Supplementary material

Title

Adaptive laboratory evolution of *Cupriavidus necator* H16 for carbon coutilization with glycerol

Short title

Glycerol and gluconate co-utilization in C. necator H16

Miriam González-Villanueva¹, Hemanshi Galaiya¹, Paul Staniland², Jessica Staniland², Ian Savill², Tuck Seng Wong^{1,3*}, Kang Lan Tee^{1*}

¹Department of Chemical & Biological Engineering and Advanced Biomanufacturing Centre, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, United Kingdom. ²Croda Europe Ltd, Oak Road, Clough Road, Hull HU6 7PH, United Kingdom. ³National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand.

*Address correspondence to:

Dr. Kang Lan Tee Email: <u>k.tee@sheffield.ac.uk</u> Tel: +44 (0)114 222 7507 Fax: +44 (0)114 222 7501

Or

Dr. Tuck Seng Wong Email: <u>t.wong@sheffield.ac.uk</u> Tel: +44 (0)114 222 7591 Fax: +44 (0)114 222 7501

1 A. Materials and Methods

2 Protein model of GlpK

Protein model of GlpK from *C. necator* H16 and v6C6 variant were generated
using SWISS-MODEL [37], with GlpK_{Ec} from *E. coli* (PDB code 1BOT) as a
template protein. Graphics were generated using PyMOL (The PyMOL
Molecular Graphics System, Version 2.0 Schrödinger, LLC).

7

8 Fluorescence microscopy of Nile red-stained PHB

9 Samples of *C. necator* H16 and v6C6 variant cultivated to early-stationary phase in sodium gluconate or glycerol under nitrogen-limiting conditions were 10 11 used. Samples were adjusted to an OD₆₀₀ of 7.0 before 200 µL-cell aliquots 12 were centrifuged and spent media removed. The cell pellets were resuspended in 200 μ L of 50% (v/v) ethanol before mixing with an equal volume 13 of Nile red (10 µg/mL). Samples were incubated in the dark for 10 min. Cells 14 15 were centrifuged and supernatant removed. The cell pellets were then resuspended in 50 µL of PBS buffer and used for fluorescence microscopy. 16 Microscope used was RX30F (Brunel Microscope Ltd, Chippenham, UK) and 17 18 cells were visualized using filter G-1 (Ex 560 nm | Em 645 nm).

B. Tables and Figures

Table S1: Comparison of $P_{j5[A1A3C2]}$ and $P_{j5[C2]}$ promoter sequences. The red boxes highlight the differences between the 2 promoters.

Promoter	Sequence (5' to 3')		
P _{<i>j</i>5[C2]}	${\tt agcggatataaaaaccgttattgacacaggtggaaatttagaatatactgttagta}$		
	aacctaatggatcgaccttagatcttttaagaaggagatatacat		
P _{j5[A1A3C2]}	agcggatataaaaaccgttattgacacaggtggaaatttagaatatac <mark>g</mark> gttagta		
	aacctaatggatcgacctagatcttttaagaaggagatatacat		

Table S2: Sequence identity between potential glycerol metabolism enzymes

Gene ID	Original annotation	ldentity to <i>E. coli</i> protein (% / overlap)		
H16_A2507	Glycerol kinase	GlpK _{Ec} (52 % / 501 aa)		
H16_A2508	Glycerol-3-phosphate	GlpD _{Ec} (29 % / 460 aa)		
	denydrogenase			
H16_B1198	FAD-dependent glycerol-3-	GlpD _{Ec} (27 % / 464 aa)		
	phosphate dehydrogenase	GlpA _{Ec} (30 % / 395 aa)		
H16_B1199	Glycerol kinase	GlpK _{Ec} (28 % / 507 aa)		
Adapted from Fulky at al [26]				

in *C. necator* H16 and GlpK_{Ec} and GlpD_{Ec} in *Escherichia coli*.

Adapted from Fukui et al. [25].

 Table S3: All primers used in this work.

Name	Sequence (5' to 3')	Purpose
vReH16-glpK-F	attcgcgcaccagcgtcgccagcggatc	Amplify H16_A2507 with its 500-bp upstream element Amplify H16_A2507
vReH16-glpK-R	gccgccgccgatgacgatcacatcc	with its 500-bp upstream element
Ndel-H16_A0689-F Xhol-H16_A0689-R Ndel-H16_A1373-F Xhol-H16_A1373-R	ggaattccatatgaaaagcaccgcccgatccctg aacgctcgagtttcaggccactgccgcctg ggaattccatatgccgtttttcgaccgac aacgctcgagttattaatgctcggccagc	Amplify H16_A0689 Amplify H16_A0689 Amplify H16_A1373 Amplify H16_A1373
Ndel-glpk-F	ggaattccatatgaaccagccagcc	Amplify H16_A2507 and <i>dlpKD</i> H16
Xhol-H16-A2507-R Ndel-H16_A3075-F Xhol-H16_A3075-R BW25113_glpk-F BW25113_glpk-R Ndel-glpD-f Xhol-glpD-R	aacgctcgagttatcaggcgtggctgccgctg ggaaggccatatggtgaaacagttcgacctg aacgctcgagttatcacaggctgccgcc gctccatatgactgaaaaaaaatatatcg tataatcctcgagttattcgtcgtgttc ggaattcatatgcagagagtctcc ttaactcgagttatcagccgagcatgta	Amplify H16_A2507 Amplify H16_A3075 Amplify H16_A3075 Amplify H16_A3075 Amplify $glpK_{Ec}$ Amplify $glpK_{Ec}$ Amplify $glpD_{H16}$ Amplify $glpD_{H16}$
RBS-glpD-F	agatcttttaagaaggagatatacatatgcagagagtctc	Amplify $glpKD_{H16}$ with a synthetic rbs added Vector amplification for
Hifi-F	tacatgctcggctgataactcgagtaaggat	cloning $glpKD_{H16}$ with synthetic rbs
Hifi-R	cttcttaaaagatcttcaggcgtggctgcc	cloning $glpKD_{H16}$ with synthetic rbs

