Supplementary Information

Identification of Isoform-Selective Ligands for the Middle Domain of Heat Shock Protein 90 (Hsp90)

Oi Wei Mak¹, Raina Chand¹, Jóhannes Reynisson^{1,2,*} and Ivanhoe K. H. Leung^{1,3,*}

- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Keele,
 Staffordshire ST5 5BG, United Kingdom.
- 3 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.
- Correspondence: j.reynisson@keele.ac.uk; Tel.: +44-1782-733-985 (J.R.);
 i.leung@auckland.ac.nz; Tel.: +64-9-923-1102 (I.K.H.L.)

Нѕр90β	1	MPEEVHHGEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNASDALDKIR MPEE EEEVETFAF0AEIAOLMSLIINTFYSNKEIFLRELISN+SDALDKIR	55
Hsp90a	1	MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIR	60
Нзр90β	56	YESLTDPSKLDSGKELKIDIIPNPQERTLTLVDTGIGMTKADLINNLGTIAKSGTKAFME	115
Hsp90a	61	YESLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTKAFME	120
Hsp90β	116	ALQAGADISMIGQFGVGFYSAYLVAEKVVVITKHNDDEQYAWESSAGGSFTVRADHGEPI	175
Hsp90a	121	ALQAGADISMIGQFGVGFYSAYLVAEKV VITKHNDDEQYAWESSAGGSFTVK D GEP+ ALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTVRTDTGEPM	180
Нзр90β	176	GRGTKVILHLKEDQTEYLEERRVKEVVKKHSQFIGYPITLYLEKEREKEISDDEAEEEKG	235
Hsp90a	181	GRGTKVILHLKEDQTEYLEERRIKEIVKKHSQFIGYPITLFVEKERDKEVSDDEAEEKED	240
Hsp90β	236	EKEEEDKDDEEKPKIEDVGSDEEDDSGKDKKKKKKKKKKIKEKYIDQEELNKT <mark>KPIWTRN</mark>	292
Hsp90a	241	++EE++K+++E IEDVGSDEE++ KKK KKIKEKYIDQEELNKTKPIWTRN KEEEKEKEEKESEDKPEIEDVGSDEEEEKKDGDKKKKKKIKEKYIDQEELNKT <mark>KPIWTRN</mark>	300
Hsp90ß	293	PDDITQEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFIPRRAPFDLFENKKKKNN	352
Hsp90a	301	PDDIT EEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLF+PRRAPFDLFEN+KKNN PDDITNEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFVPRRAPFDLFENRKKKNN	360
Hsp90β	353	IKLYVRRVFIMDSCDELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNIVKKC	412
Hsp90a	361	IKLYVRRVFIMD+C+ELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKN+VKKC IKLYVRRVFIMDNCEELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNLVKKC	420
Hsp90β	413	LELFSELAEDKENYKKFYEAFSKNLKLGIHEDSTNRRRLSELLRYHTSQSGDEMTSLSEY	472
Hsp90a	421	LELF+ELAEDKENYKKFYE FSKN+KLGIHEDS NR++LSELLRY+TS SGDEM SL +Y LELFTELAEDKENYKKFYEQFSKNIKLGIHEDSQNRKKLSELLRYYTSASGDEMVSLKDY	480
Hsp90ß	473		532
Hsp90a	481	+RMKE QK IYYITGE+K+QVANSAFVER+RK G EV+YM EPIDEYCVQQLKEF+GK+ CTRMKENOKHIYYITGETKDOVANSAFVERLRKHGLEVIYMIEPIDEYCVOOLKEFEGKT	540
- Hsp90B	533	LVSVTKEGLELPEDEEEKKKMEESKAKFENLCKLMKEILDKKVEKVTISNRLVSSPCCIV	592
Henglog	541	LVSVTKEGLELPEDEEEKKK EE K KFENLCK+MK+IL+KKVEKV +SNRLV+SPCCIV	600
Hem008	502		650
наруор	595	TSTIGWIANMERIMAAQALRDNSIMGIMMAARHLEINPDHPIVEILEQAAAAADKNDKAVK TSTYGWTANMERIMKAQALRDNSIMGYM AKKHLEINPDH IFTLRQKAEADKNDK+VK	652
Hsp90α	601	TSTYGWTANMERIMKAQALRDNSTMGYMAAKKHLEINPDHSIIETLRQKAEADKNDKSVK	660
Нѕр90β	653	DLVVLLFETALLSSGFSLEDPQTHSNRIYRMIKLGLGIDEDEVAAEEPNAAVPDEIPPLE DLV+LL+ETALLSSGFSLEDPQTH+NRIYRMIKLGLGIDED+ A++ +AAV +E+PPLE	712
Hsp90a	661	DLVILLYETALLSSGFSLEDPQTHANRIYRMIKLGLGIDEDDPTADDTSAAVTEEMPPLE	720
Нѕр90β	713	GDEDASRMEEVD 724 GD+D SRMEEVD	
Hsp90a	721	GDDDTSRMEEVD 732	

