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Abstract: Recurrent pregnancy loss (RPL) represents an unresolved problem for contemporary
gynecology and obstetrics. In fact, it is not only a relevant complication of pregnancy, but is also
a significant reproductive disorder affecting around 5% of couples desiring a child. The current
knowledge on RPL is largely incomplete, since nearly 50% of RPL cases are still classified as
unexplained. Emerging evidence indicates that the endometrium is a key tissue involved in the
correct immunologic dialogue between the mother and the conceptus, which is a condition essential
for the proper establishment and maintenance of a successful pregnancy. The immunologic events
occurring at the maternal–fetal interface within the endometrium in early pregnancy are extremely
complex and involve a large array of immune cells and molecules with immunoregulatory properties.
A growing body of experimental studies suggests that endometrial immune dysregulation could be
responsible for several, if not many, cases of RPL of unknown origin. The present article reviews
the major immunologic pathways, cells, and molecular determinants involved in the endometrial
dysfunction observed with specific application to RPL.

Keywords: recurrent pregnancy loss; endometrium; decidua; immunologic dysfunction

1. Introduction

Recurrent pregnancy loss (RPL) is the loss of two or more pregnancies before 24 weeks of
gestation, according to the European Society of Human Reproduction and Embryology [1]. The Practice
Committee of the American Society for Reproductive Medicine defines RPL as two or more failed
clinical pregnancies [2]. RPL is a challenge for the clinical and scientific community. In fact, in only
around 50% of RPL cases can defined causes/risk factors can be found, including advanced maternal
age, genetic abnormalities, selected maternal autoantibodies, endocrine dysfunctions, and uterine
abnormalities [3]. The remaining RPL cases currently are unexplained (uRPL) [3,4].

It is believed that a significant, although not exactly quantified, proportion of RPL is associated
with immune etiologies [5] and that in these cases the pregnancy losses can occur through persistent
disturbances in several immune pathways [6]. In this context, a relevant role could be played by
the endometrium.
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The endometrium has a crucial role in reproduction. It is the maternal tissue that comes into direct
contact with the embryo and allows for its proper implantation, survival, and development, processes
in which it actively participates. Extensive investigation has been carried out in the last decades to
clarify the biomolecular mechanisms which make the endometrium receptive to the embryo, as well
as the specific cell types and the cellular pathways involved in endometrial receptivity. However,
our knowledge on these mechanisms is still largely incomplete. The currently available information
indicates that the endometrium is a unique tissue in which a series of events—collectively called
decidualization—occur in order to ensure, in a dynamic fashion, the correct environment for the
developing conceptus. Emerging evidence indicates that a pivotal role in endometrial remodeling and
maternal tolerance towards the embryo is played by several cells of the innate and adaptive immune
system, which have or acquire specific characteristics when they are in or reach the endometrium,
together with a growing number of immunoregulatory molecules.

The experimental and clinical evidence also suggests that derangements occurring in the
endometrial immune environment can be involved in several important reproductive dysfunctions, such
as recurrent implantation failure (RIF) and recurrent pregnancy loss (RPL) of otherwise unexplained
etiology. This review summarizes the major contributions of the immune system in the physiology of
the endometrial function and the current knowledge on the major known alterations of the endometrial
immune system with specific application to RPL in women.

2. Physiological Endometrial Function and the Immune System

2.1. Endometrial Remodeling and Decidualization

The endometrium is the maternal tissue that comes into direct contact with the embryo, which is
immunologically different from the mother, being usually considered as a semi allograft, or even as a
complete allograft in the case of oocyte donation [7]. The major function of the endometrium is to create
and ensure an optimal endocrine/paracrine, immune, and molecular environment that allows for proper
apposition, attachment, implantation, invasion and development, and full maturation of the embryo.
To accomplish this mission, the endometrium needs to develop a series of unique and striking adaptive
changes collectively termed decidualization, resulting in profound morphological and functional
reprogramming of the endometrial stromal cells that differentiate into highly specialized cells with
secretory capabilities. Among the eutherian—placental mammals—these changes are particularly
significant in species with an invasive type of placenta, specifically in humans who have the most
invasive type of placentation. In fact, the extent of decidualization is proportional to the degree of
invasiveness of the embryo [8]. While endometrial transformation in most animal species occurs in
response to the presence of the embryo, in a few species—including humans—it takes place well in
advance of the presence of the embryo and, therefore, is—at least initially—under exclusive maternal
hormonal control. If conception does not occur, in response to falling circulating levels of progesterone
the decidualized endometrium in these species is shed and menstruation ensues. This initiates the
beginning of a new cycle.

The majority of recent information on the role of the endometrium and on the functional changes
occurring in the normal endometrium stems from the histologic investigations performed on human
endometrial biopsies, as well as from studies carried out in vivo in animal species (particularly
baboons and gene knockout mice) and in vitro in primary cell cultures of human endometrial stromal
cells (HESCs).

Despite the considerable differences among the species, the overall emerging picture is that
decidualization of the endometrium is a process involving profound cell reprogramming, tissue
remodeling, changes in gene expression and post-translation regulation, and alterations in cell
signaling pathways. Considerable changes and modulation of the activity of the immune cells at a
local level also occurs. These events involve a large number of molecular mediators and effectors.
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A summary of the major endometrial changes characteristic of decidualization in women is described
in Table 1.

Table 1. Simplified summary of the major changes characterizing the decidualization of
the endometrium.

Morphological (Tissutal and Cell) Changes

Secretory transformation of endometrial glands, compaction of surface epithelial cells, stromal edema, stromal
cell proliferation, differentiation of fibroblast-like stromal cells into epithelioid-like cells, massive leukocyte

infiltration (mainly uterine natural killer cells and mast cells), spiral arteries remodeling

Extracellular Matrix Changes

Increased production by decidualized stromal cells of collagen IV, fibronectin, laminin, decorin,
heparan-sulphate proteoglycans, IGFBP-1, PRL, LEFTY-2, αvβ3 integrin, osteopontin

Changes in the Expression of Genes Involved in the Following Cellular Functions

Cell cycle regulation, cytoskeleton remodeling, oxidative stress response, ion and water transport, response to
steroid hormone, deposition of extracellular matrix (ECM), modulation of transcription, epigenetic patterning,

post-translation modification, growth factor, angiogenesis, cytokine and chemokine signaling, immune
modulation

Cell Signaling and Pathways Involved in the Decidualization

cAMP/PKA pathway, progesterone signaling pathway, Nodal pathway, Notch signaling pathway, ERK1/2
pathway, WNT/β-catenin pathway, cSRC pathway, JAK-STAT pathway, lipid signaling (endocannabinoid

system), TGFβ signaling pathway, BMP2-WNT4 signaling cascade, phosphatidylinositol 3-kinase/AKT
pathway, Ras/Raf1/MAPK pathway, EPAC1 and EPAC2 signaling

LEFTY-2: left-right determination factor 2; IGFBP-1: insulin like growth factor binding protein-1; PRL: prolactin;
cAMP: cyclic adenosine monophosphate; PKA: protein kinase A; ERK1/2: extracellular signal-regulated kinase 1/2;
JAK: Janus kinase; STAT: signal transducer and activator of transcription; TGFβ: transforming growth factor-β;
BMP-2: bone morphogenetic protein-2; AKT: protein kinase B; MAPK: mitogen-activated protein kinase; EPAC1
and 2: exchange protein directly activated by cAMP 1 and 2.

