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Abstract: Pluripotent stem cells (PSCs) comprise both embryonic stem cells (ESCs) and induced
pluripotent stem cells (iPSCs). The application of pluripotent stem cells is divided into four main
areas, namely: (i) regenerative therapy, (ii) the study and understanding of developmental biology,
(iii) drug screening and toxicology and (iv) disease modeling. In this review, we describe a new
opportunity for PSCs, the discovery of new biomarkers and generating antibodies against these
biomarkers. PSCs are good sources of immunogen for raising monoclonal antibodies (mAbs) because
of the conservation of oncofetal antigens between PSCs and cancer cells. Hence mAbs generated using
PSCs can potentially be applied in two different fields. First, these mAbs can be used in regenerative
cell therapy to characterize the PSCs. In addition, the mAbs can be used to separate or eliminate
contaminating or residual undifferentiated PSCs from the differentiated cell product. This step is
critical as undifferentiated PSCs can form teratomas in vivo. The mAbs generated against PSCs can
also be used in the field of oncology. Here, novel targets can be identified and the mAbs developed
as targeted therapy to kill the cancer cells. Conversely, as new and novel oncofetal biomarkers are
discovered on PSCs, cancer mAbs that are already approved by the FDA can be repurposed for
regenerative medicine, thus expediting the route to the clinics.
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1. Introduction

Pluripotent stem cells (PSCs) comprise both embryonic stem cells (ESCs) and induced pluripotent
stem cells (iPSCs) [1,2]. The former is derived from the inner cell mass of the blastocyst while the
latter is generated by reprogramming somatic cells through the introduction of pluripotent-inducing
transcription factors [3–6]. Both types of PSCs exhibit similar properties of self-renewal and the ability
to differentiate into cell types representing the three germ layers. Hence, PSCs are widely accepted as
an inexhaustible source of cells for various applications and are prominent in the area of regenerative
cell therapy. Many studies have investigated the differentiation of PSCs for the treatment of injuries
and degenerative diseases such as diabetes, spinal cord injury, muscular dystrophy, cardiac and liver
failure to list a few examples [7–12]. Studies have shown that PSCs can also be differentiated to innate
immune cells such as natural killer cells and T-cells for cancer therapies [13,14]. The field of PSCs is
advancing rapidly as evident from the significant increase of published research papers and the number
of clinical trials with PSC derivatives, especially for the treatment of macular degeneration [15,16].

To meet clinical standards and demands, the bioprocessing of PSCs is necessary and is analogous
to that of manufacturing a biologics drug. A typical bioprocess for cell therapy starts from the
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“raw material” of undifferentiated PSCs, expansion, differentiation, harvesting, isolation and validation
of final product prior to delivery to the clinics [17,18]. At every stage of the bioprocess, the cells have
to be checked for quality, and one way of carrying the quality checks is through the use of monoclonal
antibodies (mAbs). In addition, mAbs can also be used for isolation of the cellular products.

During the early stage of human ESC (hESC) research, the availability of biomarkers used
to characterize hESCs was limited. A list of these biomarkers used for PSCs is summarized by
Carpenter et al. [19]. Many of these biomarkers were originally discovered in other cell types such as
embryonal carcinoma (EC) or teratocarcinoma cells, affirming the presence of oncofetal antigens on
PSCs [20]. For example, the surface antigens (stage-specific embryonic antigen) SSEA-3 and SSEA-4,
together with TRA-1-60 and TRA-1-81 were found to be expressed on ECs [21–25]. Hence, various
groups proceeded to raise antibodies specific to surface biomarkers on hESCs with the primary objective
of characterizing and validating the PSCs and to use these mAbs to “clean up” the final cell product
for regenerative cell therapy. The conservation of some oncofetal antigens between embryonic cells
and cancer cells also provided an opportunity to discover novel mAbs to be used in the field of
targeted therapy for cancers. These mAbs can then be engineered to a variety of different formats to
target and kill cancer cells, e.g., naked mAbs (antibody-dependent cell-mediated cytotoxicity, ADCC,
or enhanced ADCC), antibody drug conjugate (ADC) or bispecific antibodies.