S1.

Table

Supplementary

(https://www.uniprot.org/uniprot/P07900; Middle domain is highlighted in green) and Hsp90β (https://www.uniprot.org/uniprot/P08238; Middle domain is highlighted in yellow). Sequence alignment was conducted using the Protein BLAST tool (Basic Local Alignment Search Tool; https://blast.ncbi.nlm.nih.gov/Blast.cgi)

alignment

of

human

Hsp90a

Sequence

Amino acid residues	ChemPLP	GoldScore	RMSD (Å)	ChemScore	RMSD (Å)	ASP	RMSD (Å)
Ile-353	50.0	56.3	8.3	18.6	2.9	18.8	10.2
Ser-365	62.9	49.4	8.4	20.3	1.1	24.0	6.9
Asp-367	69.0	48.7	7.3	20.7	1.1	22.2	0.9
Ile-370	74.3	50.7	10.3	21.5	7.0	26.3	1.7
Glu-372	54.4	53.4	6.5	21.6	5.3	22.9	8.5
Asn-436	62.3	51.3	3.8	29.3	2.1	26.6	6.9

Supplementary Table S2. Scoring functions for the docking of gambogic acid on respective six potential binding sites of Hsp90 β -MD (PDB ID: 3PRY). Root Mean Square Deviation (RMSD) calculations from each scoring function were compared by using ChemPLP as the reference for each docking study, in order to determine the consistency of the ligand poses within the active site. Note: A total of 87 binding site were spotted and defined for molecular docking. Only six out of 87 residues (350-436) are active and dockable while the rest of the spots have inadequate genetic algorithm rates. This might be due to the deficiency of donors and acceptors nor the solvent accessible atoms within the active sites.

Derivative	ASP	ChemScore	GoldScore	ChemPLP	
Gambogic	22.2	20.7	18 7	69.0	
acid		20.7	40.7	09.0	
1	26.5	23.5	23.5 67.1		
2	36.4	27.6	27.6 76.6		
3	37.8	21.9	21.9 68.3		
4	30.0	36.7	65.4	76.2	
5	26.4	22.9	68.4	73.4	
6	29.6	24.9	62.0	76.3	
7	34.0	29.9	77.4	86.5	
8	36.9	25.5	78.7	79.9	
9	27.5	21.2	66.0	77.8	
10	29.7	24.8	66.1	63.1	
11	27.5	24.9	60.2	63.7	
12	27.4	24.7	60.3	60.4	
13	30.1	22.7	64.3	71.7	
14	25.3	20.6	60.5	63.1	
15	27.3	21.2	62.7	71.4	
16	26.5	20.5	67.9	68.2	
17	30.4	23.2	61.0	73.0	
18	30.6	26.7	73.8	81.7	
19	31.0	27.9	61.2	75.8	
20	26.2	22.5	63.5	65.1	
21	26.6	22.7	62.3 75		
22	26.8	21.7	64.5 70.8		
23	31.0	22.8	64.2	75.0	
24	32.8	30.3	74.3	79.4	

Supplementary Table S3. Results of the scoring functions for the docking of gambogic acid and the 24 selected virtual hits against Hsp90 β MD.

