Supplementary Information

Identification of Isoform-Selective Ligands for the Middle Domain of Heat Shock Protein

90 (Hsp90)

Oi Wei Mak ${ }^{1}$, Raina Chand ${ }^{1}$, Jóhannes Reynisson ${ }^{1,2, *}$ and Ivanhoe K. H. Leung ${ }^{1,3, *}$
1 School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.

School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom.

3 Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand.

* Correspondence: j.reynisson@keele.ac.uk; Tel.: +44-1782-733-985 (J.R.);
i.leung @auckland.ac.nz; Tel.: +64-9-923-1102 (I.K.H.L.)

	1	SNKEIFLRELISNASDALDKIR	55
		MPEE EEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISN+SDALDKIR	
Hsp90 α^{\prime}	1	MPEETQTQDQPMEEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNSSDALDKIR	60
Hsp90 β	56	YESLTDPSKLDSGKELKIDIIPNPQERTLTLVDTGIGMTKADLINNLGTIAKSGTKAFME	115
		YESLTDPSKLDSGKEL I++IPN Q+RTLT+VDTGIGMTKADLINNLGTIAKSGTKAFME	
Hsp90 ${ }^{\text {a }}$	61	YESLTDPSKLDSGKELHINLIPNKQDRTLTIVDTGIGMTKADLINNLGTIAKSGTKAFME	120
Hsp90 β	116	ALQAGADISMIGQFGVGFYSAYLVAEKVVVITKHNDDEQYAWESSAGGSFTVRADHGEPI	175
		ALQAGADISMIGQFGVGFYSAYLVAEKV VITKHNDDEQYAWESSAGGSFTVR D GEP+	
Hsp90 ${ }^{\text {d }}$	121	ALQAGADISMIGQFGVGFYSAYLVAEKVTVITKHNDDEQYAWESSAGGSFTVRTDTGEPM	180
Hsp90 β	176	GRGTKVILHLKEDQTEYLEERRVKEVVKKHSQFIGYPITLYLEKEREKEISDDEAEEEKG	235
		GRGTKVILHLKEDQTEYLEERR+KE+VKKHSQFIGYPITL++EKER+KE+SDDEAEE++	
Hsp90 ${ }^{\text {a }}$	181	GRGTKVILHLKEDQTEYLEERRIKEIVKKHSQFIGYPITLFVEKERDKEVSDDEAEEKED	240
Hsp90 β	236	EKEEEDKDDEEKPK---IEDVGSDEEDDSGKDKKKKTKKIKEKYIDQEELNKTKPIWTRN	292
		++EE++K+++E IEDVGSDEE++ KKK KKIKEKYIDQEELNKTKPIWTRN	
Hsp90 ${ }^{\text {d }}$	241	KEEEKEKEEKESEDKPEIEDVGSDEEEEKKDGDKKKKKKIKEKYIDQEELNKTKPIWTRN	300
Hsp90 β	293	PDDITQEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFIPRRAPFDLFENKKKKNN	352
		PDDIT EEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLF+PRRAPFDLFEN+KKKNN	
Hsp90 ${ }^{\text {a }}$	301	PDDITNEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFVPRRAPFDLFENRKKKNN	360
Hsp90 β	353	IKLYVRRVFIMDSCDELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNIVKKC	412
		IKLYVRRVFIMD+C+ELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKN+VKKC	
Hsp90 ${ }^{\text {a }}$	361	IKLYVRRVFIMDNCEELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNLVKKC	420
Hsp90 β	413	LELFSELAEDKENYKKFYEAFSKNLKLGIHEDSTNRRRLSELLRYHTSQSGDEMTSLSEY	472
		LELF+ELAEDKENYKKFYE FSKN+KLGIHEDS NR++LSELLRY+TS SGDEM SL +Y	
Hsp90 ${ }^{\text {a }}$	421	LELFTELAEDKENYKKFYEQFSKNIKLGIHEDSQNRKKLSELLRYYTSASGDEMVSLKDY	480
Hsp90 β	473	VSRMKETQKSIYYITGESKEQVANSAFVERVRKRGFEVVYMTEPIDEYCVQQLKEFDGKS	532
		+RMKE QK IYYITGE+K+QVANSAFVER+RK G EV+YM EPIDEYCVQQLKEF+GK+	
Hsp90 ${ }^{\text {a }}$	481	CTRMKENQKHIYYITGETKDQVANSAFVERLRKHGLEVIYMIEPIDEYCVQQLKEFEGKT	540
Hsp90 β	533	LVSVTKEGLELPEDEEEKKKMEESKAKFENLCKLMKEILDKKVEKVTISNRLVSSPCCIV	592
		LVSVTKEGLELPEDEEEKKK EE K KFENLCK+MK+IL+KKVEKV +SNRLV+SPCCIV	
Hsp90 ${ }^{\text {a }}$	541	LVSVTKEGLELPEDEEEKKKQEEKKTKFENLCKIMKDILEKKVEKVVVSNRLVTSPCCIV	600
Hsp90 β	593	TSTYGWTANMERIMKAQALRDNSTMGYMMAKKHLEINPDHPIVETLRQKAEADKNDKAVK	652
		TSTYGWTANMERIMKAQALRDNSTMGYM AKKHLEINPDH I+ETLRQKAEADKNDK+VK	
Hsp90 ${ }^{\text {a }}$	601	TSTYGWTANMERIMKAQALRDNSTMGYMAAKKHLEINPDHSIIETLRQKAEADKNDKSVK	660
Hsp90 β	653	DLVVLLFETALLSSGFSLEDPQTHSNRIYRMIKLGLGIDEDEVAAEEPNAAVPDEIPPLE	712
		DLV+LL+ETALLSSGFSLEDPQTH+NRIYRMIKLGLGIDED+ A++ +AAV +E+PPLE	
Hsp90 ${ }^{\text {a }}$	661	DLVILLYETALLSSGFSLEDPQTHANRIYRMIKLGLGIDEDDPTADDTSAAVTEEMPPLE	720
Hsp90 β	713	GDEDASRMEEVD 724	
		GD+D SRMEEVD	
Hsp90 ${ }^{\text {a }}$	721	GDDDTSRMEEVD 732	