2. mAbs for Regenerative Cell Therapy

The mAbs that were originally raised against ECs or teratocarcinoma cells served well as
biomarkers for PSCs. However, groups continued to generate mAbs against hESCs with the objectives
of discovering novel biomarkers specific to PSCs and using these mAbs to characterize PSCs better.
To achieve this, PSCs were used as immunogens. It was not surprising to note that the antigen targets
of these mAbs can also be found on cancer, thus confirming the conservation of oncofetal targets
between PSCs and cancers. In this section, we will give a review of some mAbs that were raised using
PSCs as immunogens for the application in regenerative cell therapy.

Choi et al. raised a panel of 33 mAbs specific to undifferentiated hESCs using a modified
decoy immunization strategy, whereby mice were immunized with hESCs as the main immunogen
and differentiated hESCs (in the presence of retinoic acid) [26,27]. Characterization of one of the
mAbs identified the antigen target as CD9 [26]. They also identified two other mAbs that bind to
surface proteins on both hESCs and cancer cell lines, though the identities of the antigens were not
determined [27]. Independently, Son et al., using conventional hybridoma technology, raised a panel of
mAbs against hESC, of which two mAbs were shortlisted and characterized [28,29]. The first mAb, 4-63,
was found to bind to the antigen L1 cell adhesion molecule (L1CAM) on undifferentiated PSCs [28].
L1CAM was found to play an important role in self-renewal by activating fibroblast growth factor
receptor 1 signaling. The second mAb binds to desmoglein-2 (DSG2) on undifferentiated hESCs, and its
surface expression is rapidly downregulated upon differentiation [29]. Their studies further revealed
that DSG2 is essential to the self-renewal of PSCs and the acquisition of pluripotency during somatic cell
reprogramming by controlling β-catenin/slug-mediated epithelial mesenchymal transition. In another
study, a panel of mAbs to cell surface antigens on hESCs was also generated [30]. Characterization of
the mAb, 20-202S, showed that the antigen target was heat shock 70 kDa protein 8 isoform 1 (HSPA8),
which is downregulated upon differentiation. Additionally, HSPA8 protein belongs to the family
of heat shock protein 70, which is found in some cancers. Through western blotting, the mAb
20-202S was shown to bind to cancer cells (cholangiocarcinoma, sarcomatoid cholangiocarcinoma and
cervical cancer) that expressed this oncofetal antigen.

Our group has also generated panels of mAbs to hESCs [31–35]. Taking a whole cell immunization
approach, mAbs to podocalyxin-like protein 1 (PODXL), epithelial cell adhesion molecule (EpCAM),
annexin A2 and Erbb-2 were obtained. These mAbs bind to either protein targets or glycan
epitopes [36,37]. In addition to characterizing PSCs, we demonstrated the utilities of our mAbs
in both regenerative cell therapy and oncology. In regenerative cell therapy, the mAbs can be used to
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purify the final cell product by removing undifferentiated PSCs through cell separation methods and
cytotoxic mAbs specific to undifferentiated PSCs [31,32,36,38]. Some of the mAbs also bind to cancer
cells as a result of oncofetal antigen conservation and have been developed as targeted therapies to
treat cancers [34,35].

Besides their use to characterize PSCs, mAbs can also be used to separate undifferentiated cells
from the differentiated cell product, especially if the antigen is downregulated in the latter. One of
the safety concerns associated with the use of PSCs is the presence of residual undifferentiated PSCs
in the differentiated cell product. The contaminating undifferentiated PSCs can potentially form
teratomas in vivo [31,32,38–40]. Hentze et al. demonstrated that 245 undifferentiated hESCs were all
that was needed to form teratomas in SCID mice [41]. Fujikawa et al. showed that insulin-expressing
cells derived from ES cells, post-transplanted into SCID mice, were able to form teratomas in vivo
resulting in the failure of treatment for type I diabetes [42]. In another case study, researchers from
Israel reported that four years after a patient was given fetal neural stem cell transplants to treat ataxia
telangiectasia, the patient developed tumors in his brain and spinal cord. This case study highlights
the risk of teratoma or tumor formation not just from pluripotent stem cells but also from other sources
of stem cells (including fetal neural stem cells) and hence, poses a major stumbling block for cell-based
therapies [43,44].