1020304090MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLREL6070809010	50 IS 00 TK
MPEETQTQDQ PMEEEEVETF AFQAEIAQLM SLIINTFYSN KEIFLREL 60 70 80 90 10	IS 00 TK 50
60 70 80 90 10	00 TK
	TK 50
NSSDALDKIR YESLTDPSKL DSGKELHINL IPNKQDRTLT IVDTGIGM	50
110 120 130 140 15	50
ADLINNLGTI AKSGTKAFME ALQAGADISM IGQFGVGFYS AYLVAEKV	TV
160 170 180 190 20	00
ITKHNDDEQY AWESSAGGSF TVRTDTGEPM GRGTKVILHL KEDQTEYLM	ΕE
210 220 230 240 25	50
RRIKEIVKKH SQFIGYPITL FVEKERDKEV SDDEAEEKED KEEEKEKE	ΕK
260 270 280 290 30	00
ESEDKPEIED VGSDEEEEKK DGDKKKKKKI KEKYIDQEEL NKTKPIWT	RN
310 320 330 340 35	50
PDDITNEEYG EFYKSLTNDW EDHLAVKHFS VEGQLEFRAL LFVPRRAP	FD
360 370 380 390 40	00
LFENRKKKNN IKLYVRRVFI MDNCEELIPE YLNFIRGVVD SEDLPLNIS	SR
410 420 430 440 45	50
EMLQQSKILK VIRKNLVKKC LELFTELAED KENYKKFYEQ FSKNIKLG:	ΙH
460 470 480 490 50	00
EDSQNRKKLS ELLRYYTSAS GDEMVSLKDY CTRMKENQKH IYYITGET	KD
510 520 530 540 55	50
QVANSAFVER LRKHGLEVIY MIEPIDEYCV QQLKEFEGKT LVSVTKEG	LE
560 570 580 590 60	00
LPEDEEEKKK QEEKKTKFEN LCKIMKDILE KKVEKVVVSN RLVTSPCC	IV
610 620 630 640 65	50
TSTYGWTANM ERIMKAQALR DNSTMGYMAA KKHLEINPDH SIIETLRQ	KA
660 670 680 690 70	00
EADKNDKSVK DLVILLYETA LLSSGFSLED PQTHANRIYR MIKLGLGI	DE
710 720 730	
DDPTADDTSA AVTEEMPPLE GDDDTSRMEE VD	

Supplementary Table S4. Sequence of human Hsp90a. Red indicates the sequence of the middle domain (residues 286-546) that was used in this study.

10 20 30 40 50 MPEEVHHGEE EVETFAFQAE IAQLMSLIIN TFYSNKEIFL RELISNASDA 60 70 80 90 100 LDKIRYESLT DPSKLDSGKE LKIDIIPNPQ ERTLTLVDTG IGMTKADLIN 110 120 130 140 150 NLGTIAKSGT KAFMEALQAG ADISMIGQFG VGFYSAYLVA EKVVVITKHN 160 170 180 190 200 DDEQYAWESS AGGSFTVRAD HGEPIGRGTK VILHLKEDQT EYLEERRVKE 210 220 230 240 250 VVKKHSQFIG YPITLYLEKE REKEISDDEA EEEKGEKEEE DKDDEEKPKI 260 270 280 290 300 EDVGSDEEDD SGKDKKKKTK KIKEKYIDQE ELNKTKPIWT RNPDDITQEE 310 320 330 340 350 YGEFYKSLTN DWEDHLAVKH FSVEGQLEFR ALLFIPRRAP FDLFENKKKK 360 370 380 390 400 NNIKLYVRRV FIMDSCDELI PEYLNFIRGV VDSEDLPLNI SREMLQQSKI 410 420 430 440 450 LKVIRKNIVK KCLELFSELA EDKENYKKFY EAFSKNLKLG IHEDSTNRRR 460 470 480 490 500 LSELLRYHTS QSGDEMTSLS EYVSRMKETQ KSIYYITGES KEQVANSAFV 510 520 530 540 550 ERVRKRGFEV VYMTEPIDEY CVQQLKEFDG KSLVSVTKEG LELPEDEEEK 560 570 580 590 600 KKMEESKAKF ENLCKLMKEI LDKKVEKVTI SNRLVSSPCC IVTSTYGWTA 610 620 630 640 650 NMERIMKAQA LRDNSTMGYM MAKKHLEINP DHPIVETLRQ KAEADKNDKA 660 670 680 690 700 VKDLVVLLFE TALLSSGFSL EDPQTHSNRI YRMIKLGLGI DEDEVAAEEP 710 720 NAAVPDEIPP LEGDEDASRM EEVD

Supplementary Table S5. Sequence of human Hsp90β. Red indicates the sequence of the middle domain (residues 294-554) that was used in this study.

