovative effective therapies
used in this condition as a vital medical need. There are currently no alternative therapeutic
prospects for intractable ocular diseases, other than gene and cellular therapies, hence, various
investigations have recently focused on them. The transplantation of different cells is a new option
to treat neurodegenerative disorders. Therapeutic cellular strategies are based on the trophic activity
of stem and progenitor cells (SPCs) producing various cytokines, including growth factors and
extracellular matrix compounds, which regulate the growth, differentiation, and survival of various
types of cells [26]. In previous decades, various cell types have been verified and tested for retinal
neuroregeneration, including mesenchymal stromal cells, hematopoietic, embryonic and induced
pluripotent stem cells, among others [3,27]. Growing evidence has documented that neuro-functional
deficits can be reduced by bone marrow-derived cells in experimental animal models of retinal
degeneration [28]. Our group observed that intravitreal administration of bone marrow (BM)-derived
Lin-negative cells (Lin−) cells into murine eyes after acute retinal injury led to the integration of
the Lin− cells in outer retinal layers, thereby improving the morphological retinal structure and
inducing molecular changes such as the downregulation of pro-apoptotic signaling pathways and the
induction of neuro-regeneration, partially through the secretion of neurotrophic factors, especially
BDNF [29]. Additionally, transplanted Lin− cells differentiated locally in damaged retina into cells
with a macrophage-like phenotype. Our other study determined that the intrathecal application of
autologous BM-derived Lin- cells provides strong anti-inflammatory support in the early stage of
neuronal degeneration in chronic neurodegenerative disease, such as ALS, which is a disease with a
pro-inflammatory background [30].

Prominent data indicate mesenchymal stromal cells are a feasible and preferred candidate
for cell-based therapy for various neurological disorders [31–33]. From this perspective, the most
important features of these cells are as follows: (1) Availability from autologous sources independent
of a patient’s age; (2) extensive expansion in vitro; (3) immunomodulatory “bystander” function after
transplantation in vivo; (4) potential to protect, repair or eventually replace impaired or dysfunctional
host cells [34]. Importantly, MSCs fail to trigger an immune response when transplanted to other
tissues, as the MSC-derived factors inhibit the proliferation of several types of immunologically
competent cells [35]. Thus, the immunosuppressive properties of MSCs permit an immunological
acceptance of cells transplanted into the vitreous cavity of the eye. After a transplantation into the
eyes of animals with slow retinal degeneration, such as Royal College of Surgeons (RCS) rats or
mouse model of retinitis pigmentosa, MSCs sparsely differentiated into cells with glial characteristics,
but not to mature photoreceptors or RPE cells [36]. However, they exerted the protective effects on
endogenous photoreceptors and RPE cells [37]. The reduction in retinal ganglion cell (RGC) death
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in animal models of glaucoma [38] and optic nerve transection [39,40] has also previously been
demonstrated for BM-derived MSCs. Intravitreally transplanted MSCs also promote the regeneration
of RGC axons after an optic nerve crush [40]. Interestingly, MSCs can also be effective, indirectly,
by inducing the retinal Müller cell production of neurotrophic factors [41]. Overall, the collected data
suggest that various subsets of stem cells may be used as a clinical option for the induction of retinal
tissue regeneration. Recently, many pilot clinical trials have shown good tolerability and long-term
retinal persistence of intravitreally transplanted MSCs [14,42,43].