In lieu of this safety concern, Kornelia et al. used mAbs that were raised against hESCs, coupled
with magnetic activated cell sorting (MACS), to separate cell mixtures of undifferentiated hESCs and
fibroblasts [38]. Validating the final separated product via phenotype (flow cytometry) and genomic
(quantitative reverse transcription polymerase chain reaction, RT-qPCR) analysis, they were able to
remove 97.2–99.7% of undifferentiated hESCs from the cell mixture. When the enriched fibroblast cells
(after the one-step MACS) were transplanted into severe combined immunodeficiency (SCID) mice,
8 out of the 9 mice did not develop teratomas while the teratoma formation in the last mouse was
significantly delayed. They further demonstrated that by selectively removing undifferentiated hESCs
using MACS followed by treatment with a cytotoxic antibody (mAb 84) specific to undifferentiated
hESCs, they were able to remove 99.1–100% of undifferentiated hESCs from the cell mixture [31,32,38].

The cytotoxic mAb specific to undifferentiated hESCs, mAb 84, that Kornelia et al. used is an IgM.
The antigen target of mAb 84 was found to be podocalyxin-like protein 1 (PODXL) [31]. The calculated
molecular weight of PODXL is 55 kDa but the apparent mass in non-ES cells is approximately 160 kDa
as the protein is highly glycosylated [45]. PODXL is reported to be a biomarker of hESCs, and a study
by Schopperle and DeWolf confirmed the presence of a stem cell PODXL with a molecular weight of
200 kDa [46,47]. mAb 84 kills PSCs rapidly via oncosis, by forming pores on the plasma membrane,
probably because of antigen aggregation by the IgM [32]. When hESCs were pre-treated with mAb 84
and injected into SCID mice, they were able to prevent the formation of teratomas even up to 20 weeks
and consequently, enhance the safety of PSC regenerative therapy.

Matsumoto et al. reported another cytotoxic mAb which was generated using iPSCs as the
immunogen [48]. The mAb, R-17F, is an IgG1 and was found to specifically bind to PSCs but not to ECs.
R-17F kills PSCs in a dose-dependent manner and its cytotoxicity was significantly enhanced through
hyper-crosslinking with a secondary antibody. Unlike mAb 84, R-17F does not bind to a glycoprotein
and its epitope was identified as the glycolipid lacto-N-fucopentose I (LNFP I).

Two other mAbs, A1 and mAb-A4, have been reported to kill undifferentiated PSCs and
bind to glycan epitopes [36,37]. mAb A1, is an IgG and the mechanism with which A1 kills
PSCs was also elucidated to be oncosis. Unlike the IgM mAb 84, oncosis by A1 is mediated
by excess reactive oxygen species production [36]. Another antibody, mAb-A4, an IgM, was
also found to kill PSCs rapidly [37]. Interestingly, both mAbs recognized glycan epitopes
expressed on multiple proteins. Via glycan inhibition assays, A1 was found to bind to glycans
containing the motif Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1. Using a combination of techniques and assays
(enzymatic digestion with glycosidases, glycan microarrays, siRNA and high sensitivity matrix-assisted
laser desorption/ionization mass spectrometry), the terminal epitopes of mAb-A4 were found to be
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type 1 LacNAc and H type 1 sugars. Tang et al. also reported of a mAb, SSEA-5, which binds to the
glycan H type 1 that is highly and specifically expressed in PSCs [49]. In their study, they showed that
a combination of SSEA-5 with two other pluripotent surface markers is sufficient to remove teratoma
formation potential of PSCs.

Recently, our group proposed a strategy to complement existing methods that eliminate
teratoma-forming cells in vitro [50]. Residual undifferentiated PSCs could possibly escape
in vitro removal methods and be introduced into patients together with the differentiated cells.
Here, we demonstrated that mAbs, which elicit antibody-dependent cell-mediated cytotoxicity (ADCC)
or as an antibody drug conjugate (ADC), can be included as an additional safeguard to eliminate these
“escaped” undifferentiated cells that are circulating in the body and consequently enhance the safety of
PSCs-derived cell therapies. As a proof of concept, mAb 2448, which targets annexin A2 on PSCs, was
able to eliminate hESCs in vivo via both ADCC and ADC mechanisms of action. Interestingly, the ADC
when administered at a site away from the cell transplant was still able to home towards the circulating
undifferentiated PSCs and prevent or delay teratoma formation.