Compound	Formula	Name				
5	C23H23NO6	(2R)-2-(2-((2-oxo-4-phenyl-2H-				
		chromen-7-				
		yl)oxy)propanamido)pentanoic				
		acid				
8	C25H19NO7	5-hydroxy-4-oxo-2-phenyl-4H-				
		chromen-7-yl				
		((benzyloxy)carbonyl)glycinate				
9	$C_{24}H_{25}NO_6$	(2 <i>R</i>)-3-methyl-2-(2-((2-0x0-4-				
		phenyl-2H-chromen-7-				
		yl)oxy)propanamido)pentanoic				
		acid				
10	C26H29N3O4	(S)-1,2,3-trimethoxy-7-				
		(methylamino)-10-((pyridin-3-				
		ylmethyl)amino)-6,7-				
		dihydrobenzo[a]heptalen-9(5H)-				
		one				
12	$C_{18}H_{12}O_4$	2-hydroxy-3-(2-oxo-2-				
		phenylethyl)naphthalene-1,4-				
		dione				
17	C27H29NO10	N-((2S,3R,4R,5S,6R)-2-((3-(3,4-				
		dihydro-2H-				
		benzo[b][1,4]dioxepin-7-yl)-2-				
		methyl-4-oxo-4H-chromen-7-				
		yl)oxy)-4,5-dihydroxy-6-				
		(hydroxymethyl)tetrahydro-2H-				
		pyran-3-yl)acetamide				
22	$C_{19}H_{21}NO_6$	(3,4,5-				
		trimethoxybenzoyl)phenylalanine				
24	$C_{28}H_{28}N_2O_6$	6-(benzyloxy)-1-(3,4,5-				
		trimethoxyphenyl)-2,3,4,9-				
		tetrahydro-1H-pyrido[3,4-				
		b]indole-3-carboxylic acid				

Supplementary Table S6. Compound number, formula and chemical name of the hits that we obtained from the binding studies.

Ligand	Docking at α -isoform				Docking at β-isoform				
	ChemPLP	CS	GS	ASP	ChemPLP	CS	GS	ASP	
5	45.6	14.7	39.1	20.8	73.4	22.9	68.4	26.4	
8	55.1	16.8	50.3	25.6	79.9	25.5	78.7	36.9	
9	54.8	16.6	40.1	22.1	77.8	21.2	66.0	27.5	
10	42.3	14.6	38.4	42.4	63.1	24.8	66.1	29.7	
12	42.0	16.8	39.4	17.3	60.4	24.7	60.3	27.4	
17	47.1	8.7	47.9	22.3	73.0	23.2	61.0	30.4	
22	48.3	12.4	46.9	19.8	70.8	21.7	64.5	26.8	
24	45.8	15.7	50.9	22.6	79.4	30.3	74.3	32.8	

Supplementary Table S7. Docking scores from the binders at the defined binding site of $Hsp90\alpha$ MD and $Hsp90\beta$ MD respectively.

Supplementary Figure S1. Surface electrostatic potential map of (a) the small molecule binding site of Hsp90 α (hot spot at residue E375). The binding site is defined as 10 Å radius from residue E375 for Hsp90 α MD (PDB id: 3Q6M; x= -1.652, y= -64.237, z= 27.08), and (b) the small molecule binding site of Hsp90 β (hot spot at residue D367). The binding site is defined as 10 Å radius from D367 (PDB ID: 3PRY; x = 8.806, y = 23.993, z = 27.785). Red depicts a negative partial charge on the surface, blue depicts positive partial charge and grey shows neutral/lipophilic regions. The hot spot residues were displayed as CPK space-filling models.

Supplementary Figure S2. Screening of the virtual hits (1 mM) to Hsp90 α/β MD (20 μ M) by intrinsic protein fluorescence. Percentage fluorescence quenching was calculated with the equation below.