The detailed description of all the changes and the mediators involved in decidualization is beyond
the scope of the present article and has been discussed in several excellent reviews recently [9–13]. Here,
the major focus is to evaluate the significance of the endometrial changes, particularly decidualization,
in relation to the role played by the immune system.

Decidualization can be evolutionarily considered to have two, not mutually exclusive functions.
On the one hand, it can be considered as the biological solution of a maternal–fetal conflict in which the
invasiveness of the embryo, aimed to maximally ensure the expansion of fetal genes (partially different
from the maternal ones) is contrasted by the need of maternal genes to ensure their own expansion in
the present and future pregnancies [14]. On the other hand, it can be viewed as the adaptive response
to the maternal need of controlling its relevant investment in a pregnancy bearing a single, high quality
fetus for a prolonged period of time [15]. This concept is supported by robust evidence indicating that
the decidualized endometrium acts as a biosensor of the quality of the embryo [16,17], that implantation
is characterized by a cooperation between the embryo and the decidualized endometrium [18], and
that the loss of endometrial plasticity can be implicated in unexplained RPL [19]. Many key events
occurring in the endometrium during decidualization implantation and in the decidua throughout
pregnancy are realized with the relevant contribution of the immune cells and are mediated by many
immunoregulatory molecules. Emerging evidence suggests that derangements in the normal immune
function can occur in these tissues in subsets of women with RPL.



Int. J. Mol. Sci. 2019, 20, 5332 4 of 29

2.2. Immune Cells and Their Functions in the Normal Endometrium and Decidua

A great body of experimental work has been carried out to investigate the specific populations of
immune cells in the endometrium throughout the menstrual cycle, during implantation, and early
pregnancy; their specific roles in early pregnancy together with the regulatory molecules that are
expressed are being characterized. This information is summarized in Tables 2 and 3. Likewise,
a growing number of mechanisms are proposed to explain the development of maternal tolerance
towards the immunologically different conceptus. These proposed mechanisms—schematically
summarized in Table 4 and illustrated in Figure 1a,b—could be the basis to explain, understand,
and, possibly, treat the immune-mediated RPL, that likely represent a substantial proportion of
all unexplained RPL. However, it is actually extremely difficult to disentangle the most important
mechanisms from the accessory ones. The emerging overall picture strongly suggests that in normal
pregnancy, the maternal immune system undergoes considerable modulation in at least many (if not
all) key components in order to develop tolerance towards the foreign paternal antigens of the fetus
and an immunologically favorable environment for the fetus while at the same time maintaining full
responsive capacity against other foreign antigens [20–23]. The pregnancy-related changes in the
immune cells and system occurring in the endometrium and decidua are only partially determined.
Nevertheless, with regard to the success of implantation, the most important changes known so far
in the endometrial immune cells involve macrophages, uterine natural killer (NK) cells, dendritic
cells (DCs), T cells, especially cytolytic T cells (CTLs), whose specific roles have been, at least in
part, determined.
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Table 2. Overview of the relevant cells of the innate immune system in the endometrium and decidua with their major reproductive functions.

Cell Type Phenotype
Density (%) of

Leukocyte Population
in the Endometrium

Changes during the
Menstrual Cycle and in

Early Pregnancy

Preferential Location
in the Endometrium

Relevant Molecules
Secreted Suggested Functions References

Uterine Natural
killer Cells (uNK)

CD3−CD56brightCD16−

(predominant
phenotype)

30%–40% of stromal
cells

70% of endometrial
leukocytes in the late

luteal phase (LP) and in
early pregnancy

Progressively increase
from the follicular phase
(FP) to the LP. Maximal
density in late LP and in

gestational decidua

Surround the arteries
and the glands

IFN-γ, VEGF, PlGF,
TGF-β, TNF-α, IL-10,
GM-CSF, IL-1β, LIF,

CSF-1, AP-2

Tissue (spiral arteries)
remodeling, enhancement of

angiogenesis, control of
trophoblast invasion

[10,20,24–29]

Macrophages
(Mϕ) CD68+

20%–25% of total
leukocytes in the

decidua

Progressively increase
from the FP to the LP.

Maximal density before
menstruation and in

pregnancy.
Acquire tolerogenic

phenotype

Scattered throughout
the endometrium;

preferentially found
around the glands and

at implantation site

TGF-β, IL-10, IDO,
PGE2

Involved in corpus luteum
maintenance, blastocyst

implantation, spiral arteries
remodeling, control of
trophoblast invasion,

protection of the fetus against
intrauterine infection

[20,29–35]

Mast Cells
(MCs)

MCT; MCTC; MCC
(endometrial MCs)

3%–5% of total
endometrial cells;

Unchanged throughout
menstrual cycle; changes
in phenotype during the

menstrual cycle; activated
in the early and midluteal

phase

More prominent in the
basal endometrial

compartment
VEGF

Initiation of menstruation
Enhance tissue and spiral

artery remodeling, support
implantation and

angiogenesis

[20,36,37]

Uterine
Dendritic Cells

(DCs)

CD1a+ (immature,
tolerogenic DCs);
CD83+ (mature

DCs)

Density of immature
DCs in the

endometrium is higher
than that of mature DCs;

DC 1%–2% of the
immune cells in the

decidua

Immature DCs increase
from FP to LP; peak in the

menstrual phase
(controversial finding);
No changes in mature

DCs with the menstrual
cycle

Both mature and
immature DCs are

found mainly in the
basal layer of the

endometrium in the LP;
Scattered through the
gestational decidua
In mice grouped in

cluster-like structures

TGF-β, IL-10, IDO

Involved in the maternal
acceptance of the embryo,
trophoblast invasion and

differentiation;
Uterine remodeling,

angiogenesis;
Determine the differentiation

of T cell progenitors into
Tregs and expansion and

activation of Tregs

[29,33,38–43]

Neutrophil (N)
Granulocytes

CD11b+; CD16b+;
CD66c+

1% to 6%–15% of
endometrial cells

Considerably increase in
the late (premenstrual) LP Endometrial Stroma CCL2, CXCL8, TNF-α,

IL-6, VEGF

Menstruation, tissue
breakdown and repair,

Proangiogenic and
tolerogenic in the pregnant

decidua

[44–47]
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Table 3. Overview of the cells of the adaptive immune system in the endometrium and decidua with their major reproductive functions.

