Supporting Information for:

Antioxidant and antiproliferative activities of 1,2,3-triazolyl-L-ascorbic acid derivatives

Anja Harej ¹, Andrijana Meščić Macan ^{2,*}, Višnja Stepanić ³, Krešimir Pavelić ⁴, Sandra Kraljević Pavelić ^{1,*}, Silvana Raić-Malić ²

- ¹ University of Rijeka, Department of Biotechnology, Centre for High-throughput Technologies, Radmile Matejčić 2, 51000 Rijeka, Croatia
- ² University of Zagreb, Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, Marulićev trg 20, 10000 Zagreb, Croatia
- ³ Ruđer Bošković Institute, Division of Electronics, Bijenička cesta 54, 10 000 Zagreb
- ⁴ Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia

Contents:	
Table S1.	S2
¹ H and ¹³ C NMR spectra of compd.	S3–S34

Comp	R/X	IC _{50^a} (μM)							-1 Dh	
		A549	CFPAC-1	HCT-116	HeLa	HepG2	MCF-7	SW620	WI-38	clogr
7c		>100	>100	>100	>100	>100	>100	>100	>100	1.67
7d		>100	>100	>100	>100	>100	>100	>100	>100	0.17
7e	- Br	>100	>100	>100	>100	>100	>100	>100	>100	0.69
7f		>100	>100	>100	>100	>100	>100	>100	>100	0.31
7g		>100	>100	>100	>100	>100	>100	>100	>100	-0.10
7i		>100	>100	>100	>100	>100	>100	>100	>100	-0.38
7j	() OH	>100	>100	>100	>100	>100	>100	>100	>100	-0.38
7k	C ₅ H ₁₁	>100	>100	>100	>100	>100	>100	>100	>100	2.09
71	<	>100	>100	>100	>100	>100	>100	>100	>100	-0.62
7m	$\sim\sim\sim$	>100	>100	>100	>100	>100	>100	>100	>100	-0.06
7n	-~~**	>100	>100	>100	>100	>100	>100	>100	>100	2.67
70		>100	>100	>100	>100	>100	>100	>100	>100	-0.15
7p		>100	>100	>100	>100	>100	>100	>100	>100	-0.28
7q	·∼ ^{OH}	>100	>100	>100	>100	>100	>100	>100	>100	-1.89

Table S1. The growth-inhibition effects *in vitro* presented as IC50^a (μ M) for tested compounds 7c-7g and 7i-7q on selected tumour cell lines and normal fibroblasts.

^aIC₅₀: inhibitory concentration of compounds on human tumor cell lines and normal cell lines required inhibiting cells by 50%. ^bValues of n-octanol/water partition coefficients clog P were calculated by DataWarrior [44].

Figure S1. a) ¹H NMR and b) ¹³C NMR of compd. 4b.

Figure S2. a) ¹H NMR and b) ¹³C NMR of compd. 4c.

Figure S3. a) ¹H NMR and b) ¹³C NMR of compd. 4d.

Figure S4. a) ¹H NMR and b) ¹³C NMR of compd. 4e.

Figure S6. a) ¹H NMR and b) ¹³C NMR of compd. 4g.

Figure S8. a) ¹H NMR and b) ¹³C NMR of compd. 4k.

Figure S9. a) ¹H NMR and b) ¹³C NMR of compd. 41.

Figure S11. a) ¹H NMR and b) ¹³C NMR of compd. 4n

Figure S12. a) ¹H NMR and b) ¹³C NMR of compd. 40.

Figure S14. a) ¹H NMR and b) ¹³C NMR of compd. 4q.

^{110 100} f1 (ppm)

Figure S19. a) ¹H NMR and b) ¹³C NMR of compd. 7c.

S21

Figure S23. a) ¹H NMR and b) ¹³C NMR of compd. 7g.

Figure S29. a) ¹H NMR and b) ¹³C NMR of compd. 7n.

Figure S30. a) ¹H NMR and b) ¹³C NMR of compd. 70.

165 155 145 135 125 115 105 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 f1 (ppm)