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Abstract: Meloidogyne incognita is a root knot nematode (RKN) species which is among the most
notoriously unmanageable crop pests with a wide host range. It inhabits plants and induces unique
feeding site structures within host roots, known as giant cells (GCs). The cell walls of the GCs undergo
the process of both thickening and loosening to allow expansion and finally support nutrient uptake
by the nematode. In this study, a comparative in situ analysis of cell wall polysaccharides in the GCs
of wild-type Col-0 and the microtubule-defective fra2 katanin mutant, both infected with M. incognita
has been carried out. The fra2 mutant had an increased infection rate. Moreover, fra2 roots exhibited a
differential pectin and hemicellulose distribution when compared to Col-0 probably mirroring the fra2
root developmental defects. Features of fra2 GC walls include the presence of high-esterified pectic
homogalacturonan and pectic arabinan, possibly to compensate for the reduced levels of callose,
which was omnipresent in GCs of Col-0. Katanin severing of microtubules seems important in plant
defense against M. incognita, with the nematode, however, to be nonchalant about this “katanin
deficiency” and eventually induce the necessary GC cell wall modifications to establish a feeding site.
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1. Introduction

Root-knot nematodes (RKN; Meloidogyne spp.) are obligatory parasites that inhabit plant roots,
nursing from specially modified host cells to complete their life cycle [1]. Of major interest is the
Meloidogyne incognita species that infests crops of high economic interest, causing worldwide agricultural
yield production reduction [2–4]. M. incognita stage 2 juveniles (J2) enter the host plant close to the
root tip; they migrate towards the elongation zone anchor to the root central cylinder, become
sedentary and after bypassing host defenses, establish a feeding site [5]. Nematode signals direct
root cylinder parenchyma cells to differentiate into multinucleate and metabolically active giant cells
(GCs) that resemble transfer cells [1], allowing M. incognita to withdraw nutrients from the plants’
conducting tissues. During root invasion, M. incognita juveniles express numerous genes encoding cell
wall-degrading enzymes and virulence effectors to enter, migrate into roots, establish feeding site and
eventually induce GC formation [6,7]. At the end, the feeding site consists of several GCs enclosed in a
macroscopically visible gall, a typical characteristic of RKN infestation. The second stage juveniles
after entering the root, hatch to pass through several developmental stages (J3, J4) and finally reach to
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a stage of a female able to lay many eggs inside an egg sack [8]. The male leaves the root and does not
harm host plants [9].

During M. incognita invasion the plant defense mechanisms are activated [10]. The plant cell wall
plays a fundamental role in this process [11,12]. Plant cell walls differentiate from the primary walls of
growing cells to the secondary walls, deposited after the end of cell expansion, which gradually thicken.
Primary and secondary cell walls basically consist of cellulose, matrix polysaccharides and structural
proteins, while in some cases secondary cell walls are lignified [13]. Matrix polysaccharides which
coexist with cellulose microfibrils, are combinations of xyloglucans, hetero- xylans, heteromannans
and the pectin groups of homogalacturonans (HGs) and rhamno- galacturonans [14]. Moreover,
glycoproteins such as extensins and arabinogalactan-proteins (AGPs), take part in the structure and
signaling properties of plant cell wall [15].

The cell walls of GCs induced by RKN undergo the process of both thickening and loosening
to allow expansion and finally support nutrient uptake by the nematode [1,16]. In another plant
parasitic nematode, namely the cyst nematode of the genus Heterodera spp., syncytia cells were
induced, with profuse highly methyl-esterified HGs (MPHGs), xyloglucans and arabinans, to furnish
the necessary flexibility to the structure for growth and preservation of turgor pressure of the
syncytia [17].The highly-MPHGs, xyloglucans and arabinans are important components of M. incognita
nematode-induced feeding giant cell cell walls, as well and also facilitate nourishment absorption [11,17].
The abundance of HGs may also be related to an increased requirement for flexibility of the giant cell
walls [11]. As it has also been observed in guard cell walls, the increased presence of HGs in their cell
walls helps to maintain their flexibility during changes in cell volume and shape [18].