Cell Type Phenotype

Density (%) of
Leukocyte (CD45+)
Population in the

Endometrium

Changes during the
Menstrual Cycle and in

Early Pregnancy

Preferential Location
in the Endometrium

Relevant Molecules
Secreted Suggested Functions References

BLymphocytes CD45+ CD19+ 0.2%–4.5% Very slight increase in late LP
Clusters among stromal

cells in the
perimenstrual period

IL-10
Still undetermined;

Potentially implicated in early
pregnancy

[20,47,48]

T Lymphocytes CD45+ CD3+ 1%–2% to 28%
Reportedly decreased or

unchanged from follicular
phase (FP) to luteal phase (LP)

Lymphoid aggregates;
scattered throughout

epithelium and stroma

Variable according to
the specific cell subset

Protective or harmful for the
embryo according to the specific

cell subset
[24,29,48,49]

T Helper
Lymphocytes

(Th1, Th2, Th17,
Tregs)

CD45+ CD3+
CD4+

3.8%–21.4% No clear variations reported

Present in uterine
mucosa as unique

aggregates surrounding
a B cell core

TNF-α and IFN-γ (by
Th1);

IL-4 (by Th2);
IL-8 (by Th17)

Th1 produce inflammatory
cytokines;

Th2 produce anti-inflammatory
cytokines;

Th17 has pro-inflammatory
effects (for Tregs see the

dedicated section in the table)

[33,48,50]

T Cytotoxic
Lymphocytes

CD45+ CD3+
CD8+

4.4%–34.5% to 66% Significantly decrease from FP
to LP Lymphoid aggregates

Release cytotoxic
substances (granzymes,

perforin)

Potentially harmful to the
embryo. Blocked in successful

pregnancy
[47–49,51]

Tregs CD4+ CD25+
FOXP3+

Not clearly defined in
humans

Expansion in preimplantation
endometrium;

Increase in the decidua at
implantation site and in early
pregnancy until midgestation

Insufficient data in
human preimplantation

endometrium

Galectin-1, TGF-β, IL-10,
HO-1

Essential in the control of an
excessive maternal inflammatory
response at the implantation site;

Involved in maternal immune
tolerance to fetal allograft

particularly in early pregnancy;
Block maternal effector T cells
Involved in the regulation of

maternal vascular remodeling

[20,33,49,50,
52–57]

CD: cluster of differentiation; FP: follicular phase; LP: luteal phase; IFN-γ: interferon gamma; VEGF: vascular endothelial growth factor; PlGF: placental growth factor; TNF-α: tumor
necrosis factor alpha; IL-10: interleukin-10; GM-CSF: granulocyte macrophage colony stimulating factor; IL-1β: interleukin-1β; LIF: leukemia inhibitory factor; CSF-1: colony-stimulating
factor 1; AP-2: endocytic adaptor protein 2; IDO: indoleamine 2,3-dioxygenase; PGE2: prostaglandin E2; CCL2: chemokine C-C motif ligand 2; CXCL8: C-X-C motif ligand 8; IL-6:
interleukin-6; IL-4: interleukin-4; IL-8: interleukin-8; HO-1: heme oxygenase-1.
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Table 4. Proposed major mechanisms underlying maternal immune tolerance towards the embryo in normal pregnancy in the endometrium and decidua.

Mechanism Effect References

Increased secretion of LIF and IL-1β by uterine macrophages Enhancement of embryo attachment to endometrial epithelium [58]

TGFβ production by maternal decidual macrophages Suppression of EVT rejection mediated by NK cells [59]

Production by macrophages of TGFβ, IL-10, IDO, and PGE2 Immunoinhibitory and pro-tolerance actions [33]

Specific characteristics of uNK cells in the endometrium and of
dNK in pregnancy Acquisition of a regulatory role rather than classic cell killing ability [21,27,60]

dNK cells dampen Th17 cells through the production of IFN Suppress Th17-induced inflammatory response [61]

Galectin-1 production by dNK cells Induces apoptosis of activated CD8+ T cells [62–64]

Endometrial recruitment of innate immune cells (Mϕ, DCs, and
granulocytes) triggered by seminal fluid before implantation

Activation and expansion of Tregs which, in turn, creates a uterine
microenvironment favorable for embryo implantation and enhances maternal

tolerance towards paternal MHC antigens
[21,54,65–67]

Induction and expansion of tolerogenic DCs phenotype Involved in the control and activation of Tregs [33,54,68,69]

Reduced production of IL-12 by DCs Priming of decidual CD4+ cells into a Th2 phenotype [70,71]

EVT cells express HLA-C, HLA-E, and HLA-G but not HLA-A
and HLA-B

Lack of expression of MHC molecules by syncytiotrophoblasts

Inhibition of cytolytic activity of dNK cells against the trophoblasts
Induction of NK senscence-Enhanced apoptosis of activated CD8+ cells [70,72–75]

Trophoblast production of exosomes Downregulation of maternal immunity towards the trophoblast [76]

Development of a specific cytokine and chemokine network in
the endometrium and decidua

Achievement of a correct immune cell recruitment and dialogue favoring embryo
implantation and proper pregnancy evolution [77]

Presence of asymmetric maternal Abs against paternal antigens Bind trophoblast but are unable to trigger destructive immune response [78]

Increased production of PIBF
Upregulation of Th2 cytokines production. Downregulation of dNK activity.

Increase the production of Glycodelin A which induces apoptosis in T cells. These
effects can contribute to trophoblast immune protection

[66,79]

Increased progesterone production in LP and in pregnancy Expansion of Tregs and enhancement of their immunosuppressive actions [33,78]

hCG production by syncytiotrophoblast Recruitment of Tregs at the maternal–fetal interface [80]

EVT: extravillous trophoblast; HLA: human leukocyte antigen; MHC: major histocompatibility complex; Mϕ: macrophages; DC: dendritic cells; PIBF: progesterone induced blocking factor;
LP: luteal phase; hCG: human chorionic gonadotropin; Abs: asymmetric antibodies.
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Figure 1. Schematic representation of the changes occurring in the human endometrium and in local 
immune cell trafficking in the normal state and in recurrent pregnancy loss (RPL). (a) Endometrium 
in the secretory phase of the menstrual cycle in the absence of the embryo; (b) endometrium in the 
presence of a normally implanting embryo; (c) endometrial immune derangements in RPL. M: 
macrophages; uNK: uterine natural killer cell; iDC: immature uterine dendritic cell; mDC: mature 