Recent experimental medical interventions for retinal degeneration are especially focused on
the adjustment of extrinsic and intrinsic biological factors which could prevent the progression of
vision loss. In animal models of retinal and neuronal degeneration, various growth factors have
been tested as possible therapeutic agents, with a particular focus on the use of neurotrophins
(NTs) [44–46]. This family of proteins participates in the regulation of neuronal cell development,
function, and survival. [47]. The cardinal NT components are NGF, BDNF, NT-3, and NT-4.
NT deprivation likely contributes to cell death in the retina, and diffusible factors secreted by stem
cells have shown protective effects on neurons in animal models of retinal injury [21,29]. Recent
studies have highlighted the potential of NT-releasing stem cells in the treatment of several ocular
disorders, and the most prominent factor in this venue seems to be BDNF, which, together with other
NTs, plays a significant role in the survival of neuronal cells and their downregulation, which is
thought to lead to neural degeneration [48]. Additionally, BDNF is important for axonal regeneration,
synaptic formation [49], and synaptic plasticity [50]. BDNF binds to the TrkB receptor, which is
important for neuron development, survival, and functional maintenance, as well as for neural tissue
repair [51]. Until recently, our group has focused on the characterization of subsets of stem cells
isolated from different hematopoietic tissues and their ability to secrete NTs that are crucial molecules
for neural cell survival, growth, and differentiation [52,53]. We found that different hematopoietic
stem cell populations can secrete a broad repertoire of trophic and immunomodulatory cytokines
after their transplantation to the neural microenvironment. However, the secreted amounts of NTs
vary between different cellular fractions isolated from the human BM or umbilical cord blood [52].
Importantly, in vivo all NTs are short-lived and cannot penetrate easily through the blood-brain barrier
and their intravenously or local administration is doubtful to produce long-term therapeutic effects [3].
Therefore, the most efficient method for long-term augmentation of the number of NTs produced by
transplanted cells is indispensable.

In this mode, the transduction of NT genes into MSCs would ensure a sufficient and steady
NT expression by these cells. In the current study, we generated genetically modified MSCs for the
sustained delivery of BDNF and showed that this approach has the potential to decrease pro-apoptotic
signaling in a mouse model of chronic retinal degeneration—rd6 mutant mice. We decided to use
that model because of the slow progression of photoreceptor layer loss and because the background
of the retinal degeneration is genetic. Furthermore, that model can be used as a mouse model
of age-related macular degeneration (AMD). Hence, it seems to be a universal mouse model of
retinal neurodegenerative diseases. In cellular therapies, lentiviral vectors are typically used to
obtain a stable transgene expression, because of their capacity to transfer exogenous genes into the
genome of MSCs [15]. Previously, we employed, with success, the lentiviral vector for the constant
transduction of MSC to produce neurotrophin-4 for the preclinical treatment of retinal acute injury [21].
In an experimental protocol, we infected murine MSCs endogenously expressing GFP protein with
our self-made Lv-UbC-BDNF lentiviral vector expressing BDNF as a therapeutic gene, with high
efficiency (around 95%). Moreover, the morphology and viability of the transduced cells were
similar to the uninfected ones. The amount of BDNF protein was significantly higher compared
to the uninfected MSCs, indicating an efficient MSC transduction. The in vivo results obtained after
three months post-transplantation revealed that BDNF delivered from engineered MSC-BDNF could
provide long-lasting biological effects. Transplanted cells successfully migrated towards the injured
retinal tissue and were able to incorporate and survive there for at least three months. Moreover,
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some transplanted MSC-BDNF cells continued to proliferate after homing to the degenerated retina.
These results are consistent with previous studies demonstrating that in laser-induced retinal injury,
transplanted BM-derived MSCs migrated into the retina where they remained in the proliferative
state [54]. We, and other researchers, also observed that after intravitreal injection, the MSC cluster
is maintained in the vitreous body for several weeks [40,55], although a small number of MSCs do
migrate into the retinal layers, and they are neither tumorigenic nor exhibit uncontrolled growth [36].