Judging from the above, one can easily assume that cell wall defects could influence the RKN
infection. Efforts towards this notion have already being made and a wide range of Arabidopsis thaliana
mutants compromised in specific cell wall components were used [11]. Pectic HG-, manann-, arabinan-,
arabinogalactan- and β-galactosidase-related mutants in particular were used to explore the impact
of these mutations on M. incognita infection [11]. Along with the pre-mentioned proteins and matrix
polysaccharides, cellulose microfibrils are critical for all aspects of plant morphogenesis [19], and
would be interesting to investigate whether any deficiency in cellulose could affect RKN infection rates.
In this context, katanin mutations (fra2, lue1, bot1, erh3, ktn1) cause a dramatic reduction in cell length
and an increase in cell width [20]. This altered cellular morphology is a result of altered cellulose
microfibril deposition caused by aberrant microtubule (MT) patterning, finally leading to a reduced
amount of cellulose [21].

In particular, the fra2 katanin mutant, has a point mutation (in the seventh exon, the A at nucleotide
residue 2329 was deleted, resulting in a frameshift of the coding sequence, which caused the appearance
of a premature stop codon) at the AtKSS gene which encodes the p60 subunit of katanin, a MT severing
protein [22]. The mutant displays a semi-dwarf phenotype, and all its organs are shorter than those of
the wild type. These morphological deficiencies of fra2, especially in axial organs, were attributed to
the failure of cortical MTs to achieve a uniform transverse orientation in elongating cells [22]. This,
in turn, results to a rather isotropic cell growth, responsible for the characteristic phenotype of the
above mutant [20,23]. Moreover, in fra2 it was shown that the amount of cellulose and hemicelluloses
are reduced, and the concentration of lignin is increased in total cell wall extracts of the stems [22].
The reduced synthesis of cell wall components apparently occurs in both primary and secondary walls,
as revealed by transmission electron microscopy [21]. So fra2 are stubby-looking plants which display
fragility of all of their organs and particularly of the stems. [20,22,23].

According to the above, the objective of this work was to compare in situ for the first time the
cell wall polysaccharides in the giant cells of both wild-type (Col-0) and the fra2 katanin mutant, both
infected with M. incognita. An effort was made in order to understand in detail the structure of the cell
walls of giant cells formed 21 days post-infection (21 dpi) with M. incognita. Also the role of the altered
MT network and the fragility of the fra2 mutant was investigated. A set of monoclonal antibodies was
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used to locate the major wall components in giant cells induced by RKN. The role of fra2 mutation in
GCs cell wall modifications and in nematode infection is discussed.

2. Results

2.1. Cell Wall Hemicellulose and Pectin Epitope Analysis of Uninfected Roots

Toluidine blue staining further confirmed the already observed [24] differences of fra2 and wild
type root anatomical features. Generally, the primary A. thaliana root anatomy is similar to fra2 and
Col-0 roots (Figure 1) as it has been already reported [22]. Cell division zone of fra2 roots is shorter than
that of the wild type. Furthermore, due to an increase in cell width, an overall increase in root diameter
could be observed (Figure 1B cf. Figure 1A). The mean diameter of Col-0 roots was 81.5 ± 0.9 µm,
while mean root diameter of fra2 plants was 146.3 ± 0.5 µm (± standard error; n = 10). All epitopes
analyzed were present in the uninfected roots. Cellulose staining (calcofluor-white staining) was more
intense in fra2 (Figure 1D cf. Figure 1C).
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Scale bar: 40 μm (A,B), 20 μm (C,D). 

However, some epitopes displayed different distribution patterns between Col-0 and fra2 
plants. In particular, callose staining (aniline blue) was more intense in fra2 (Figure 2B), while in 
wild-type plants callose signal was strong in the xylem elements (Figure 2A). The xyloglucans 
epitope recognized by LM25 had a more expanded cortex cell distribution in fra2, in contrast to the 
vascular cylinder cell distribution pattern of it in the Col-0 plants (Figure 2D; cf. 2C).  

Figure 1. Comparative anatomy of Col-0 (A,C) and fra2 (B,D) uninfected primary root transverse
sections. Transverse sections either toluidine blue (A,B) or calcofluor-white stained (C,D) are depicted.
Rhiz, rhizodermis; co, cortical cells; phy, phloem; xy, xylem elements; end, endodermis. Scale bar:
40µm (A,B), 20 µm (C,D).