Figure 1. Schematic representation of the changes occurring in the human endometrium and in local
immune cell trafficking in the normal state and in recurrent pregnancy loss (RPL). (a) Endometrium in
the secretory phase of the menstrual cycle in the absence of the embryo; (b) endometrium in the presence
of a normally implanting embryo; (c) endometrial immune derangements in RPL. M: macrophages;
uNK: uterine natural killer cell; iDC: immature uterine dendritic cell; mDC: mature uterine dendritic
cell; N: neutrophil granulocyte; Treg: regulatory T cell; MC: mastocyte; Teff: effector T cells; ESC:
endometrial stromal cell; BV: blood vessel.
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2.2.1. Macrophages

Macrophages occur in low numbers in the non-pregnant endometrium, even though their
numbers substantially increase in the luteal phase of the cycle. Their number dramatically increases
as pregnancy occurs, reaching 20%–25% of all leukocytes in the decidua, as shown in Table 2.
There is evidence that the macrophages in the decidua differentiate toward an immunoregulatory
M2 type, since they express several M2 markers [81]. The possibility has been raised that also a
proinflammatory subset of macrophages is present, although to a much lesser extent, in the early
decidua [82]. During early pregnancy, macrophages are localized mainly close to invading trophoblast
cells and to the spiral arteries [83] and are believed to play several relevant roles and functions in early
pregnancy: enhancement of blastocyst implantation and trophoblast invasion, remodeling of spiral
arteries, clearance of apoptotic cells and cell debris, as well as protection of the fetus against foreign
pathogens [30–35,81,84,85]. It has been shown that decidual spiral artery remodeling begins before
cellular interaction with cytotrophoblasts [86] and that matrix remodeling in spiral arteries is initiated
by infiltrating leucocytes, including macrophages, while extravillous trophoblasts (EVTs) become
involved at later stages [87]. Four discrete stages of vascular remodeling have been described according
to the extent of smooth muscle cells disruption in human decidual vessels [88]. Vessel infiltration by
macrophages has been found to be more prominent in the intermediate stages II and III [88].

2.2.2. NK Cells

NK cells are lymphocytes with multiple biologic actions including cytotoxicity and
cytokine-producing capacity [89]. In the peripheral blood, two populations of NK cells are present—the
CD56 dim CD16+ NK, that are cytotoxic toward tumors and virally infected cells and comprise 90%
of circulating NK cells, and the CD56brightCD16− NK, whose main activity is regulatory through the
secretion of cytokines [81,89]. Decidual or uterine NK (uNK) cells which are present in the decidua
are distinct from peripheral blood NK (pbNK) cells [83,90]. They constitute 50%–90% of lymphocytes
in human uterine decidua in early pregnancy. A comparative microarray analysis demonstrated
that the uNK cells are distinctly different from pbNK cells and have an increased expression of a
number of surface proteins, including lectin receptors, killer cell Ig-like receptors, tetraspanins, and
integrin subunits. In addition, the secreted immunomodulatory molecules, galectin-1 and glycodelin
(PAEP), were also selectively expressed on the dNK cells [91]. Uterine NK (uNK) are the predominant
leukocyte population in the endometrium, increase progressively throughout the menstrual cycle,
and are maximal in early pregnancy, being ~75% of the decidual leukocyte population [27]. uNK are
phenotypically similar, although not identical, to circulating CD56brightCD16− [91–93] and during early
pregnancy are found adjacent to the invading trophoblast cells [88,94]. This observation, together with
the finding that activated uNK can produce angiogenic factors (VEGF and ANG2) and a vast array of
cytokines, including GM-CSF, CSF-1, TNFα, IFN-γ, TGF-β, LIF, IL2, CXCL10, and CXL12 [91], suggest
a role of uNK in promoting trophoblast invasion, protecting the embryo from maternal immune attack,
and enhancing angiogenesis [88,95]. The role of decidual natural killer cells (dNK) in regulating
trophoblast invasion and the maternal immune response against trophoblasts is also strongly suggested
by the observation that dNK, or uNK cells, in addition to their specific location in close proximity to
the trophoblast, also express the specific appropriate receptors for those human leukocyte antigens
(HLAs) that are uniquely expressed by the trophoblasts, i.e., the killer immunoglobulin receptor (KIR)
for HLA-C, the CD94/NKG2A for HLA-E, and the ILT2 for HLA-G [70,96]. The combined interaction
between the dNK/uNK cells and the HLAs of trophoblasts is believed to be a potential key factor
involved in the prevention of the maternal immune rejection of the conceptus [72,73,97,98].

2.2.3. DCs

Dendritic cells have a dual role—they can differentiate into potent antigen presenting cells which
can activate effector T cells or, in their immature state, they can enhance immune tolerance by inducing
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the generation of Tregs [99]. In the decidua, DCs are believed to play an important role in maternal
recognition of paternal antigens in both pre- and implantation periods. In particular, the seminal fluid
has the ability to recruit DCs (as well as macrophages) to the decidua; DCs, in turn, can take up and
present the seminal soluble major histocompatibility complex (MHC) T cells in the regional draining
lymph nodes and induce the expansion of Tregs population [21,100,101]. DCs in a specific cytokine
environment, characterized by the predominance of G-CSF, GM-CSF, IL-4, IL-10, and TGFβ and in
the presence of IDO, acquire the phenotype of tolerogenic DCs (tDCs) and become able to drive the
differentiation of naïve Th0 cells towards tolerogenic regulatory T cells (Tregs) rather than towards
cytotoxic effector T cells [33,54]. In addition to the above immunological actions, DCs have been
suggested to play a relevant trophic role by enhancing both endometrial stromal cell differentiation
and proliferation and local angiogenesis [102].

2.2.4. Tregs

Tregs (CD4+CD25+Foxp3+) are a subset of CD4+ T cells and are important components of
adaptive immunity since their major function is to limit immune reaction. Tregs are involved in
immunological self- and transplant tolerance and play a relevant role in preventing autoimmune
responses against self antigens [103,104]. Therefore, the possibility that these functions of Tregs might
be instrumental in the proper immunologic relationship between the mother and the embryo has
been raised, and recent convincing evidence defines the potential key role of these cells in early
pregnancy [21,33,54,65,105]. It has been shown, in both mice and in humans, during normal pregnancy
there is an expansion in the population of decidual Tregs, which exert several pregnancy-promoting
actions [54]: prevention of the immune rejection of the fetal paternal antigens by effector T cells,
induction of decidual support for embryo implantation through their action on other leukocyte and
non-leukocytes cell types [106], and by enhancing proper maternal vascular remodeling [107]. There
is evidence supporting the concept that the pregnancy-promoting actions of Tregs are particularly
relevant in the peri-implantation period and in the very early stages of pregnancy, whereas the role of
Tregs in later stages appears to be more limited [108].