Hence, in the process of raising antibodies to surface proteins of PSCs, novel biomarkers were
discovered and can be used to characterize the undifferentiated PSCs. Table 1 provides a summary of
the mAbs highlighted in this review section. These biomarkers can be either protein or glycan in nature.
In addition to using them to characterize PSCs, these mAbs can also be used in combination to separate
and ”clean up” the undifferentiated PSCs from final cell products, prevent teratoma formation in vivo
and consequently make PSC-derived regenerative cell therapies safer.

Table 1. Summary of mAbs generated against PSCs and used for regenerative cell therapy.

mAbs Immunogen Antigen Target Antigen Type 1 Cells that
mAbs Bind 1 Authors (References)

L125-C2 hESC CD9 Protein PSC Choi et al. [26]

63-B6 hESC ND 2 Protein PSC, EC,
Cancers Kim et al. [27]

246-D7 hESC ND 2 Protein PSC, EC,
Cancers Kim et al. [27]

4-63 hESC L1CAM Protein PSC Son et al. [28]

K6-1 hESC DSG2 Protein PSC Park et al. [29]

20-202S hESC HSPA8 Protein PSC, Cancers Son et al. [30]

mAb 84 hESC PODXL Glycoprotein PSC, EC
Choo. et al.
Tan et al.
[31,32]

R-17F iPSC Lacto-N-fucopentose I Glycolipid PSC Matsumoto. et al. [48]

A1 hESC Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1 Glycan PSC Zheng et al. (36)

mAb-A4 hESC Type 1 LacNAc
and H Type 1 Glycan PSC, Cancers Choo. et al. [37]

SSEA-5 hESC H Type 1 Glycan PSC Tang. et al. [49]

2448 hESC Annexin A2 Glycoprotein PSC, Cancers Tan et al. [50]
1 As reported by authors; 2 ND: Not determined; EC, embryonal carcinoma; PSCs include either human embryonic
stem cells (hESCs)/induced pluripotent stem cells (iPSCs) or both in this table.

3. mAbs for Oncology

From the list of mAbs in Table 1, it is evident that many of the antigen targets identified
on PSCs are also expressed on cancer cells [51–57]. This is not surprising as there are many
studies that support the conservation of antigens between embryonic cells and cancer cells [58–62].
Historically, fetal and embryonic materials have also been investigated and used as alternatives for
cancer treatment. Schöne found that immunization of mice with fetal material resulted in the rejection
of transplanted tumors. Fibiger and Moeller extended this study and showed that immunization of
fetal skin into mice prevented the growth and metastasis of coal tar-induced carcinoma [58]. In recent
studies, immunization of mice with either human fetal tissues or PSCs showed strong protection
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against cancer tumor establishment and proliferation [59,60]. Antigens associated with embryonic and
fetal development, which are also found in cancers, are classified as oncofetal antigens. For example,
the surface markers TRA-1-60 and the SSEA-3, originally raised against ECs, were also identified
in breast and prostate cancer subpopulations [61]. Some other common oncofetal antigens that are
used as biomarkers in oncology include cancer antigen 125 (CA125 or Mucin16) for ovarian cancer,
the sialylated Lewis A antigen CA19-9 for pancreatic cancer, α-fetoprotein (AFP) for hepatocellular
cancer and germ cell tumors and prostate-specific antigen (PSA) [62–64]. As described earlier, mAb 84
binds to PODXL on hESCs [31,32]. PODXL is reported to be expressed in multiple cancer types such
as breast, esophageal, colorectal cancers, lung and gastric adenocarcinoma, pancreatic and urothelial
bladder cancers [65–73]. Besides their applications in PSC-derived regenerative cell therapies, mAbs
against PSCs also provide the opportunity to discover novel mAbs and new biomarkers against cancers.
For example, Kim et al., Son et al. and Choo et al. (Table 1) reported that their mAbs raised against
hESCs also bind to cancer cells [27,30,37].