However, some epitopes displayed different distribution patterns between Col-0 and fra2 plants.
In particular, callose staining (aniline blue) was more intense in fra2 (Figure 2B), while in wild-type
plants callose signal was strong in the xylem elements (Figure 2A). The xyloglucans epitope recognized
by LM25 had a more expanded cortex cell distribution in fra2, in contrast to the vascular cylinder cell
distribution pattern of it in the Col-0 plants (Figure 2D cf. Figure 2C).
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uninfected Col-0 and fra2 root sections. The demethylesterified HG (DeSPHG) epitope recognized by 
JIM5 did not seem to differ between Col-0 and fra2 (Figure 3A; cf. 3B). Highly MHGs recognized by 
LM20 were present only in the vascular cylinder of the Col-0 while in the fra2 root sections their 
distribution expanded also to the cortex cells (Figure 3C; cf. 3D). Arabinan epitopes (LM6) had a 
more expanded distribution in wild-type roots, found in all of the root tissues, while in fra2 their 
distribution was mostly restricted to the vascular cylinder (Figure 3E; cf. 3F). 

Figure 2. Hemicellulose distribution: Callose (A,B) staining and xyloglucans (C,D) immunolabelling
in Col-0 (A,C) and fra2 (B,D) uninfected primary root transverse sections. Aniline blue staining is
stronger on the fra2 root section (B) when compared to the Col-0 section, where it was restricted to
the xylem elements (A). The LM25 antibody was used to localize xyloglucan. In the Col-0 root its
signal was restricted to the vascular cylinder (C); while in fra2 root section it had a broader distribution,
occupying all the root tissues (C cf. D). Xy, xylem elements. Scale bar: 40µm (A–D).

Pectic polysaccharide and arabinogalactan-protein epitopes also had a different distribution in
uninfected Col-0 and fra2 root sections. The demethylesterified HG (DeSPHG) epitope recognized by
JIM5 did not seem to differ between Col-0 and fra2 (Figure 3A cf. Figure 3B). Highly MHGs recognized
by LM20 were present only in the vascular cylinder of the Col-0 while in the fra2 root sections their
distribution expanded also to the cortex cells (Figure 3C cf. Figure 3D). Arabinan epitopes (LM6) had
a more expanded distribution in wild-type roots, found in all of the root tissues, while in fra2 their
distribution was mostly restricted to the vascular cylinder (Figure 3E cf. Figure 3F).
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observation of anatomical features, confirming that M. incognita induced the formation of giant cells 
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Figure 3. Pectin immunolabelling in Col-0 (A,C,E) and fra2 (B,D,F) uninfected primary root transverse
sections. DeSPHG localized by the JIM5 antibody did not seem to differ between Col-0 and fra2 roots
(B cf. A). Methyl-esterified MPHGs localized by the LM20 antibody had a boarder distribution in
the fra2 roots compared to Col-0 (D cf. C). Arabinan localized epitopes (LM6) were restricted, to the
vascular cylinder, signal in fra2 roots (E) but more broadly distributed in Col-0 roots (F). Xy, xylem
elements; rh, roothair. Scale bars: (A,B) 40µm, (C,E) 40 µm, (D,F) 40 µm.