According to the above-mentioned findings we hypothesized that genetically engineered MSCs
with an overexpression of BDNF that are locally transplanted, may generate an innovative therapeutic
strategy for the prolonged preservation of slowly degenerating retinal cells in rd6 mice. The benefits
observed in the MSC-BDNF group appear to be a result of the increased retinal cell survival and
decreased retinal cell apoptosis. This hypothesis is consistent with previous studies demonstrating
BDNF-stimulated survival of differentiated retinal cells resulting from direct BDNF-dependent
upregulation of p35 and Bcl-2 anti-apoptotic molecules [56]. The diminished rate of irreversible
apoptosis was also confirmed by us at the protein level by detection of Caspase-3, which was
undetectable in retinas treated with MSC-BDNF. These data indicate that BDNF may act as an inhibitor
of apoptotic cell death in chronic retinal degeneration. Importantly, Junyi et al. showed in a model
of optic nerve injury that endogenous BDNF has only a short duration, which is insufficient for the
effective prevention of apoptosis in RGCs; therefore, it has no obvious therapeutic effects in optic nerve
injury. In contrast, MSC transplantation could provide stable BDNF expression in the infused eyes that
could effectively protect against retinal cell apoptosis and cell loss [57]. Likewise, other experimental
studies revealed that the transplantation of MSC secreting BDNF has been found to effectively promote
retinal cell survival in rodent models of retinal damage [22,23,58,59]. For example, the implantation of
BDNF-transduced MSCs into the rat retina was associated with a significant increase in BDNF levels
for a period of up to 14 days [60]. Other researchers found that the intravitreal transplantation of
BDNF-secreting MSCs in a rat model of chronic ocular hypertension improved retinal cell survival
and preserved optic nerve structure [61]. Retinal neuroregeneration may result from the local secretion
of neurotrophins by both transplanted engineered MSCs and host cells, with subsequent, even distant,
diffusion in the surrounding retinal tissue, thus stimulating different pro-regenerative mechanisms
during the process of endogenous neurorepair. Despite many natural barriers in the complex ocular
tissue, the experimental results clearly indicate the occurrence of neurotrophins diffusion into the deep
retinal layers, where they can exert their biological functions for the homeostasis and the control of
neurogenic retinal compartment. The effectiveness of NTs in promoting retinal cell survival depends
on the neurotrophic factor receptor (NTR) expression in retinal cells. BDNF activates multiple signaling
pathways in neurons via TrkB receptor, and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt
kinase pathways appear crucial in its survival-promoting effect [62]. Interestingly, the expression level
of BDNF in the retina appeared to have a direct influence on TrkB mRNA expression levels in our
study. We found that the expression of mRNA encoding TrkB was significantly increased in both the
MSC-BDNF and MSC alone groups up to three months post-transplantation compared to that in the
PBS control group where low expression levels corresponded to low local BDNF production.

Furthermore, we proved that transplanting MSC-BDNF can influence the retinal function.
We found that the local expression of light-sensitive proteins in the photoreceptor layer from the
MSC-treated groups was considerably higher than that of the control group, and the b-wave amplitudes
of both in rod and cone ERG responses had a better recovery rate in the MSC-BDNF-treated group.
The b-wave amplitudes, which reflect the activity of second-order retinal neurons, are a sensitive index
of the retinal function as demonstrated in humans and other experimental models [63,64]. The observed
improvement in the retinal bioelectrical function indicates that long-term BDNF administration may
promote retinal cell survival and substantially decrease the severity of photoreceptor and RPE damage
along with the amelioration of functional ERG response in this chronic model of retinal degeneration.
Unfortunately, the underlying mechanisms for these positive effects have not yet been elucidated,
however the favorable effects of MSC-BDNF transplantation seems to be a result of their ability to
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control the expression of certain genes, including those involved in signal transduction pathways
related to apoptosis. The cellular delivery of BDNF to degenerated retinal tissue had a positive
impact in our study, particularly on the expression of the anti-apoptotic proteins Bcl-xL and Mcl-1
that subsequently improved overall neuronal survival. We assume that exogenous BDNF activates
a complex signaling cascade that enhances cellular regeneration in slowly degenerating retinas of
rd6 mice. This possibility can lead to novel therapeutic opportunities for a wide range of retinal
disorders affecting elderly people going blind around the word. However, to meet general quality
requirements, cellular components must be at least predefined for the following parameters: Identity,
purity, and biological activity. Concerning the complex nature of MSCs, their proper identification and
characterization before therapeutic usage must be considered an obligatory constituent of the overall
therapeutic strategy [65,66]. Improving, monitoring, and reporting on experimental cell therapies in
the field of ophthalmology might help to develop safe and efficient ocular applications for cell-based
strategies that can contribute to fully exploiting the widespread potential of cellular therapies. It will
also permit avoiding cardinal medical errors that can lead to post-therapeutic iatrogenic blindness,
which occurred accidentally in a disastrous clinical treatment of macular degeneration [67]. Therefore,
the promise of stem cells as a novel treatment must be tempered by the need to more fully understand
stem cell behavior post-transplantation and to assess all the safety risks. This approach strongly
emphasizes the importance of selecting the criteria and quality control of the donor cells for cellular
and gene combined therapies for ophthalmological disorders, which need to be tested in randomized
controlled clinical trials before final legal approval.