When mAbs bind to the targeted cancer cells, they are able to kill the cells through various
mechanisms of action (MOAs). The Fc-region of antibodies plays an important role in the activation of
immune cells and the killing of targeted cells via ADCC and also in mediating cell killing through
complement-mediated cytotoxicity (CDC) [74–78]. Antibodies can also cause vascular and stromal cell
ablation, affecting cancer cell proliferation. Alternatively, antibodies can neutralize or block the binding
of growth factors to the respective receptors and consequently inhibit cell proliferation [74–77]. They can
also mediate direct cell killing by the activation of apoptotic pathways or via oncosis [75,76,78–81].
Antibodies can also internalize into the targeted cells and deliver payloads, such as drugs, cytotoxic or
radiation agents, to directly kill the cancer cells [74–76,78]. Hence, oncofetal antigens are promising
targets for antibody-based therapies against cancers. In this section, we will highlight some mAbs that
were generated against hESCs. These hESC mAbs also bound to various cancers, and some were able
to kill the cancer cells via various MOAs and cause tumor regression in vivo.

Ng et al. reported a mAb raised against hESCs [33]. Through immuno-precipitation and
mass spectrometry, the antigen target of this mAb (mAb 8) was found to be epithelial cell adhesion
molecule (EpCAM). This biomarker is shown to be a surface marker on undifferentiated hESCs
and the expression of EpCAM is downregulated upon differentiation. Knockdown and silencing of
EpCAM via small interfering ribonucleic acid (siRNA) and short hair RNA (shRNA) had a marginal
effect on the expression of other pluripotent markers (OCT-4, TRA-1-60 and NANOG) in hESCs but
decreased the proliferation of hESCs significantly. Interestingly, teratoma formation was comparable
between the EpCAM shRNA cells and control. However, through gene expression analysis of the
teratomas, the EpCAM shRNA samples demonstrated the greatest significant increase in the endoderm
marker AFP. EpCAM is reported to be highly expressed in epithelial carcinomas and also expressed
in numerous cancers such as ovarian, breast, colorectal adenocarcinomas and gastric cancers [82–88].
This is consistent with our observation that mAb 8 also binds to various cancer cell lines, including
breast and ovarian cancers.

Another hESC mAb, 2448, binds to annexin A2 on hESCs and on cancer cells [34,50]. Cua et al.
showed that the mAb binds to glycans on annexin A2, which confers the mAb a unique property.
The mAb binds specifically to cancer cells with epithelial phenotype. Upon binding to ovarian and
breast cancer cells, 2448 is able to internalize into the cells and when developed as an ADC, the mAb
was able to kill the cancer cells in vitro. The mAb was also chimerized from a mouse IgG with a human
IgG1 backbone. The chimerized 2448 was able to elicit ADCC in vitro, and further engineering of the
chimeric mAb to remove fucose in the Fc domain enhanced the ADCC more than 20-fold. in vivo,
the chimerized mAb was able to home in to the tumors and cause tumor regression in ovarian xenograft
models [34].

In a study by Tan et al., the mAb, A19, bound to breast and ovarian cancer cells [35]. The antigen
target of A19 was identified as Erbb-2. Errb-2 is highly expressed on hESCs and many cancers and
plays an important role in cell proliferation [89,90]. This antigen serves as a good target for Herceptin,
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which is the gold standard for targeted therapy in the clinics to treat HER2 positive breast cancers
and gastric cancers [91–93]. Tan et al. also demonstrated that the epitope of the A19 is N-glycan on
the protein and binds to isoforms different to Herceptin [35]. Unlike 2448, the chimeric A19 does not
elicit ADCC but, when developed as an ADC, was able to kill the cancer cells in vitro. In xenograft
models, under sub-optimal conditions, the ADC was able to reduce the volume of the tumors by 60%
compared to the controls.