2.2. Hemicellulose and Pectin Distribution Patterns of Giant Cell Walls of Col-0 and fra2 Roots

Transverse sections of Col-0 and fra2 root knots 21 days post-infection with M. incognita (Figures 4–6)
were prepared for cell wall matrix polysaccharide immunodetection and comparative analysis.
Calcofluor-white (Figure 4A,B) and toluidine blue staining (Figure 4C–F) allowed the observation of
anatomical features, confirming that M. incognita induced the formation of giant cells (GCs) in both
Col-0 and fra2 roots. However, it seemed that the GCs formed in fra2 were fewer compared to those
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formed in Col-0 (Figure 4D cf. Figure 4C), a trend visible in all gall cross sections. The GCs located in
the vascular cylinder bared numerous nuclei, were highly vacuolated and appeared to be of similar
morphology in both Col-0 and fra2 plants (Figure 4E cf. Figure 4F).
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Figure 4. Comparative anatomy of root-knots of Col-0 (A,C) and fra2 (B,D) 21 dpi by M. incognita,
and nematode-induced giant cells (E,F). Transverse sections either calcofluor-white- (A,B) or toluidine
blue-stained (C,D) are depicted. Asterisks indicate nematode-induced giant cells; N, indicates female
M. incognita; co, cortical cells; xy, xylem vessels; rhiz, rhizodermis. Scale bars: (A,B) 40µm, (C,D) 40 µm,
(E,F) 40 µm.
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Figure 5. Hemicellulose distribution: Callose (A–D) and xyloglucans (E,F) detection 21 days
post-infection (dpi) M. incognita induced galls of Col-0 (A,C,E) and fra2 (B,D,F). Aniline blue staining
(A,B), callose (C,D) and xyloglucans immunolabelling. Aniline blue staining (A) is more intense in the
giant cells of Col-0 roots compared to fra2 (B). Immunolabellling with anti-β-1,3-glucan follows the
same pattern as that of aniline blue staining (D cf. C); inset in D: toluidine staining of panel D, note that
the nematode is more intensively stained than the root tissues. The LM25 antibody was used to localize
xyloglucans and showed a slightly increased signal in Col-0 contrast to fra2 (F cf. E). Asterisks indicate
giant cells in the nematode feeding site; N, nematode (M. incognita female). Scale bars: (A–F) 40 µm,
(inset in D), 40 µm.
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all epitopes present in GCs.  

Figure 6. Pectin immunolabelling 21 dpi M. incognita induced galls of Col-0 (A,C,E) and fra2 (B,D,F).
DeSPHG localized by the JIM5 antibody did not seem to differ between Col-0 and fra2 nematode-induced
giant cells (B cf. A). MPHG recognized by the LM20 antibody were intensified in the fra2 giant cell
walls compared to Col-0 (D cf. C). Arabinan localized epitopes (LM6) had a weak signal in Col-0
roots (E) and a more intense signal in fra2 root knots (F). Asterisks indicate giant cells in the nematode
feeding site; N, nematode (M. incognita female). Scale bar: (A–F) 40µm.

Callose was omnipresent in the GC cell walls of the Col-0 plants (Figure 5A,C) contrary to the GC
cell walls of fra2, which lacked callose signal (Figure 5B,D) as revealed by both aniline blue staining
and anti-β-1,3-glucan localization. On the other hand, no significant differences in the distribution
pattern of the LM25 bound epitope were observed (Figure 5E,F).

MPHGs signal was more intense in the GC cell walls of fra2 compared to the wild type (Figure 6D),
while DeSPHG signal did not seem to differ among the roots of Col-0 and fra2 (Figure 6B cf. Figure 6A).
LM6 recognized epitopes were omnipresent in fra2 nemadote-infected roots (Figure 6F) while a weak



Int. J. Mol. Sci. 2019, 20, 5465 9 of 17

signal was observed in the corresponding infected Col-0 roots (Figure 6E). Table 1 summarizes all
epitopes present in GCs.

Table 1. Overview of the studied cell wall components present in GC cell walls.

Cell Wall Components A. thaliana

Col-0 GCs fra2 GCs

Hemicelluloses Xyloglucans +/+ +/+
Callose +/+ −

Pectins
MPHG +/− +/+

DeSPHG +/+ +/+
Arabinan +/− +/+

−: weak presence; +/−: intermediate presence; +/+: strong presence.

2.3. The Impact of Katanin Mutation on the Infection of A.thaliana by M. incognita

The total nematode burden between Col-0 and fra2 expressed as female number/dry root weight
(mg) significantly differed (p < 0.05). Root of fra2 seemed to bear more nematodes per mg of their
dry root weight compared to Col-0 (Figure 7) indicating that root invasion success was higher in
fra2 mutants.
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Figure 7. Total nematode burden in Col-0 and fra2 expressed as female number/dry root weight (mg).
Error bars represent standard error of a mean. For nematode counting, n = 10 root systems from
plants harvested on two separate occasions were used. Different letters indicate statistically significant
difference (p < 0.01).

3. Discussion

The fragile fiber 2 (fra2) mutant, as its name states, displays increased fragility in all the plant organs
and particularly in the stems [22]. The reduced cellulose content and the altered lignin deposition,
leads to shorter and thinner fibers and to lower mechanical resistance [22]. In the present study, we
additionally observed that hemicellulose and pectin cell wall components have a different deposition
pattern in the fra2 mutant root compared to Col-0 (Figures 2 and 3). Xyloglucans (Figure 2) but also
MPHGs, DeSPHG and arabinans (Figure 3) had a differential distribution between Col-0 and fra2.