Supplementary Table S1. Sequence alignment of human Hsp90 α (https://www.uniprot.org/uniprot/P07900; Middle domain is highlighted in green) and Hsp90 β (https://www.uniprot.org/uniprot/P08238; Middle domain is highlighted in yellow). Sequence alignment was conducted using the Protein BLAST tool (Basic Local Alignment Search Tool;
https://blast.ncbi.nlm.nih.gov/Blast.cgi)

Amino acid residues	ChemPLP	GoldScore	RMSD (\AA)	ChemScore	RMSD (\AA)	ASP	RMSD (\AA)
Ile-353	50.0	56.3	8.3	18.6	2.9	18.8	10.2
Ser-365	62.9	49.4	8.4	20.3	1.1	24.0	6.9
Asp-367	69.0	48.7	7.3	20.7	1.1	22.2	0.9
Ile-370	74.3	50.7	10.3	21.5	7.0	26.3	1.7
Glu-372	54.4	53.4	6.5	21.6	5.3	22.9	8.5
Asn-436	62.3	51.3	3.8	29.3	2.1	26.6	6.9

Supplementary Table S2. Scoring functions for the docking of gambogic acid on respective six potential binding sites of Hsp90 β-MD (PDB ID: 3PRY). Root Mean Square Deviation (RMSD) calculations from each scoring function were compared by using ChemPLP as the reference for each docking study, in order to determine the consistency of the ligand poses within the active site. Note: A total of 87 binding site were spotted and defined for molecular docking. Only six out of 87 residues (350-436) are active and dockable while the rest of the spots have inadequate genetic algorithm rates. This might be due to the deficiency of donors and acceptors nor the solvent accessible atoms within the active sites.