% Fluorescence quenching =
$$\frac{(I_{protein} - I_{protein+compound})}{I_{protein}} \times 100\%$$

In which $I_{protein}$ denotes intrinsic fluorescence intensity of the protein in the absence of any compound, $I_{protein+compound}$ denotes intrinsic fluorescence intensity of the protein in the presence of the compound. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S3. K_D determination by intrinsic protein fluorescence spectroscopy. (a) Titration of compound **5** to Hsp90 α MD; (b) Titration of compound **5** to Hsp90 β MD. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S4. K_D determination by intrinsic protein fluorescence spectroscopy. Titration of compound **8** to Hsp90 α MD.

Supplementary Figure S5. K_D determination by intrinsic protein fluorescence spectroscopy. (a) Titration of compound **9** to Hsp90 α MD; (b) Titration of compound **9** to Hsp90 β MD. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S6. K_D determination by intrinsic protein fluorescence spectroscopy. Titration of compound **10** to Hsp90 β MD.

Supplementary Figure S7. K_D determination by intrinsic protein fluorescence spectroscopy. (a) Titration of compound **12** to Hsp90 α MD; (b) Titration of compound **12** to Hsp90 β MD. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S8. K_D determination by intrinsic protein fluorescence spectroscopy. (a) Titration of compound **17** to Hsp90 α MD; (b) Titration of compound **17** to Hsp90 β MD. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S9. K_D determination by intrinsic protein fluorescence spectroscopy. Titration of compound **22** to Hsp90 α MD.

Supplementary Figure S10. K_D determination by intrinsic protein fluorescence spectroscopy. (a) Titration of compound **24** to Hsp90 α MD; (b) Titration of compound **24** to Hsp90 β MD. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S11. K_D determination by intrinsic protein fluorescence spectroscopy. (a) Titration of gambogic acid to Hsp90 α MD; (b) Titration of gambogic acid to Hsp90 β MD. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S12. Predicted binding modes and interactions of compound **5** to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound **5** and Asn-359, Asn-383 and Arg-386 of Hsp90 α ; (b) Hydrogen bond interactions between compound **5** and Ile-370 and Arg-405 of Hsp90 β . Both of the displays were processed from the ligand poses as predicted by the GS scoring function.

Supplementary Figure S13. Predicted binding modes and interactions of compound **8** to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound **8** and Asn-359 and Arg-360 of Hsp90 α ; (b) Hydrogen bond interactions between compound **8** and Ile-370 and Arg-405 of Hsp90 β . Both of the displays were processed from the ligand poses as predicted by the GS scoring function.

Supplementary Figure S14. Predicted binding modes and interactions of compound **9** to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound **9** and Asn-359 of Hsp90 α ; (b) Hydrogen bond interactions between compound **9** and Glu-372 and Arg-405 of Hsp90 β . Both of the displays were processed from the ligand poses as predicted by the GS scoring function.

Supplementary Figure S15. Predicted binding modes and interactions of compound **10** to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound **10** and Arg-413 of Hsp90 α ; (b) Hydrogen bond interactions between compound **10** and Ser-343 and Lys-435 of Hsp90 β . Both of the displays were processed from the ligand poses as predicted by the GS scoring function.

Supplementary Figure S16. Predicted binding modes and interactions of compound **18** to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound **18** and Glu-375, Asn-383 and Arg-413 of Hsp90 α ; (b) Hydrogen bond interactions between compound **18** and Tyr-430, Glu-431, Ser-434 and Lys-435 of Hsp90 β . Both of the displays were processed from the ligand poses as predicted by the GS scoring function.

Supplementary Figure S17. Predicted binding modes and interactions of compound **22** to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound **22** and Glu-375, Asn-373 and Arg-413 of Hsp90 α ; (b) Hydrogen bond interactions between compound **22** and Ala-339, Arg-405 and Glu-443 of Hsp90 β . Both of the displays were processed from the ligand poses as predicted by the GS scoring function.

Supplementary Figure S18. Predicted binding modes and interactions of compound **24** to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound **24** and Asn-359, Asn-360 and Arg-386 of Hsp90 α ; (b) Hydrogen bond interactions between compound **24** and Arg-405 and Glu-443 of Hsp90 β . Both of the displays were processed from the ligand poses as predicted by the GS scoring function.