Generally it was reported that the fra2 root cell division zone is shorter than that of Col-0 [24].
This difference was not the outcome of a decrease in cell divisions rate, but was due to the distorted
shape of the root cells of the mutant. The root cells at the division zone of the mutant are unable to
elongate, contrary to those of the wild type, a fact that can be seen by checking the height/width ratio
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of the protodermal root cells. So, the failure of MT alignment in fra2 results in a dwarf root phenotype
and due to the cell width increase, an increase in root diameter was observed [24]. Although cell
shape is definitely controlled by MTs arrangement, there is evidence on the participation of the cell
wall matrix materials in the morphogenesis of various cell types [25,26]. There is strong evidence of
interplay between MTs and various cell wall components [25]. MTs that cannot be correctly aligned
may have an impact on the differential cell wall component organization, but also the establishment of
a specific cell wall micro domain can possibly affect MT arrangement, indicating the tight connection
between MTs and cell wall components [25]. So, the inability of the cells to acquire their shape could
be the result not only of the altered MT order, but because also of the changes observed in the structure
of the cell wall architecture.

During root development, root cell walls must endure both the internal forces created by the
growing protoplast and the external forces due to root soil penetration; consequently, root cell walls
must be strong enough to withstand the applied forces but at the same time they must be flexible
enough to support root growth. Therefore, cell wall synthesis, softening and maturation processes are
co-ordinated [27] in order to support cell maturation and expansion. Especially cell expansion requires
normal cellulose synthesis [28], but also pectin modifications [29,30]. Since we focused our study onn
the root differentiation zone (visible xylem elements) [31], it is expected that, by the action of PMEs,
the methyl-esterified homogalacturonans are demethylesterified. As already reported, DeSPHGs are
interconnected by calcium bridges, forming cell wall matrices of high viscosity to support the cell wall
stiffening in the differentiation zone [32]. Indeed, in Col-0 roots LM20 (MPHGs) signal was restricted
to the vascular cylinder, “missing” from the other root tissues, in which cells could have acquired
their final size. On the contrary, the extensive presence of the LM20 epitope in the root sections of fra2
(Figure 3D), could possibly be a side-effect of the hampered development of fra2 root [24,33]. Generally,
MPHGs characterize cell walls which elongate (i.e cell walls of hypocotyl cells) [34]. In fra2 root cells,
the extensive presence of the LM20 epitope could indicate that the cells have not terminated their
elongation process, since the desired cell shape has not yet been acquired.

The notion that cell elongation of fra2 root cells is hampered is further on confirmed by the
differential LM6 epitope distribution observed in fra2 root sections compared to Col-0 (Figure 3E).
Usually, arabinans are required for maintenance of cell wall flexibility [29] and their presence intensifies
in the differentiation root zone [29]. This local cell wall remodeling reflects a change in the cell
wall mechanical properties [29]. In fra2 mutant this shift could be delayed indicating a hindered
cell differentiation. Xyloglucans signal is distributed more broadly in fra2 root sections (Figure 2),
further defining the problematic cell expansion of fra2 root cells. Xyloglucans binding to cellulose
microfibrils seems to reinforce the cell wall, turning it more rigid and less expandable [35]. In fra2
roots, the increased presence of xyloglucans, that interact with cellulose can result in increased cell
wall rigidness, opposing flexibility (Figure 2D). Except for the disturbed root development, the altered
hemicellulose and pectin deposition patterns observed in fra2 could be the outcome of the plants
compensatory efforts to overcome the potential stiffness reduction because of cellulose loss. Generally
no important change in the elasticity modulus of the cell walls in katanin mutants was recorded,
suggesting that other cell wall components compensate for the hampered cellulose synthesis observed
in katanin mutants [36,37]. In this context, xyloglucans were essential when katanin expression was
hindered [37].