Figure S1: Standard curve of Nile red assay for PHB quantification.

Figure S2: Fluorescence microscopy of Nile red-stained PHB granules. (**a**) *C. necator* H16 cultivated in gluconate under nitrogen-limiting condition (bright field/red channel). (**b**) *C. necator* H16 cultivated in glycerol under nitrogen-

limiting condition (bright field/red channel). (**c**) v6C6 variant cultivated in gluconate under nitrogen-limiting condition (bright field/red channel). (**d**) v6C6 variant cultivated in glycerol under nitrogen-limiting condition (bright field/red channel).

W480				
GlpK _{H16}	475	EIAQQWQVERRFEPnLSADARGHRLARWHRAVD	507	
1GLF Y	459	ELQEKAVIEREFRPgIETTERNYRYAGWKKAVK	491	
1BWF Y	459	ELQEKAVIEREFRPgIETTERNYRYAGWKKAVK	491	
1GLD_G	459	ELQEKAVIEREFRPgIETTERNYRYAGWKKAVK	491	
1BO5_0	459	ELQEKAVIEREFRPgIETTERNYRYAGWKKAVK	491	
2ZF5_0	450	EIAELWKAERIFEPkMDEKTRERLYKGWKEAVK	482	
gi 24636875	458	EIKQKWVLDKEFTPnMPKEERDKKYAGWLKAVE	490	
<u>gi 219676384</u>	459	EIKRIWQPEREFSVgMSAAARRRRMQSWQAAVD	491	
gi 10954725	459	TFAANWKAKRSFTPnLNTDERARRYRKWRAAVA	491	
gi 162455899	483	DAARMSRVGQSFQVeMSEAARSAHLHRWADAVA	515	
gi 166232274	458	VIAKMPVEQKRFEPrMGSAEALALRHQWEKALS	490	
gi 171911423	459	EISTQWQVERTFEPkMPKARVQELRSRWNQALG	491	
gi 33866485	462	IAAHRQDDVQRFEPqINTERRRLQRDRWNDAVN	494	
gi 6685462	457	EIVSLWQVDKIFEPsMPKNQKEKLLENWNKAVG	489	
gi 225026325	456	EIKELWEADRVFEPqMDEETRENLYAQWCKAVE	488	
gi 221126353	460	ELTDLWKAERRFLPtLPPARAKELMERWEHAVR	492	
gi 94495920	453	DAAAAMPIRQRFKPrMTAPTRAARLGNWNDILR	485	
gi 46576631	456	ELRSIWKVDKEFIPsMSEEKRRALYSGWKEAVK	488	
gi 166990495	460	ELKEQWCLDKVFNPqMKEDTARKLLNEWHKAVG	492	
gi 68052088	469	ELRDNWQVDEEFSPeMDAGKADKMYARWDDAVD	501	

Figure S3: Conserved Domain Search [29] of *C. necator* H16 GlpK_{H16}. Figure shows multiple sequence alignment of GlpK_{H16} against related proteins from a variety of organisms and the protein sequences used to curate the domain model. Sequence alignment is shown using colour bits 3.5 for the amino acids, where red indicates highly conserved and blue indicates less conserved.

Figure S4: Protein models of *C. necator* H16 GlpK (gene locus: H16_A2507). (**a** & **c**) GlpK wild type with Trp480 highlighted in blue. (**b** & **d**) GlpK W480S mutant with Ser480 highlighted in blue.

Figure S5: Growth curve of *C. necator* H16 wild type (red line), variant v6C6 (blue line) and wild type transformed with plasmids expressing mutated genes $(A0689_{v6C6}, A1373_{v6C6}, glpK_{v6C6} \text{ and } A3075_{v6C6})$ identified in variants v6C6. Cells were cultivated in MSM with 1% (w/v) glycerol and inoculated to a starting OD₆₀₀ of 0.05.

Figure S6: Two pairs of putative glycerol metabolism genes (glycerol kinase and glycerol-3-phosphate dehydrogenase) in *C. necator* H16. The first pair (**a**) has the gene loci of H16_A2507 and H16_A2508 and the second pair (**b**) H16_B1198 and H16_B1199. Genes encoding glycerol kinase are boxed in red.

Figure S7: Confirmation of improved glycerol-utilizing phenotype. Cells were grown in synthetic media [1.0 % (w/v) sodium gluconate] or nutrient broth (NB) for 5 rounds of cultivation; on the sixth round, cells were transferred to 0.5 % (w/v) glycerol to confirm stable glycerol-utilizing phenotype of *C. necator* H16.