4. Materials and Methods

4.1. Production of Recombinant Lentivirus Carrying the Human BDNF Gene

The lentiviral vector containing human BDNF (Lv-UbC-BDNF) was constructed using
commercially available pFUGW plasmid from Addgene (#14883, Watertown, MA, USA) [68]
which enables the expression of a transgene under the human ubiquitin C promoter
(UbC). The BDNF coding sequence was obtained from human primary keratinocytes by
PCR with specific primers (Forward 5′-CTAGGATCCGCCATGACCATCCTTTTCCTTACTATGG-3′

Reverse 5′-CTAGAATTCAATCCACTATCTTCCCCTTTTAATGG-3′) flanked with BamHI and EcoRI
recognition sites. The amplified BDNF sequence was gel-purified, digested, and inserted into the
pFUGW plasmid backbone, from which the green fluorescent protein (GFP) sequence was removed
with the same pair of restriction endonucleases. The schematic constructions of both plasmids used
in this study are presented in Figures 1A and 1B, respectively. The pFUW-BDNF plasmid DNA was
identified with restriction endonucleases (EcoRI and BamHI). The correct band for BDNF (765 bp) was
confirmed under UV light in agarose gel (Figure 1C). To produce lentiviral vectors, 293T packaging
cells were transfected with either pFUW-BDNF or pFUGW (for production of Lv-UbC-GFP vector
that served as internal control) as well as both psPAX2 and pMD2.G plasmids using the Transfection
Grade Linear Polyethyleneimine (PEI, Polysciences, Inc., Warrington, PA, USA). Vector-containing
medium was collected 48 h after cell transfection and filtered through 0.45-µm filters (Merck Millipore,
Burlington, MA, USA).

4.2. Isolation of MSCs

Bone marrow-derived MSCs were isolated from the femurs and tibias of 4- to 6-week-old
transgenic C57BL/6-Tg(CAG-EGFP)1Osb/J mice that express constitutively fluorescent GFP protein,
according to the protocol described by Zhu et al. [69] with minor modifications described in
Machalińska et al. [21].
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4.3. Lentiviral Transduction of Murine MSCs

MSCs were genetically engineered to produce and secrete the BDNF neurotrophic factor using
a lentiviral vector generated independently as part of the experiment. Briefly, MSCs were plated in
12-well plates (BD Pharmingen, Franklin Lakes, NJ, USA) at a density of 105 cells per well in 500 µL
α-MEM (alpha minimal essential medium, Lonza, Bioscience, Walkersville, MD, USA) with 10% FBS
and antibiotics and allowed to adhere for 12 h. Then, the α-MEM growth medium was supplemented
with 4 µg/well of polybrene (Sigma–Aldrich, Saint Louis, MO, USA). Next, the Lv-UbC-BDNF vector
(which was decanted from the 293T-cell culture after transfection) was added to the prepared MCSs
for a final volume of 1000 µL. In parallel, a population of control MSCs was engineered with only
the Lv-UbC-GFP in the same ratio as the MSC-BDNF to match the viral titer. Viral particles were
removed from the MSC cultures after 72 h of exposure by exchanging the culture medium. Next, both
engineered MSC populations (MSC-BDNF and MSC-GFP) were maintained as previously described.
MSC-GFP cultures were examined for GFP fluorescence at 72 h after initial viral transduction and then
passaged after 4 days. Additionally, an enzyme-linked immunosorbent assay (ELISA) was employed
from samples taken at several time points during culturing cells to measure the amount of BDNF in
the medium collected from MSC-BDNF and MSC cultures.

4.4. Flow Cytometry of Murine MSCs

Uninfected MSC and MSC-BDNF were harvested from tissue culture flasks at day 3 post infection
and divided into aliquots of 5 × 104 cells. Suspensions were rinsed with sterile PBS, centrifuged at
300 g for 8 min, and then rinsed briefly with propidium iodide solution (Sigma-Aldrich) to label dead
cells. Next, cells were centrifuged at 300 g for 8 min, resuspended in 1-mL PBS, and then analyzed
by FACS (LSRII instrument; Becton Dickinson Biosciences, Franklin Lakes, NJ, USA) using CellQuest
Software (Becton Dickinson Biosciences). The expression of human MSC markers Sca-1, CD31, CD90
and CD105 was evaluated by flow cytometry in both analyzed cell populations: MSC-BDNF and MSC.