The unique cells induced by the nematode infection in the feeding structure must be capable
to withstand the turgor pressure within, whilst maintaining the necessary flexibility to cope with
the periodic demands of nematode feeding [5]. To facilitate this, the walls of the cells produced in
the feeding site are specifically modified. In previous studies, abundant MPHGs, xyloglucans and
arabinans were found in syncytial cell walls of a cyst nematode [16,17]. In particular, it is reported that
the cell walls in syncytia cells formed in A. thaliana are rich in MPHGs and in arabinans, while galactans
were not detected. The cell wall modifications continue to take place even after the syncytium reaches its
final size at 14 dpi. The abundance of MPHGs in the vascular cylinder of infected roots implies that the
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syncytial cell wall is flexible. Since the syncytia are highly metabolically active and represent a nutrient
sink for solutes, their flexibility is essential for their functionality [38]. Apart from that, the cell walls of
the GCs of M. incognita infected roots in three different hosts [11] display the same characteristics. The
GCs are metabolically active and act as transfer cells for the nematode nourishment. A unique feature
of the giant cells is their ability to grow isotropically. This kind of cell expansion requires extensive
and coordinated cell wall remodeling. The loosening of the cellulose/xyloglucan network is mediated
through the action of specific enzymes, like glucanases, expansins and endotransglycosylases. These
subtle modifications provide the GCs cell walls with the necessary flexibility during the changes in cell
volume and shape. In the present study, we found that callose was also present in the GCs cell walls,
(and seemed to increase its abundance upon nematode infection Figure 2 cf. Figure 5) as confirmed
by both aniline staining and anti-β-1,3-glucan immunolabelling (Figure 5). It is commonly accepted
that callose controls the permeability of plasmodesmata and/or provides mechanical support to the
cell wall against different environmental stresses. This polysaccharide is synthesized upon injury, low
temperature, heavy metals and various pathogens [39–42]. Another biotic stress upon which callose is
synthesized, seems to be nematode infection adding the necessary mechanical support to the GCs cell
walls structure, along with the other cell wall changes ([11]; this study). However, one cannot exclude
the fact that callose could also act as a defense barrier as reported for other nematode species [10].

In order to elucidate if the observed differences in GC cell wall composition had any functional
consequences on the plant-nematode interaction, we used the fra2 mutant, a mutant with established
cellulose production defects [22]. Cellulose microfibrils are the scaffold of the cell wall and together
with hemicelluloses they provide the cell wall with the necessary rigidity [43]. The fra2 mutant cell
walls are extremely fragile; this fragility, due to reduced cellulose production, could lead to an increased
susceptibility towards M. incognita infection, since fragile cell walls could lead to easiest nematode
infection and penetration. In fact, susceptibility experiments proved that fra2 is more vulnerable
to M. incognita infection than Col-0 (Figure 7). M. incognita females were able to induce a feeding
site in the fra2 roots more successfully than they did in Col-0. Conclusively, it seems possible that
katanin MT severing is necessary for plant defense against nematode infection, even in an indirect
way, adding to the existing microtubule associated proteins (MAPs; e.g., MAP65-3; [44]) that have a
pivotal role in RKN invasion. Moreover, it was reported that MT reorganization is essential for feeding
site establishment and juvenile maturation [45]. In accordance to this, katanin, a MT arrangement
mediator, [33] seems to also have an important contribution towards M. incognita infection.

The established/observed ([11]; this study) cell wall modifications in GC cell walls differed in fra2
plants (Figures 5 and 6). Table 1 summarizes the noticed cell wall modifications that took place upon
nematode infection in both Col-0 and fra2 roots. A noticeable difference refers to the levels of callose in
fra2 GC cell walls. As confirmed by aniline staining and anti-β-1,3-glucan immunolabelling callose
was absent from fra2 GC cell walls (Figure 5). Generally, callose is responsible for cell wall flexibility
supporting tenseness and contraction during mechanical stress. In other words, this polysaccharide
decreases firmness and increases elasticity of cell walls [46]. Accordingly, fra2 GC cell walls lack
elasticity, due to callose absence, becoming more vulnerable to turgor pressure. However, this loss
seems to be compensated by the increased levels of arabinan (LM6; Figure 6) and MPHGs, which
both generally provide cell wall with the necessary flexibility ([11,17]; this study). Therefore, the wall
flexibility of the GCs is maintained, even in a mutant with reduced cell wall elasticity (fra2). Cell wall
alterations are mediated by the nematode-induced regulation of host genes [6]. It seems therefore
plausible that the nematode recognizes the peculiarities of different hosts and is capable to manipulate
host gene expression to successfully establish a feeding site. This notion is further supported by the
already reported differential response of different hosts to M. incognita infection [11].
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4. Materials and Methods