2.2.5. Other Components of the Immune System

The role of other components of the immune system, such as granulocytes, CD8+ cells, and B
cells, has been scarcely explored to date, particularly in relation to RPL; further investigation is needed
to better determine the potential relevance of these important components of innate and adaptive
immunity. However, with specific application to B cells and plasma cells, emerging data support the
concept that regulatory B (Breg) cells—a subset of B cells with immunosuppressive properties mainly
studied in autoimmunity, cancer, and transplantation tolerance—can play a role also in pregnancy
since they are a major cellular source of the powerful anti-inflammatory cytokine IL-10. Moreover,
Breg cells induce suppression of other immune cell populations and can enhance induction and
maintenance of Tregs [109]. A reduction in the number of Breg cells has been observed in women with
spontaneous abortion [110]. In normal pregnancy, hCG induces the expansion of Bregs, as well as their
IL-10 production; moreover, hCG enhances the generation of plasma cells capable to produce specific
pregnancy-protective antibodies [111].

2.3. Cytokine/Chemokine Network and the Maternal–Fetal Immune Cross-Talk

The molecular dialogue between the trophoblast, the decidua, and the maternal immune cells
aimed at the proper control of embryo implantation and early pregnancy progression is mediated by
a network of cytokines and chemokines. The extensive research carried out so far in this field has
revealed that a vast and continuously increasing array of cytokines and chemokines could be potentially
involved, to various degrees, in the immune and non-immune relationship between the mother and
the conceptus. The cytokines suggested to play a role in this context include at least IL-1β, IL-2, IL-4,
IL-5, IL-6, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, IL-17, IL-18, IL-22, IL-23, IL-34 LIF, TGFβ, G-CSF,
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GM-CSF, TNF-α, and IFN-γ [21,23,33,99,112–117]. The chemokines potentially involved include at
least CCL2, CCL3, CCL4, CCL5, CCL17, CCL19, CCL20, CCL22, CXCL8, CXCL9, CX3CL1, CXCL10,
CXCL12, and CXCL16 [40,99,118,119]. The high number of cytokines and chemokines believed to
participate at least to some extent in maternal–fetal interactions, the pleiotropic actions of many of
the above molecules and their redundant and often overlapping effects make it extremely difficult to
clearly disentangle the actual role of each molecule. Despite these limitations, the function of selected
cytokines and chemokines in the immunologic interaction between the mother and the trophoblast
is being discovered in several cases. For instance, the importance of LIF in early stages of embryo
implantation has become clear [120]; moreover, emerging evidence strongly suggests that on the one
hand, the major pro-inflammatory cytokines IL-1β and TNF-α, released by uterine macrophages
sensitized by seminal fluid antigens, contribute to the development of tolerogenic DCs (tDCs) [54]; on
the other hand, after embryo implantation, the anti-inflammatory cytokines IL-10 and TGFβ play key
roles in the regulation of tolerogenic DCs in the decidua, in reducing the local inflammatory response
and in driving the expansion of Treg cells [33,54]. Among the chemokines, CXCL1 was found to be
markedly upregulated in decidualized human endometrial stromal cells [121]. The large body of
experimental work carried out so far supports the general concept that the cytokines, the chemokines,
and their receptors can be expressed and produced by the glandular epithelial and stromal cells of the
endometrium, by the decidual cells, by the cellular components of the innate and acquired immunity,
as well as by the trophoblast cells; their network creates a local microenvironment of paramount
importance for the successful implantation of the embryo, for the regulation of trophoblast migration,
and, therefore, for the proper development of the pregnancy. Further investigation is still needed:
(1) to clearly define the specific contribution of each of the above molecules in the maternal–fetal
immune dialogue; (2) to verify the applicability of the information obtained in animal models to human
pregnancy, taking into account the differences between the species [99].

3. Immune Dysregulation in the Endometrium and Decidua in RPL

The evidence indicating the fundamental role of proper immunologic dialogue between the
mother and conceptus in the normal implantation and pregnancy development has prompted a large
number of studies aimed at investigating the impact of dysregulations in the maternal–fetal immune
relationship in RPL. This is particularly so for the so-called “unexplained” RPL (uRPL), which accounts
for around 50% of the cases of RPL. Many of the abnormalities found in this context occur within the
endometrium and the decidua, which is the major maternal–fetal interface. In this section, for reasons
of clarity, the relevant findings will be divided according to the specific cell types involved and then to
the overall network of immunoregulatory molecules.

3.1. Endometrial Cells in RPL with Specific Application to the Regulation of the Local Immune Function

It has been suggested that there are evolutionary adapted checkpoints during early pregnancy
which are designed to reject a pregnancy if the conceptus or the receptive endometrium is
compromised [13]. An inadequately developed decidualized endometrium is one of them. Several
studies have demonstrated that the transformation of the stromal fibroblasts into the decidual
phenotype is compromised in RPL patients [19,122,123]. The importance of a proper decidualization
of endometrial stromal cells in implantation and early pregnancy maintenance has been elucidated by
a series of observations supporting the concept that endometrium is a fine biosensor of the quality of
the implanting embryo [15,17,19]. Specifically, studies carried out on human endometrial stromal cells
have shown that these cells, when differentiating into decidual cells, become sensitive to embryonic
signals to whom they respond differently according to the quality of the embryo. In normal women,
low-quality embryos inhibit the secretion of factors playing a key role in implantation; conversely,
developmentally competent embryos produce signals promoting implantation [16]. These studies
provide experimental evidence that the endometrium of normally fertile women is selective towards
the embryo and that low-quality embryos undergo an early rejection. Conversely, the endometrium of
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women with RPL is less sensitive and allows the implantation of low-quality embryos, which will be
rejected later in pregnancy. This hypothesis is further supported by the clinical observation that women
with RPL have a shorter time-to-pregnancy—the time needed to become pregnant—than normally
fertile women [122,124]. Even though the specific mechanisms underlying these derangements are still
uncertain, it is likely that the disordered decidual response observed in women with RPL involves
immune system mediators and cells, since it is characterized by the failure of endometrial stromal
cells to transit from an initially proinflammatory phenotype to an anti-inflammatory one during
decidualization, as normally occurs in physiological conditions [9].

3.2. Immune Cells in the Endometrium in RPL

3.2.1. Macrophages

There is scant information on the role of macrophages in RPL. Very recent experimental evidence
shows that in women with uRPL, no reduction of M1 decidual macrophages can be detected [31],
in contrast to what occurs in normal pregnancy. This finding suggests that in women with uRPL, there
would be a limited differentiation of macrophages toward the M2 immunoregulatory polarization.
This is in agreement with the results of a previous study, in which decidual macrophages from women
with uRPL showed an increased expression of CD80, CD86, and a lower expression of IL-10 compared
with control women [125]. These findings suggest that the macrophage regulation capacity of Tregs,
mediated by TGFβ and by cell–cell contact, is decreased in women with uRPL [125]. However, further
investigation is needed to further clarify the role of macrophages in RPL [85], since similar reduction
in the M2 macrophage population has been also observed in women with spontaneous sporadic
miscarriage [31].