4.5. ELISA

Concentration of BDNF in the culture medium from MSC-BDNF cultures was measured using a
commercially available high-sensitivity ELISA Quantikine human immunoassay kit for human BDNF
(R&D Systems, McKinley Place, MN, USA) according to the manufacturer’s protocol. The absorbance
was read at 450 nm using an ELX 808 IU automated Microplate Reader (Bio-Tek Instruments, Inc.,
Winooski, VT, USA). The results were analyzed using a quadratic log–log curve fit.

4.6. Animals and Experimental Procedures

Pathogen-free 5- to 6-month-old mature rd6 mice n = 30 (Jackson Laboratory, Bar Harbor, ME,
USA) of both sexes and age-matched WT C57BL/6 mice n = 10 (Polish Academy of Sciences, Wrocław,
Poland) were used in the experiment. Animals were maintained in individually ventilated cages
(IVC) in a 12 h light/dark cycle with ad libitum access to food and filtered water. Mice were divided
into 2 groups: (1) C57BL/6 (WT) mice that served as control animals, (2) mutant rd6 mice with slow
retina degeneration. Among rd6 mice we distinguished mice without transplanted cells (RD6, n = 10)
and mice with transplanted different types of mesenchymal stromal cells (n = 20). Prior to the cell
transplantation procedure all mice were anesthetized with an intraperitoneal injection of ketamine
(40 mg/kg) and xylazine (4 mg/kg), and their corneas were anesthetized with 0.5% phenylephrine
hydrochloride (Alcaine; Alcon, Fort Worth, TX, USA), and pupils were dilated with 1% atropine (Polfa
Warszawa, Poland). To the first group of rd6 mice (n = 20), 1 µL of PBS containing either cultured
2 × 104 GFP-positive MSCs expressing BDNF (MSC-BDNF) or uninfected GFP-positive MSC cells
alone was injected intravitreally into the right and left eye respectively, using a 30 G needle attached
to a Hamilton syringe (Hamilton Company, Reno, NV, USA). The second group of rd6 mice and WT
mice (n = 10) received intravitreal injections of 1 µL of PBS alone into each eye. Murine retinas were
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monitored for morphological and functional changes by OCT and ERG respectively, for up to 3 months.
At 28 days and 3 months after MSC transplantation, 10 of the animals from the first group and 5
from RD6 and WT group were sacrificed for further molecular and histological analysis. All animal
procedures were performed according to the European Committee regulations in The Association for
Research in Vision and Opthalmology (ARVO) Statement for the Use of Animals in Ophthalmic and
Vision Research and were approved by the Local Ethics Committee for matters of animals used for
scientific purposes in Szczecin (approval no. 11/2013, approval date: 20 October 2013).

4.7. Immunofluorescence Analysis

For cross-sections, the eyes were embedded in paraffin and cut into 5 µm-thick sections. For double
immunofluorescence staining, the Tyramide Signal Amplification (TSA, Thermo Fisher Scientific,
Waltham, MA, USA) protocol was applied, according to the manufacturer’s protocol. TSA is a useful
method that enhances the fluorescence signal and allows the sequential staining with antibodies
raised in the same animal species, reducing nonspecific binding. We analyzed the colocalization of the
following proteins: BDNF and GFP, PCNA and GFP, opsin blue and rhodopsin, as well as rhodopsin
and opsin red/green, according to the scheme of antibodies presented in Table 1. The cross-sections
were deparaffinized in xylene (2 × 15 min) followed by hydration in solutions with decreasing ethanol
concentrations (100%, 95%, 80%, 70%, and 50%) and antigen retrieval (20 min of boiling in citrate
buffer, pH 6.0). For the first set of antibodies, slides were incubated in 3% H2O2 in PBS for 45 min at
room temperature (RT) to quench endogenous peroxidase. After blocking in 10% normal serum (goat
or donkey, depending on the host species of the secondary antibody) for 30 min at RT, the sections
were incubated with the first primary antibody in PBS complemented with 1% bovine serum albumin
(BSA) at 4 ◦C overnight. Next, incubation with adequate secondary antibody was performed at RT for
60 min. Fluorescence detection and signal amplification were achieved by staining the sections with
Tyramide-Alexa Fluor 488 or Tyramide-Alexa Fluor 594 in amplification buffer/0.0015% H2O2 at RT