The conservation of oncofetal targets (proteins or glycans) enabled mAbs that were originally
generated against PSCs to be repurposed for targeted therapy in cancers (Table 2). mAbs have been
a success as targeted therapies in the clinics and are able to elicit various MOAs to kill cancer cells.
However, a major challenge is finding new biomarkers to target the cancer cells. Furthermore, many
oncology mAbs are raised towards a specific disease indication. Hence, anti-PSC mAbs provide
the opportunities for discovery of new biomarkers in a non-biased manner, and these mAbs can be
repurposed for oncology.

Table 2. Summary of mAbs generated against PSCs and used in oncology.

mAbs Immunogen Antigen
Target Antigen Type 1 Cells that

mAbs Bind 1
Mechanism of
Action (MOA)

Authors
(References)

mAb 8 hESC EpCAM Protein PSC, Cancers No MOA Ng et al. [33]

2448 hESC Annexin A2 Glycoprotein PSC, Cancers Internalization
(ADC), ADCC Cua et al. [34]

A19 hESC Erbb-2 Glycoprotein PSC, Cancers Internalization
(ADC) Tan et al. [35]

1 As reported by authors; PSCs include either hESCs/iPSCs or both in this table; ADC, antibody drug conjugate;
ADCC, antibody-dependent cell-mediated cytotoxicity; EPCAM, epithelial cell adhesion molecule.

4. Discussion

In this review, we summarized some mAbs that were generated following mice immunization
with PSCs. Subsequently, these mAbs were also found to bind cancer cells due to the conservation of
oncofetal targets between embryonic and cancer cells. These studies also provided the opportunities
for the identification of novel conserved antigens, and interestingly, the majority of the antigen targets,
which are expressed on both PSCs and cancer cells, are glycoproteins.

It is to be noted that the expression of oncofetal antigens is not limited to PSCs. Studies have also
shown that these antigens can also be expressed on fetal cells, which may also be used as immunogens
to raise mAbs against cancers [94]. At the same time, some of these oncofetal antigens are biomarkers in
both cancers and differentiated PSCs. For example, α-fetoprotein (AFP) and carcinoembryonic antigen
(CEA) are expressed in cancers but also upregulated in PSC-derived hepatocytes and dendritic cells,
respectively [95–102]. However, a distinguishing feature of cancer cells/PSCs from normal/differentiated
cells could be the post-translational modifications (e.g., glycans) of these antigens, which serve as
an additional layer of resolution between the cell types and cell stages [103,104]. An example of this was
reported previously by Schopperle and DeWolf [47]. They identified the presence of a stem-cell-specific
PODXL on PSCs, which was different from non-ES cells due to differences in the glycan profile [47].

In this review, we focus on mAbs raised against PSCs. This duality in binding enables the mAbs
to be used for both stem cell and cancer cell applications. In regenerative cell therapy, the mAbs
can be used to characterize the PSCs. The mAbs can also be used for cell separation and to remove
contaminating or residual undifferentiated PSCs from the final differentiated cell product. This step
is critical in making PSC regenerative therapy safer as undifferentiated PSCs can form teratomas
in vivo. Due to the conservation of oncofetal targets between embryonic and cancer cells, many of
the mAbs against PSCs bind to cancer cells. For oncology applications, these mAbs can then be
engineered to a variety of different formats to target and kill cancer cells, e.g., naked mAbs (ADCC or
enhanced ADCC), ADC or bispecific antibodies.
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The biomarkers identified in Tables 1 and 2 reinforce the concept of oncofetal antigen conservation
between embryonic stem cells and cancer cells. As mentioned, oncology mAbs are usually raised
towards specific disease indications. PSCs can be used as unbiased sources to generate mAbs for
oncology applications and treating various types of cancers. Conversely, there are reports of mAbs
that are used as targeted therapy to treat cancers and have been found to bind to undifferentiated PSCs.
Sougawa et al. demonstrated that the FDA-approved ADC, brentuximab vedontin, is able to eliminate
undifferentiated CD30-positive human induced pluripotent stem cells (hiPSCs) during cardiomyocyte
differentiation and prevent teratoma formation [105].

In conclusion, mAbs against PSCs have dual use in the fields of regenerative medicine and targeted
therapy for oncology. The many FDA-approved mAbs, which were developed for cancer therapies,
can also be explored and used to characterize PSCs, thereby making regenerative therapies safer and
expediting the development route of these mAbs to the clinics.
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