3.2.2. uNKs

Considerable interest in the role of uNKs in pregnancy complications, and particularly in RPL,
reflects the recognized importance of these cells in implantation and in early pregnancy. Overall
results indicate that RPL is associated with several/different abnormalities in uterine/decidual NK
cell number and function, although some controversy still exists. Most of the studies support the
concept that in uRPL, the pregnancy-promoting functions of uNK are dysregulated in several ways.
Indeed, in women with uRPL, higher concentrations of uNK have been detected than in normal fertile
controls [92,126–131], even though this finding has not always been consistent [132]. In other studies,
despite no differences in the proportion of endometrial NK cells between controls and women with
RPL, women with RPL have a significant decrease in the CD16−CD56bright NK cell subset, that is
normally found in uncomplicated pregnancies [133]; this suggests that uNK cells in women with uRPL
are quantitatively and qualitatively different from those normally found. Accumulating evidence
supports this hypothesis. For instance, it has been shown that women with uRPL have increased
endometrial populations of cytotoxic CD16+uNK [92] and of uNK expressing the natural cytotoxicity
receptors NKp46, NKp44, and NKp30 at higher levels than those detected in control women and in
women with unexplained infertility or recurrent implantation failure [28,92,134,135]. This suggests
that the cytotoxic activity of uNK is higher in RPL than in control women. Even though the results
are not always unequivocal, it is becoming clear that uNK has different characteristics in women
with uRPL. Another subset of uNK cells, the IL-22-producing NK cells (NK22), has been found to be
differently regulated in women with RPL. An increase in the proportion of NK22 cells has been detected
in the endometrium, as well as in the peripheral blood, of women with unexplained RPL compared
with women with unexplained infertility [136,137]. However, uNK cells in the decidua of women
with unexplained RPL have a significantly lesser gene and protein expression of IL-22 than normal
women [138]. Further investigation is needed to fully clarify the role of endometrial IL-22 and NK22 in
RPL. Conflicting data obtained in uNK determinations in relation to RPL still exist and this could be
due to differences in the populations studied or in the assay methodologies used or the complexity
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of subtypes of uNK cells in the endometrium and decidua. This point is particularly relevant, since
there is the need for a standardization in the measurement of uNK in women with RPL, in order to
better characterize several still-uncovered aspects concerning the actual role of these relevant cells
in RPL [93,139], with potentially useful applications also in clinical practice. In fact, at present it still
uncertain what the prognostic value of the determination of uNK count and parameters in women
with uRPL are [140].

There is still an open debate on whether, or to which extent, the peripheral NK cell subsets
correlate with the endometrial NK cells in normal women, in infertile women, and in women with
RPL, even though there is evidence that peripheral NK cells could reflect, at least to some degree, the
local endometrial environment [131,141–146]. This issue is beyond the scope of the present article,
which is focused on the local endometrial immune environment in RPL.

The dysregulation of NK cells in the endometrium and decidua of women with RPL has potentially
important consequences, leading to fatal pregnancy impairment. Particularly relevant in this context
are the maintained cytotoxicity of uNK [23], the impaired capacity of uNK to properly interact with the
specific HLA expressed by trophoblast [146–148], the impaired capacity of uNK to effectively participate
in the full vascular remodeling of the uterine spiral arteries [129,149], the impaired capacity of uNK in
limiting T cell cytotoxicity [61], and a disturbed cytokine production pattern by uNK [143,150,151].

Therefore, evidence is accumulating that in uRPL, uNK are profoundly dysregulated in their
major pregnancy-promoting functions.

3.2.3. Uterine Dendritic Cells (uDCs)

The discovery of the important role of uDCs as powerful pregnancy-promoting cells at the
maternal–fetal interface has prompted an increasing interest in unraveling the potential involvement
of these immunoregulatory cells in RPL. There is evidence that abnormalities in uDCs are associated
with early pregnancy disorders. In a transgenic mouse model, depletion of uDCs impairs embryo
implantation and results in embryo resorption [152]. This action could be exerted independently of
the immunoregulatory effect of uDCs, suggesting that uDCs could exert other supporting roles in
implantation in addition to their tolerogenic action [152]. In human studies, it has been shown: (1) that
elevated levels of Th1-inducing myeloid DCs and reduced levels of tolerogenic CD200+ DC subsets
in peripheral blood are associated with RPL [153]; (2) that mature (non-tolerogenic) dendritic cells
in gestational decidua and placenta are increased and immature tolerogenic uDCs are decreased in
women with RPL compared with normal women [154,155]; (3) that in women with RPL there is a
downregulation of ILT4+ tolerogenic DCs in both peripheral blood and endometrium [156].

3.2.4. Tregs

Considerable information is available on the potential role of Treg alterations in RPL. As in the
case of uNK, the emerging role of these cells in embryo implantation and in maternal immunotolerance
in pregnancy has prompted a growing research interest in this issue. Studies carried out on animal
models revealed that depletion of CD4+CD25+ Tregs resulted in the greatest increase in miscarriage
rates [157,158], which were linked to the expansion of activated CD4+ and CD8+ T cells occurring only
in the uterine draining lymph nodes [158]. Conversely, the transfer of Tregs could prevent miscarriage
in abortion-prone mice [159,160]. Interestingly, this action is of particular relevance at the time of
implantation and in early pregnancy with a less marked effect in more advanced gestation [20,108,161],
suggesting that Tregs play a key role mainly at implantation and in the very early stages of pregnancy.
Studies of Tregs in women with RPL are in substantial agreement with the findings obtained in animal
models. Women with RPL have reduced Tregs in peripheral blood [162–164], as well as in their
endometrium and decidua, compared with normal women [163,165–167]. The reduction in Tregs in
women with uRPL is paralleled by an increase in Th17 cells [166,168], suggesting the presence of an
imbalance in Tregs/Th17 cells in uRPL [169–171]. The likely involvement of Tregs in uRPL is also
supported by the studies carried out on the forkhead box P3 (FOXP3), a transcription factor essential
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for the development and function of Tregs. There is an increased occurrence of the following mutant
genotypes and alleles of FOXP3 single nucleotide polymorphisms in women with uRPL compared
with control women: rs2232365, rs3761548, rs5902434, and rs2294021 [172,173]. Moreover, FOXP3
expression was reduced in peripheral blood and decidua in women with uRPL compared with normal
women [163]. In women with both uRPL and sporadic miscarriages, abnormalities in the normal
function exerted by Tregs in uncomplicated pregnancies have been identified including: (1) higher
numbers of Tregs from women with uRPL than normally fertile women were required to inhibit
proliferation of CD4+CD25- effector cells in response to paternal allostimulation [56], and (2) the
Helios+ Tregs—a supposed functionally active subset [174]—are reduced in the decidua of women with
sporadic miscarriage with normal embryo karyotype [165]. This last finding suggests that also some
(or several) cases of sporadic miscarriage, with normal fetal chromosome content, might be associated
with the immune etiology of miscarriage [165]. Since Tregs are involved in the downregulation of an
excessive inflammatory response toward the implanting embryo and the fetus, it is conceivable that
dysregulation and/or dysfunction of these cells could be a relevant factor leading to RPL. Finally, it
cannot be excluded that unstable dysregulated Tregs could directly be involved in fetal rejection, since
Tregs are highly plastic, allowing them to transdifferentiate, under specific conditions, into effector T
cells [175].