Derivative	ASP	ChemScore	GoldScore	ChemPLP
Gambogic acid	22.2	20.7	48.7	69.0
$\mathbf{1}$	26.5	23.5	67.1	67.5
$\mathbf{2}$	36.4	27.6	76.6	78.2
$\mathbf{3}$	37.8	21.9	68.3	78.7
$\mathbf{4}$	30.0	36.7	65.4	76.2
$\mathbf{5}$	26.4	22.9	68.4	73.4
$\mathbf{6}$	29.6	24.9	62.0	76.3
$\mathbf{7}$	34.0	29.9	77.4	86.5
$\mathbf{8}$	36.9	25.5	78.7	79.9
$\mathbf{9}$	27.5	21.2	66.0	77.8
$\mathbf{1 0}$	29.7	24.8	66.1	63.1
$\mathbf{1 1}$	27.5	24.9	60.2	63.7
$\mathbf{1 2}$	27.4	24.7	60.3	60.4
$\mathbf{1 3}$	30.1	22.7	64.3	71.7
$\mathbf{1 4}$	25.3	20.6	60.5	63.1
$\mathbf{1 5}$	27.3	21.2	62.7	71.4
$\mathbf{1 6}$	26.5	20.5	67.9	68.2
$\mathbf{1 7}$	30.4	23.2	61.0	73.0
$\mathbf{1 8}$	30.6	26.7	73.8	81.7
$\mathbf{1 9}$	31.0	27.9	61.2	75.8
$\mathbf{2 0}$	26.2	22.5	63.5	65.1
$\mathbf{2 1}$	26.6	22.7	62.3	75.7
$\mathbf{2 2}$	26.8	21.7	64.5	70.8
$\mathbf{2 3}$	31.0	22.8	64.2	75.0
$\mathbf{2 4}$	32.8	30.3	74.3	79.4

Supplementary Table S3. Results of the scoring functions for the docking of gambogic acid and the 24 selected virtual hits against Hsp90 ${ }^{\text {MD }}$.

10	20	30	40	50
MPEETQTQDQ	PMEEEEVETF	AFQAEIAQLM	SLIINTFYSN	KEIFLRELIS
60	70	80	90	100
NSSDALDKIR	YESLTDPSKL	DSGKELHINL	IPNKQDRTLT	IVDTGIGMTK
110	120	130	140	150
ADLINNLGTI	AKSGTKAFME	ALQAGADISM	IGQFGVGFYS	AYLVAEKVTV
160	170	180	190	200
ITKHNDDEQY	AWESSAGGSF	TVRTDTGEPM	GRGTKVILHL	KEDQTEYLEE
210	220	230	240	250
RRIKEIVKKH	SQFIGYPITL	FVEKERDKEV	SDDEAEEKED	KEEEKEKEEK
260	270	280	290	300
ESEDKPEIED	VGSDEEEEKK	DGDKKKKKKI	KEKYIDQEEL	NKTKPIWTRN
310	320	330	340	350
PDDITNEEYG	EFYKSLTNDW	EDHLAVKHFS	VEGQLEFRAL	LFVPRRAPFD
360	370	380	390	400
LFENRKKKNN	IKLYVRRVFI	MDNCEELIPE	YLNFIRGVVD	SEDLPLNISR
410	420	430	440	450
EMLQQSKILK	VIRKNLVKKC	LELFTELAED	KENYKKFYEQ	FSKNIKLGIH
460	470	480	490	500
EDSQNRKKLS	ELLRYYTSAS	GDEMVSLKDY	CTRMKENQKH	IYYITGETKD
510	520	530	540	550
QVANSAFVER	LRKHGLEVIY	MIEPIDEYCV	QQLKEFEGKT	LVSVTKEGLE
560	570	580	590	600
LPEDEEEKKK	QEEKKTKFEN	LCKIMKDILE	KKVEKVVVSN	RLVTSPCCIV
610	620	630	640	650
TSTYGWTANM	ERIMKAQALR	DNSTMGYMAA	KKHLEINPDH	SIIETLRQKA
660	670	680	690	700
EADKNDKSVK	DLVILLYETA	LLSSGFSLED	PQTHANRIYR	MIKLGLGIDE
710	720	730		

Supplementary Table S4. Sequence of human Hsp90 α. Red indicates the sequence of the middle domain (residues 286-546) that was used in this study.