4.1. Plant Growth Conditions, Nematode Rearing and Collection

Seeds of Arabidopsis thaliana L. (Heynh) (as previously reported; [47]) wild type (ecotype Columbia;
Col-0) and fragile fiber 2 (fra2) mutant (purchased from the NASC European Arabidopsis Stock Centre,
Nottingham, UK) were surface sterilized with a 30% (v/v) bleach solution and kept at 4 ◦C for 48 h.
Subsequently, the seeds were transferred in soil and left to germinate and grow in a growth chamber
under a constant 16 h day/8 h night regime at an ambient temperature of 21 ± 1 ◦C, with light intensity
set at 120 µmol m−2

·s−1.
Seeds of tomato plants Solanum lycopersicum L. cv Belladonna were directly planted in pots filled

with soil and grown in the same conditions as stated above for two months prior to nematode infection.
Populations of M. incognita of Greek origin were reared on the above tomato plants [48]. Freshly
hatched (24–48 h) J2 were extracted from egg masses according to a modified Baermann technique [49]
from 40 day-old (d) infested roots, to be used for the bioassays.

4.2. Light and Fluorescence Microscopy

All chemicals and reagents used were purchased from Sigma (St. Louis, MO, USA), Merck (St.
Louis, MO, USA), and Applichem (Darmstadt, Germany), unless otherwise stated. Twenty one days
post infection (21 dpi), root tissue, of infected and non-infected (control) Col-0 and fra2 plants, was
carefully cleared from soil. Given the incubation conditions, at 21 dpi giant cells are fully formed [50],
a fact also verified in A. thaliana plants infected with M. incognita [6]. Both root knots and uninfected
root pieces were prepared for light microscopy according to [51]. Each experiment was conducted in
three replicates and about 10–15 roots from each experiment were selected and further on processed.
In short, root tissue pieces were fixed in 2% w/v paraformaldehyde (PFA) and 0.5% v/v glutaraldehyde
(GA) in PEM buffer (50 mM PIPES, 5 mM EGTA, 5 mM MgSO4, pH 6.8) for 2 h at 4 ◦C. Fixed roots
were rinsed twice in the same buffer for 10 min. Root tissue samples were then dehydrated in a graded
ethanol series, subjected to post-fixation in 0.25% OsO4 in 30% ethanol and embedded in LR White
resin. Finally, the samples were sectioned using an ULTROTOME III TYPE 8801A ultramicrotome
(LKB, Stockhom, Sweden) equipped with a glass knife. Semi-thin sections (0.5–2 µm) were stained
with 0.5% (w/v) toluidine blue O and observed by light microscopy. Especially for the uninfected roots,
special care was taken to obtain sections at the differentiating zone [52], in both Col-0 and fra2. Since
this particular root zone for fra2 is observed closer to the meristem than that of Col-0 [24] we used
the visible xylem elements as a marker of root differentiation. Considering root knots special care
was taken to obtain transverse sections through the middle of the gall in order to obtain vision of the
biggest giant cells [53].

Detection of callose by aniline blue fluorochrome was performed by semithin sections remaining
in aniline blue solution (0.05% (w/v) aniline blue) in 0.07 M K2HPO4 buffer, pH 8.5) [54,55] and observed
under an epifluoresence microscope. For callose detection via immunolabeling, semithin sections
(approximately 2–3 µm thick) of material embedded in LRW resin were transferred to glass slides and
blocked with 5% (w/v) BSA in PBS for 5 h. After washing with PBS, anti-callose antibody [56] diluted
1:40 in PBS containing 2% (w/v) BSA was applied overnight. Following rinsing with PBS and blocking
again with 2% (w/v) BSA in PBS, the sections were incubated for 1 h, at 37 ◦C in FITC anti-mouse IgG
diluted 1:40 in PBS containing 2% (w/v) BSA. After rinsing with PBS, the sections were mounted using
an anti-fade medium or with calcofluor white [57].