3.3. Endometrial Cytokine Imbalance in RPL

Consistent experimental evidence indicates that RPL is associated with an imbalance in the
endometrial and decidual cytokine environment typical of the normal pregnancy. The general
concept is that in women with uRPL, as well in animals prone to RPL, a dysregulated production of
several cytokines relevant for implantation and early pregnancy promotion occurs in both immune
and non-immune cells present or recruited into the endometrium and decidua. This generates an
unfavorable cytokine environment which, in turn, can impair the tolerance of the maternal immune
system towards the trophoblast and lead to the rejection of the conceptus. Owing to the complexity of
the endometrial cytokine network, which additionally undergoes profound changes in pregnancy, it is
difficult to identify all the cytokines involved in the determination of uRPL and define the relative
importance of each specific substance. Moreover, it can be difficult to exactly determine the specific
cell source of these factors, which are probably secreted by a wide variety of both immune- and
non-immune cells. Despite the above limitations, several selected cytokines are believed to play a
significant role in this context. These cytokines include at least IL-1, IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-7,
IL-8, IL-10, IL-12, IL-17, IL-18, IL-22, IL-23, IL-27, TGF-β, TGF-β1, IFN-γ, TNF-α, LIF, and MIF. The
reported changes of these cytokines in the endometrium and/or decidua in women with RPL compared
with normal women are summarized in Table 5.

Even though the results are sometimes conflicting, due to methodological differences in cell/tissue
preparation or separation, as well as in assay techniques, the emerging picture clearly defines a
potentially relevant role for selected molecules, such as IL-1α and β, TGF-β, TNF-α, IL-10, and LIF.
However, the potential relevant contribution of many other cytokines in RPL cannot be excluded.

Since the results concerning the variations in expression/production of many cytokines by the
endometrium and decidua in RPL are still conflicting, possibly owing to the above mentioned limitations,
some more details will be given for few selected substances for which enough agreement exists.

It is believed that uRPL is associated with a decrease in the decidual TGFβ. This is due to a
reduced production of TGFβ by decidual dendritic cells [176], to a reduced mRNA expression of
TGFβ [166], and to a reduced proportion of TGFβ+ Tregs in the decidua [177] of women with RPL
compared to normal control women. Since TGFβ has a recognized pregnancy-promoting role in
implantation and early pregnancy development, it is likely that a defective production of this cytokine
can be involved in uRPL of immune etiology.
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An increase in endometrial levels and decidual mRNA and protein expression of IFN-γ has been
consistently found in women with RPL [177–181]. RPL in presence of an excess of IFN-γ could be
the consequence of an excessive inflammatory reaction in the decidua, triggered by IFN-γ; moreover,
IFN-γ has a toxic effect on the embryo by inducing apoptosis [33] and, therefore, RPL.

IL-10 contributes, together with other cytokines and immunoregulatory substances such as TGFβ
and IDO, to the differentiation of DC into the tolerogenic phenotype, which, in turn, regulates the
expansion of Treg population in the decidua. The observed decrease in IL-10 expression and production
in the decidua of women with uRPL [176–180] can hamper this immunoprotective action.

The results obtained by studying the local uterine abnormalities in cytokine levels/production
are only in partial agreement with those found in studies carried out on peripheral blood and cells,
leaving open the question on whether it could be possible to obtain markers suggestive of immunologic
RPL from the peripheral blood [136,143,151,182–184]. Additionally, conflicting results were found in
several meta-analyses aimed at evaluating the importance of specific SNP for selected cytokines in
women with RPL [185,186]. Therefore, the immunogenetic contribution of cytokine gene variations in
RPL needs further evaluation to be clearly determined [187].
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Table 5. Summary of the major changes observed in cytokine expression/levels in the endometrium and decidua in women with RPL compared with normal women.

Cytokine Tissue/Cells Type of Variation Expression/Production Methods of Detection References

IL-1 (α and β) Decidua Decrease IL-1 pathway gene expression Microarray [188]

IL-1α Endometrium Decrease mRNA expression RT-PCR [189]

IL-1β Endometrium
Endometrium

Increase
Decrease

Tissue secretion
mRNA expression

ELISA
RNase protection assay

[190]
[191]

IL-2 Decidua Increase Cytokine production ELISA [176]

IL-4 Decidua
Decidual T cells

Decrease
Decrease

mRNA and protein expression
Cytokine production

ELISA + RT-PCR
ELISA

[178]
[179]

IL-6
Decidua

Endometrium
Endometrium

Increase
Decrease
Decrease

mRNA and protein expression
mRNA expression
mRNA expression

RT-PCR
RT-PCR

RNase protection assay

[166]
[189]
[191]

IL-7 Decidual stromal
cells Increase Cytokine expression IHC [170]

IL-8 Decidua Increase IL-8 pathway gene expression Microarray [188]

IL-10

Decidua
Decidua
Decidua

Decidual Tregs
Decidual T cells

Decrease
Decrease
Decrease
Decrease
Decrease

mRNA and protein expression
Cytokine production

Protein expression
Cytokine expression
Cytokine production

ELISA + RT-PCR
ELISA

RT-PCT
Flow cytometry

ELISA

[178]
[176]
[180]
[177]
[179]

IL-12 Endometrium Increase Tissue levels ELISA [181]

IL-17 Decidua
Decidua

Unchanged
Increase

mRNA and protein expression
mRNA and protein expression

qRT-PCR + IHC +WB
RT-PCR + WB

[138]
[167]

IL-18 Endometrium
Endometrium

Increase
Increase

Tissue levels
Tissue secretion

ELISA
ELISA

[181]
[190]

IL-22 Decidua Decrease mRNA and protein expression qRT-PCR + IHC +WB [138]

IL-23 Decidua
Decidua

Unchanged
Increase

mRNA and protein expression
mRNA and protein expression

qRT-PCR + IHC +WB
RT-PCR + WB

[138]
[167]

IL-27 Decidua Decrease mRNA and protein expression qRT-PCR + WB [192]

TGF-β Decidual Tregs Decrease Cytokine expression Flow cytometry [177]

TGF-β1 Decidua
Decidua

Decrease
Decrease

mRNA and protein expression
Cytokine production

RT-PCR + ELISA
ELISA

[166]
[176]
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Table 5. Cont.