10	20	30	40	50
MPEEVHHGEE	EVETFAFQAE	IAQLMSLIIN	TFYSNKEIFL	RELISNASDA
60	70	80	90	100
LDKIRYESLT	DPSKLDSGKE	LKIDIIPNPQ	ERTLTLVDTG	IGMTKADLIN
110	120	130	140	150
NLGTIAKSGT	KAFMEALQAG	ADISMIGQFG	VGFYSAYLVA	TKHN
160	170	180	190	200
DDEQYAWESS	AGGSFTVRAD	HGEPIGRGTK	ILHLKEDQT	EYLEERRVKE
210	220	230	240	250
VVKKHSQFIG	YPITLYLEKE	REKEISDDEA	EEEKGEKEEE	DKDDEEKPKI
260	270	280	290	300
EDVGSDEEDD	SGKDKKKKTK	KIKEKYIDQE	ELNKTKPIWT	ITQEE
310	320	330	340	350
YGEFYKSLTN	DWEDHLAVKH	FSVEGQLEFR	ALLFIPRRAP	FDLFENKKKK
360	370	380	390	400
NNIKLYVRRV	FIMDSCDELI	PEYLNFIRGV	LPLNI	EMLQQSKI
410	420	430	440	450
LKVIRKNIVK	KCLELFSELA	EDKENYKKFY	EAFSKNLKLG	HEDSTNRRR
460	470	480	490	500
LSELLRYHTS	QSGDEMTSLS	EYVSRMKETQ	KSIYYITGES	KEQVANSAFV
510	520	530	540	550
ERVRKRGFEV	VYMTEPIDEY	CVQQLKEFDG	KSLVSVTKEG	LELPEDEEEK
560	570	580	590	600
KKMEESKAKF	ENLCKLMKEI	LDKKVEKVTI	SNRLVSSPCC	IVTSTYGWTA
610	620	630	640	650
NMERIMKAQA	LRDNSTMGYM	MAKKHLEINP	DHPIVETLRQ	KAEADKNDKA
660	670	680	690	700
VKDLVVLLFE	TALLSSGFSL	DPQTHSNRI	YRMIKLGLGI	DEDEVAAEEP
710	720			
EIPP	GDEDASRM	EEVD		

Supplementary Table S5. Sequence of human Hsp90ß. Red indicates the sequence of the middle domain (residues 294-554) that was used in this study.

Compound	Formula	Name
5	$\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{6}$	(2R)-2-(2-((2-oxo-4-phenyl-2H- chromen-7- yl)oxy)propanamido)pentanoic acid
8	$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{7}$	5-hydroxy-4-oxo-2-phenyl-4H- chromen-7-yl ((benzyloxy)carbonyl)glycinate
9	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{6}$	(2R)-3-methyl-2-(2-((2-oxo-4-phenyl-2H-chromen-7- yl)oxy)propanamido)pentanoic acid
10	$\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4}$	(S)-1,2,3-trimethoxy-7-(methylamino)-10-((pyridin-3-ylmethyl)amino)-6,7-dihydrobenzo[a]heptalen-9(5H)one
12	$\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{4}$	2-hydroxy-3-(2-oxo-2-phenylethyl)naphthalene-1,4dione
17	$\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NO}_{10}$	$N-((2 S, 3 R, 4 R, 5 S, 6 R)-2-((3-(3,4-$ dihydro-2H- benzo[b][1,4]dioxepin-7-yl)-2- methyl-4-oxo-4H-chromen-7- yl)oxy)-4,5-dihydroxy-6- (hydroxymethyl)tetrahydro-2H-pyran-3-yl)acetamide
22	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{6}$	(3,4,5- trimethoxybenzoyl)phenylalanine
24	$\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$	6-(benzyloxy)-1-(3,4,5- trimethoxyphenyl)-2,3,4,9- tetrahydro- 1 H -pyrido[3,4- b]indole-3-carboxylic acid

Supplementary Table S6. Compound number, formula and chemical name of the hits that we obtained from the binding studies.