for 6 min. For the second set of antibodies, slides were incubated in 3% H2O2 in PBS for 45 min at room
temperature, to quench the horseradish peroxidase activity from the first TSA reaction. After blocking
in 10% normal serum (goat or horse, depending on the host species of the secondary antibody) for
30 min at RT, the sections were incubated with the second primary antibody in PBS complemented with
1% BSA at 4 ◦C overnight. Next, incubation with corresponding secondary antibody was performed at
RT for 60 min. Finally, the tertiary labeling with Tyramide-Alexa Fluor 488 or Tyramide-Alexa Fluor
594 in amplification buffer/0.0015% H2O2 was performed at RT for 6 min. Upon termination, sections
were counterstained with DAPI solution (Thermo Fisher Scientific, Waltham, MA, USA), mounted,
and subjected to microscopy analysis using a LSM700 confocal system (Carl Zeiss, Jena, Germany).

Double immunofluorescence staining using the TSA protocol was used to analyze the
colocalization of BDNF and GFP proteins in MSC and MSC-BDNF cultures. Cells grown on the 4-well
chamber slides (Thermo Fisher Scientific, Waltham, MA, USA), were fixed in 3.7% paraformaldehyde
pH 7.2–7.4 for 20 min, at RT, followed by permeabilization with 0.5% Tween 20 in PBS for 10 min, at RT.
All subsequent staining steps were performed using the antibodies listed in Table 1 and according to
the method described.
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Table 1. List of antibodies employed in double immunofluorescence staining technique.

Coexpression Method
First Set Second Set

Antibody Dilution Antibody Dilution

I Ab * rabbit anti-BDNF 1 1:100 rabbit anti-GFP 1 1:100
BDNF and GFP II Ab ** goat anti-rabbit HRP 2 1:100 goat anti-rabbit HRP 2 1:100

Detection Tyramide Alexa-Fluor 594 2 1:100 Tyramide Alexa-Fluor 488 3 1:100

I Ab goat anti-PCNA 4 1:100 rabbit anti-GFP 1 1:100
PCNA and GFP II Ab donkey anti-goat HRP 5 1:100 chicken anti-rabbit HRP 6 1:100

Detection Tyramide Alexa-Fluor 594 2 1:100 Tyramide Alexa-Fluor 488 3 1:100

I Ab rabbit anti-opsin blue 5 1:100 mouse anti-rhodopsin 1 1:1000
opsin blue and

rhodopsin II Ab goat anti-rabbit HRP 2 1:100 goat anti-mouse HRP 3 1:100

Detection Tyramide Alexa-Fluor 594 2 1:100 Tyramide Alexa-Fluor 488 3 1:100

I Ab mouse anti-rhodopsin 1 1:1000 rabbit anti-opsin red/green 5 1:250
rhodopsin and

opsin red/green II Ab goat anti-mouse HRP 3 1:100 goat anti-rabbit HRP 2 1:100

Detection Tyramide Alexa-Fluor 488 3 1:100 Tyramide Alexa-Fluor 594 2 1:100

Manufacturers: 1 Abcam (Cambridge, UK); 2 Thermo Fisher Scientific (Waltham, MA, USA), part of TSA Kit #15;
3 Thermo Fisher Scientific (Waltham, MA, USA), part of TSA Kit #2; 4 Santa Cruz Biotechnology (Dallas, TE, USA);
5 EMD Millipore (Billerica, MA, USA); 6 Thermo Fisher Scientific (Waltham, MA, USA). * I Ab- primary antibody,
** II Ab- secondary antibody.