Cytokine Tissue/Cells Type of Variation Expression/Production Methods of Detection References

IFN-γ
Endometrium

Decidua
Decidua

Increase
Increase
Increase

Tissue levels
Cytokine production

mRNA and protein expression

ELISA
ELISA

RT-PCR + ELISA

[181]
[176]
[178]

TNF-α Decidua Increase mRNA and protein expression RT-PCR + ELISA [166]

LIF
Endometrium
Endometrium

Decidual T cells

Decrease
Increase
Decrease

Tissue levels
mRNA expression

Cytokine production

ELISA
RT-PCR
ELISA

[181]
[193]
[179]

MIF Endometrium
Decidual T cells

Decrease
Decrease

Tissue levels
Cytokine production

ELISA
ELISA

[181]
[179]

IL-2: interleukin-2; IL-4: interleukin-4; IL-6: interleukin-6; IL-7: interleukin-7; IL-8: interleukin-8; IL-12: interleukin-12; IL-17: interleukin-17; IL-18: interleukin-18; IL-22: interleukin-22;
IL-23: interleukin-23; IL-27: interleukin-27; MIF: macrophage migration inhibitory factor.
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4. Conclusions and Future Directions

In the last three decades, enormous progress has been made in the comprehension of the
mechanisms underlying the maternal acceptance of the genetically and immunologically different
embryo. The emerging picture can be synthesized as follows: (a) it has become clear that the
maternal immune system is intimately involved in the establishment, maintenance, development, and
termination of the normal pregnancy. In this context, it is logical and highly plausible that the immune
system has been used to regulate all the phases of the pregnancy and, possibly, of reproduction in
evolved animals; (b) multiple mechanisms have been developed to prevent the maternal immune
dysfunction leading to the loss of pregnancy. These mechanisms are aimed to induce an overall
immunological tolerance of the mother towards the fetus while maintaining full immunological
reactivity against all the other foreign antigens. To reach this objective, the maternal immune system
needs to undergo a modulation which involves many, if not all, the major cellular and molecular
components of the adaptive and innate immune systems, assigning to each of them specific, although
sometimes redundant, duties; (c) the involvement of the maternal immune system is not limited
to a correct immunologic dialogue at the maternal–fetal interface, but is extended to the uterine
(endometrial) tissue breakdown, vascular remodeling, and placentation; (d) the trophoblast actively
participates in its own survival and modulation of the maternal immune response to its presence; in
this respect, its behavior is more similar to that of a tumor rather than to a transplant; (e) the maternal
immune response to the conceptus undergoes considerable changes according to the gestational age.
In fact, recent evidence supports the concept that the implantation of the embryo evokes an initial,
early, inflammatory reaction which is promptly followed by the establishment of an anti-inflammatory
decidual environment, allowing the survival of the conceptus and the progression of the pregnancy.
A final, even more powerful, inflammatory reaction occurs in late gestation and results in labor and
the delivery of the fetus. All of these events fully involve the maternal immune system.

In this context, it is very likely that derangements of the immune system can be operative in at
least some women with unexplained RPL, in which no other clinical causes or explanation can be found.
In these women, it is highly likely that an immune dysfunction occurs in the endometrium and in the
decidua, which represents the major maternal–fetal interface and in which significant immunologic
changes are known to physiologically occur. However, it is possible that different abnormalities in
the immune system lead to the same final effect—the RPL—in different women; in other words, it is
possible that different immunological modes of RPL exist. Some of these modes are summarized in
Table 6 and Figure 1c.

Future research is needed to answer this relevant question and to help develop effective
immunologic treatments for this subset of women with RPL. Considerable progress is needed in this
area. In fact, the currently available treatments for RPL of supposed immune etiology are rather limited,
empiric in the majority of cases, and with low efficacy, with few exceptions, such as aspirin/aspirin
plus heparin when used in the case of RPL in women with antiphospholipid antibodies [194]. Other
treatments based on a potentially reasonable immune background, as in the case of intravenous
immunoglobulin (IVIg), have been shown to have a potential efficacy in selected groups of women
with RPL and when initiated before pregnancy [195].

Future perspectives in the treatment of RPL of immune etiology could be aimed to correct abnormal
decidualization as well as dysfunctions of the immune mechanisms occurring in the endometrium
and decidua, on the basis of the emerging evidence. As an example, the effects of seminal plasma on
the expansion of Tregs could allow an innovative therapeutic approach, that is already being used in
assisted reproductive technologies (ART), even though with still controversial results [196–198].
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Table 6. Summary of the suggested major immunologic alterations in the endometrium and potential
pathogenetic mechanisms leading to RPL.

Suggested Alteration Potential Pathogenetic Mechanism(s)

Abnormal decidualization of the ESC

Altered control of the local trafficking of immune cells by ESC;
Altered modulation of the inflammatory response to the
implanting embryo;
Dysregulation in cytokine production

Abnormal killer immunoglobulin receptor
(KIR)–uNK interaction

Abolished or reduced prevention of the maternal immune
rejection of the conceptus

Increased toxicity of uNK

Impaired capacity to limit T cell cytotoxicity;
Potential toxicity toward the cytotrophoblast;
Abnormal cytokine production;
Defective remodeling of the spiral arteries

Abnormal number/function of
endometrial/decidual Tregs

Lack of inhibition of Th1 and Th17 cells;
Defective/absent resolution of the inflammatory reaction
consequent to initial embryo implantation;
Reduction or abolition of the maternal immunologic tolerance
toward the fetus;
Defective remodeling of the spiral arteries

Limited differentiation of macrophages
toward the M2 immunophenotype Reduced production of tolerogenic cytokines (IL-10, TGF-β)

Lack of immature dendritic cells Lack of the expansion of Treg population

Activation of lymphocytes T effector Immune attack to the trophoblast

Aberrant local cytokine network Development of a local immunomodulatory environment
unfavorable to maternal tolerance toward the conceptus

Another emerging area of investigation and potentially useful treatment is represented by situations
in which RPL is associated with chronic inflammation of the endometrium (chronic endometritis, CE).
CE, that is still poorly considered in most diagnostic protocols for RPL, in a recent study has been found
in a substantial proportion (27%) of women with unexplained RPL [199]. This finding confirms the
results of previous studies in which CE has been detected in 13%–56% of women with RPL [200,201]
and supports the concept that CE could be a not negligible cause of RPL. The suggested mechanism
by which CE could determine RPL is an alteration of the normal decidualization of endometrial
stromal cells [202]. Since proper treatment of CE in RPL women can lead to improvement in live birth
rates [203], the clear detection of this condition can be beneficial at least in a subset of these patients.
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