Ligand	Docking at α-isoform				Docking at β-isoform			
	ChemPLP	CS	GS	ASP	ChemPLP	CS	GS	ASP
$\mathbf{5}$	45.6	14.7	39.1	20.8	73.4	22.9	68.4	26.4
$\mathbf{8}$	55.1	16.8	50.3	25.6	79.9	25.5	78.7	36.9
$\mathbf{9}$	54.8	16.6	40.1	22.1	77.8	21.2	66.0	27.5
$\mathbf{1 0}$	42.3	14.6	38.4	42.4	63.1	24.8	66.1	29.7
$\mathbf{1 2}$	42.0	16.8	39.4	17.3	60.4	24.7	60.3	27.4
$\mathbf{1 7}$	47.1	8.7	47.9	22.3	73.0	23.2	61.0	30.4
$\mathbf{2 2}$	48.3	12.4	46.9	19.8	70.8	21.7	64.5	26.8
$\mathbf{2 4}$	45.8	15.7	50.9	22.6	79.4	30.3	74.3	32.8

Supplementary Table S7. Docking scores from the binders at the defined binding site of Hsp90 α MD and Hsp90 β MD respectively.

Supplementary Figure S1. Surface electrostatic potential map of (a) the small molecule binding site of Hsp90 (hot spot at residue E375). The binding site is defined as $10 \AA$ radius from residue E375 for Hsp90aMD (PDB id: $3 \mathrm{Q} 6 \mathrm{M} ; \mathrm{x}=-1.652, \mathrm{y}=-64.237, \mathrm{z}=27.08$), and (b) the small molecule binding site of Hsp90ß (hot spot at residue D367). The binding site is defined as $10 \AA$ radius from D367 (PDB ID: 3PRY; $\mathrm{x}=8.806, \mathrm{y}=23.993, \mathrm{z}=27.785$). Red depicts a negative partial charge on the surface, blue depicts positive partial charge and grey shows neutral/lipophilic regions. The hot spot residues were displayed as CPK space-filling models.

Supplementary Figure S2. Screening of the virtual hits (1 mM) to Hsp $90 \alpha / \beta$ MD $(20 \mu \mathrm{M})$ by intrinsic protein fluorescence. Percentage fluorescence quenching was calculated with the equation below.

$$
\% \text { Fluorescence quenching }=\frac{\left(I_{\text {protein }}-I_{\text {protein }+ \text { compound }}\right)}{I_{\text {protein }}} \times 100 \%
$$

In which $I_{\text {protein }}$ denotes intrinsic fluorescence intensity of the protein in the absence of any compound, $I_{\text {protein+compound }}$ denotes intrinsic fluorescence intensity of the protein in the presence of the compound. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S 3 . K_{D} determination by intrinsic protein fluorescence spectroscopy. (a) Titration of compound 5 to $\mathrm{Hsp} 90 \alpha \mathrm{MD}$; (b) Titration of compound 5 to Hsp90 β MD. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S 4 . K_{D} determination by intrinsic protein fluorescence spectroscopy. Titration of compound $\mathbf{8}$ to Hsp90 α MD.

Supplementary Figure S5. K_{D} determination by intrinsic protein fluorescence spectroscopy. (a) Titration of compound 9 to $\mathrm{Hsp} 90 \alpha \mathrm{MD}$; (b) Titration of compound 9 to Hsp90 β MD. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure $\mathrm{S} 6 . K_{\mathrm{D}}$ determination by intrinsic protein fluorescence spectroscopy. Titration of compound $\mathbf{1 0}$ to Hsp90 3 MD.