4.8. qRT-PCR

To analyze the mRNA levels for TrkB, BDNF, PCNA and Bcl-xL/BAX ratio, we isolated the total
mRNA from WT and rd6 mice retinas at 28 days and 3 months after intravitreal injection of PBS or
MSCs using a PARIS Kit (Life Technologies, Paisley, UK). We followed procedures in Machalińska et al.
with minor modifications [21]. A 15 µL reaction mixture containing 7.5 µL iQ SYBR Green SuperMix
(Bio-Rad), 10 ng of complementary DNA (cDNA) template, and 0.9 µL forward and reverse primers for
TRKB, BDNF, BCL-XL, BAX, PCNA and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were
prepared. The oligonucleotide sequences are listed in Table 2. The cDNA was amplified under the
following conditions: One cycle at 95 ◦C for 3 min followed by 40 cycles at 94 ◦C for 30 s, 61–65 ◦C for
30 s, and 72 ◦C for 45 s. Relative quantification of mRNA expression was calculated using comparative
Ct method. Relative quantification (∆∆Ct) of mRNA expression was normalized to the reference gene
and calculated using the Bio-Rad CFX Manager, Gene Study software (Bio-Rad, Hercules, CA, USA).

Table 2. List of oligonucleotide sequences used in the experiment.

Gene Primer Sequence

mGAPDH
Forward 5′-AGGTCGGTGTGAACGGATTT-3′

Reverse 5′-TGTAGACCATGTAGTTGAGGT-3′

mBDNF
Forward 5′-GCACTGGAACTCGCAATGC-3′

Reverse 5′-GTAAGGGCCCGAACATACGA-3′

mTRKB
Forward 5′-TTGACCCGGAGAACATCACG-3′

Reverse 5′-CCACAAACTTTAAGCCGGAATCC-3′

mPCNA
Forward 5′-CTTGGTACAGCTTACTCTGCG-3′

Reverse 5′-AGTTGCTCCACATCTAAGTCCAT-3′

mBCL-XL
Forward 5′-GACAAGGAGATGCAGGTATTGG-3′

Reverse 5′-TCCCGTAGAGATCCACAAAAGT-3′

mBAX
Forward 5′-TGAAGACAGGGGCCTTTTTG-3′

Reverse 5′-AATTCGCCGGAGACACTCG-3′

4.9. Western Blot Analysis

For the Western blot analysis, we followed the method of Machalińska et al. with minor
modifications [21]. We used a primary monoclonal immunoglobulin G (IgG) antibodies directed
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against the BDNF, Caspase-3, phosphoAkt, totalAkt, phosphoMAPK, totalMAPK as follows: Rabbit
anti-BDNF monoclonal antibody (at 1:1000 dilution, Abcam, Cambridge, UK, cat no. ab108319),
rabbit anti-Caspase-3 monoclonal antibody (at 1:600 dilution, Santa Cruz Biotechnology, CA, USA,
cat no. sc-56046), rabbit anti- phospho-Akt monoclonal IgG antibody (at 1:300 dilution, Cell Signaling
Technology, Beverly, MA, USA, cat no. 4060S), anti-Akt (pan) monoclonal IgG antibody (at 1:300
dilution, Cell Signaling Technology, Beverly, MA, USA, cat no. 4685S), rabbit anti-phospho-p44/42
MAPK monoclonal IgG antibody (at 1:300 dilution, Cell Signaling Technology, Beverly, MA, USA,
cat no. 4370S), rabbit anti-p44/42 MAPK monoclonal IgG antibody (at 1:300 dilution, Cell Signaling
Technology, Beverly, MA, USA, cat no. 4695S) and polyclonal anti-GAPDH antibody conjugated
with HRP (at a 1:1000 dilution Santa Cruz Biotechnology, Santa Cruz, CA, USA; cat no. sc-20357,).
Immunoreactive bands for BDNF and Caspase-3, phosphoAkt, totalAkt, phosphoMAPK and
totalMAPK were detected using a horseradish peroxidase-conjugated goat anti-rabbit secondary
antibody (goat F(ab) anti-rabbit IgG H&L (HRP), Abcam, Cambridge, UK, cat no. ab7171, dilution
1:1000). Chemiluminescence detection was performed using Western Bright Sirius Western Blotting
HRP Substrate (Advansta, CA, USA).