All of the fluorescence specimens were examined with an Axioplan microscope (Zeiss, Berlin,
Germany) equipped with a UV source, a Differential Interference Contrast (DIC) optical system. All the
photos were taken with a Zeiss Axiocam MRc5 digital camera using the ZEN 2.0 software (Zeiss, Berlin,
Germany) according to the manufacturers’ instructions [58]. Two filter sets were used for specimen
observation: a filter set provided with exciter solid glass filter 365 nm and barrier long-wave pass
band filter 420 nm, and another set provided with exciter pass band filter 450–490 nm and barrier pass
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band filter 515–565 nm. All samples were checked for UV autofluorescence using the above filters.
Digital micrographs were processed with Adobe Photoshop (Adobe Inc., San Jose, CA, USA) with only
linear settings.

4.3. Cell Wall Epitope Immunolabeling

Another set of semi-thin sections were incubated with rat monoclonal antibodies directed to cell
wall matrix polysaccharides according to [11] (Table 2). The distribution of highly esterified HGs
recognized by LM20 antibody [59], the partially de-esterified HGs recognized by JIM5 antibody [60], the
motifs of xyloglucans recognized by LM25 [61] and arabinan motifs with the LM6 antibody [59]. Pectate
lyase treatment before immunolabeling with LM25 was performed as described by [11]. Semi-thin
sections (approximately 2–3 µm thick) of material embedded in LRW resin were transferred to glass
slides and blocked with 2% (w/v) BSA in PBS for 2 h. After washing with PBS, a specific antibody
against a cell wall matrix material was added and applied overnight. All antibodies were diluted 1:40
in PBS containing 2% (w/v) BSA. Following rinsing with PBS and blocking again with 2% (w/v) BSA in
PBS, the sections were incubated for 2 h, at 37 ◦C with a FITC anti-rat IgG (Sigma) diluted 1:40 in PBS
containing 2% (w/v) BSA. After three washes with PBS, the sections were mounted using an anti-fade
medium containing p-phenylenediamine.

Table 2. List of the monoclonal antibodies used in the current study, of epitopes they recognize and
of references.

Antibody Epitope References

Hemicelluloses
LM25 Recognizes XLLG, XXLG and XXXG motifs of xyloglucans [61]

Anti-β-1,3-glucan Recognizes 1,3 β-glucan [57]
Pectins

LM20
HG domain in pectic polysaccharides, requires methyl
esters for recognition of HG and does not bind to
unesterified HG

[59]

JIM5
HG domain of pectic polysaccharides, recognizes partially
methyl-esterified epitopes of HG, can also bind to
unesterified HG

[60]

LM6 Recognizes a linear pentasaccharide in (1-5)-α-L-arabinans [59]

4.4. Arabidopsis Wild-Type and fra2 Mutant Nematode Susceptibility

Artificial infestation with M. incognita was performed on A. thaliana wild-type and fra2 mutant
plants using 1000 J2/plant. The plants were maintained for the completion of one biological cycle,
which is 40 dpi, at the same conditions as stated above. After that, roots were stained with acid
fuchsin [62] and the following variables were assessed: root weight (dry) and total number of female
nematodes per gram of root at 10× magnification under uniform illumination by transparent light
within tissue sample. The experiment was performed twice, and the treatments were always arranged
in a completely randomized design with five replicates. Because ANOVA indicated no significant
treatment by time interaction, means were averaged over experiments. Nematode infestation levels
were compared using Tukey’s test at p ≤ 0.05. Statistical analysis was performed using SPSS 20 (IBM,
Armonk, NY, USA).

5. Conclusions

The MT katanin severing defects of fra2 mutants lead to altered pectin and hemicellulose
distribution, compared to Col-0. Xyloglucans and MPHGs were more abundant in fra2 a fact that could
lead to an increased M. incognita infection rate. Following M. incognita infection in fra2 roots, the GC
cell wall modifications (highly-esterified pectic homogalacturonan and pectic arabinan) were present,
maybe to compensate for the low amount of callose, which was omnipresent in GC cell walls of Col-0.
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Therefore with this study we conclude for the first time that katanin MT severing seems important
in plant defense against M. incognita. The nematode however, seems to be able to overcome this
“katanin deficiency” and eventually induce the necessary GC cell wall modifications and to establish a
feeding site.
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