Supplementary Figure S7. K_{D} determination by intrinsic protein fluorescence spectroscopy. (a) Titration of compound $\mathbf{1 2}$ to Hsp90 α MD; (b) Titration of compound $\mathbf{1 2}$ to Hsp90 β MD. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S8. K_{D} determination by intrinsic protein fluorescence spectroscopy. (a) Titration of compound $\mathbf{1 7}$ to $\mathrm{Hsp} 90 \alpha \mathrm{MD}$; (b) Titration of compound $\mathbf{1 7}$ to Hsp90 β MD. Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S 9 . K_{D} determination by intrinsic protein fluorescence spectroscopy. Titration of compound 22 to $\mathrm{Hsp} 90 \alpha$ MD.

Supplementary Figure $\mathrm{S} 10 . K_{\mathrm{D}}$ determination by intrinsic protein fluorescence spectroscopy.
(a) Titration of compound $\mathbf{2 4}$ to Hsp90 MD ; (b) Titration of compound 24 to Hsp90 β MD.

Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure $\mathrm{S} 11 . K_{\mathrm{D}}$ determination by intrinsic protein fluorescence spectroscopy.
(a) Titration of gambogic acid to Hsp90 MD ; (b) Titration of gambogic acid to Hsp90 β MD.

Experiments were conducted in triplicate. Errors shown are standard derivation.

Supplementary Figure S12. Predicted binding modes and interactions of compound 5 to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound 5 and Asn-359, Asn-383 and Arg-386 of Hsp90a; (b) Hydrogen bond interactions between compound 5 and Ile-370 and Arg-405 of Hsp90ß. Both of the displays were processed from the ligand poses as predicted by the GS scoring function.

Supplementary Figure S13. Predicted binding modes and interactions of compound $\mathbf{8}$ to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound $\mathbf{8}$ and Asn-359 and Arg-360 of Hsp90a; (b) Hydrogen bond interactions between compound 8 and Ile-370 and Arg-405 of Hsp90ß. Both of the displays were processed from the ligand poses as predicted by the GS scoring function.

(a)

(b)

Supplementary Figure S14. Predicted binding modes and interactions of compound 9 to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound 9 and Asn-359 of Hsp90a; (b) Hydrogen bond interactions between compound 9 and Glu-372 and Arg-405 of Hsp90ß. Both of the displays were processed from the ligand poses as predicted by the GS scoring function.
(a)

(b)

Supplementary Figure S15. Predicted binding modes and interactions of compound $\mathbf{1 0}$ to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound 10 and Arg-413 of Hsp90a; (b) Hydrogen bond interactions between compound 10 and Ser-343 and Lys-435 of Hsp90ß. Both of the displays were processed from the ligand poses as predicted by the GS scoring function.
(a)

(b)

Supplementary Figure S16. Predicted binding modes and interactions of compound $\mathbf{1 8}$ to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound 18 and Glu-375, Asn-383 and Arg-413 of Hsp90a; (b) Hydrogen bond interactions between compound 18 and Tyr-430, Glu-431, Ser-434 and Lys-435 of Hsp90ß. Both of the displays were processed from the ligand poses as predicted by the GS scoring function.

Supplementary Figure S17. Predicted binding modes and interactions of compound 22 to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound 22 and Glu-375, Asn-373 and Arg-413 of Hsp90a; (b) Hydrogen bond interactions between compound 22 and Ala-339, Arg-405 and Glu-443 of Hsp90ß. Both of the displays were processed from the ligand poses as predicted by the GS scoring function.
(a)

(b)

Supplementary Figure S18. Predicted binding modes and interactions of compound 24 to the Hsp90 isoforms. (a) Hydrogen bond interactions (depicted as green dotted lines) between compound 24 and Asn-359, Asn-360 and Arg-386 of Hsp90a; (b) Hydrogen bond interactions between compound 24 and Arg-405 and Glu-443 of Hsp90ß. Both of the displays were processed from the ligand poses as predicted by the GS scoring function.