4.10. Multiplex Immunoassay

Mcl-1/Bak dimer and Bcl-xl/Bak dimer concentrations were quantified in homogenates of
collected retinas by multiplex fluorescent bead-based immunoassays (Luminex Corporation, Austin,
TX, USA) using commercial Bio-Plex Pro™ RBM Apoptosis Multiplex Assays, Panel 3 Analytes
(Bio-Rad, Hercules, CA, USA) following the manufacturer’s instructions. To standardize the final
concentration-values, we confined the measurement of the total protein to each sample.

4.11. Electroretinography

Scotopic and photopic ERGs were recorded from WT mice, rd6 mice, rd6 mice after MSC
transplantation, and rd6 mice after MSC-BDNF transplantation at 28 days and 3 months after injection.
We followed the method of Machalińska et al. [21].

4.12. Spectral-Domain Optical Coherence Tomography (SD-OCT) Imaging

SD-OCT scans were performed on mice at 28 days and 3 months after injection as described
before [21]. The reference arm was placed at approximately 1197 mm. In each eye 4 images were
taken of specific regions, using the optic nerve as a landmark. Rectangular scans (1.5 mm × 1.5 mm,
1280 a-scans/b-scan × 150 b/scans) were obtained.

4.13. Statistical Methods

The significance of differences between experimental groups was assessed using the
Kruskal–Wallis test followed by the Mann–Whitney test. p < 0.05 was considered statistically significant.
Data are presented as the mean ± SD. Student’s T-test was used to assess the changes between groups
in ELISA results.

5. Conclusions

In summary, our findings suggest that MSCs genetically modified to produce BDNF neurotrophin
are a good candidate for a potential therapeutic strategy to protect degenerating retina. The results of
this study also shed light on mechanisms of chronic retinal degeneration, identifying exogenous BDNF
as a prospective regulatory factor for retinal tissue. However, it is crucial to assess the long-term safety
and efficacy of the current genetically modified MSC-based cell transplantation approach in humans.
Our results thus give rise to a potential successful clinical application of genetically modified MSC in
elderly patients, which may be able to improve the outcomes in chronic retinal degenerative diseases
of humans in the immediate future.
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Baumert, B.; Wiszniewska, B.; Józkowicz, A.; et al. Long-term neuroprotective effects of NT-4-engineered
mesenchymal stem cells injected intravitreally in a mouse model of acute retinal injury. Invest. Ophthalmol.
Vis. Sci. 2013, 54, 8292–8305. [CrossRef] [PubMed]

22. Wyse, R.D.; Dunbar, G.L.; Rossignol, J. Use of genetically modified mesenchymal stem cells to treat
neurodegenerative diseases. Int. J. Mol. Sci. 2014, 15, 1719–1745. [CrossRef] [PubMed]

23. Kimura, A.; Namekata, K.; Guo, X.; Harada, C.; Harada, T. Neuroprotection, Growth Factors and BDNF-TrkB
Signalling in Retinal Degeneration. Int. J. Mol. Sci. 2016, 17. [CrossRef] [PubMed]

24. Kameya, S.; Hawes, N.L.; Chang, B.; Heckenlively, J.R.; Naggert, J.K.; Nishina, P.M. Mfrp, a gene encoding a
frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum. Mol. Genet. 2002, 11, 1879–1886.
[CrossRef] [PubMed]

25. Hawes, N.L.; Chang, B.; Hageman, G.S.; Nusinowitz, S.; Nishina, P.M.; Schneider, B.S.; Smith, R.S.;
Roderick, T.H.; Davisson, M.T.; Heckenlively, J.R. Retinal degeneration 6 (rd6): A new mouse model
for human retinitis punctata albescens. Invest. Ophthalmol. Vis. Sci. 2000, 41, 3149–3157. [PubMed]

26. Baraniak, P.R.; McDevitt, T.C. Stem cell paracrine actions and tissue regeneration. Regen. Med. 2010, 5,
121–143. [CrossRef] [PubMed]

27. Zarbin, M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol. Med. 2016, 22, 115–134.
[CrossRef] [PubMed]

28. Machalinska, A.; Baumert, B.; Kuprjanowicz, L.; Wiszniewska, B.; Karczewicz, D.; Machalinski, B. Potential
application of adult stem cells in retinal repair–challenge for regenerative medicine. Curr. Eye Res. 2009, 34,
748–760. [CrossRef] [PubMed]
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