

Figure S1. Spectral properties of the bromocryptine (BEC)- and midazolam-bound CYP3A4 (panels A-B and C-D, respectively). A and C - Spectral changes observed during equilibrium titrations of ligand-free CYP3A4 with bromocryptine and midazolam, respectively. B and D-Spectral changes observed during equilibrium titrations of bromocryptine- and midazolam-bound CYP3A4, respectively, with ritonavir. In panels A and C, absorbance spectra of ligand-free and substrate-bound CYP3A4 recorded at the end of titration are in black and red, respectively. In panels B and D, spectra of the CYP3A4-ritonavir complex are in light-brown. In competitive displacement experiments, the bromocryptine and midazolam concentrations were $10 \mu \mathrm{M}$ and $280 \mu \mathrm{M}$, respectively. In all panels, left insets are the difference spectra recorded in a separate experiment where equal amounts of dimethyl sulfoxide (DMSO) were added to the reference cuvette to correct for the solvent-induced spectral perturbations. Right insets are titration plots derived from the difference spectra with hyperbolic or quadratic fittings. Spectral dissociation constants $\left(\mathrm{K}_{\mathrm{s}}\right)$ are indicated.
A
B

Figure S2. A-C, Simulated annealing omit electron density maps for mibefradil, azamulin and $6^{\prime}, 7^{\prime}-$ dihydroxybergamottin ($6009,600 \mathrm{~A}$ and 600 B structures, respectively) shown as green mesh and contoured at 3σ level. In panel C, cyan sphere is a water molecule ligated to the heme iron.

Figure S3. A and B, Structural superposition of ligand-free CYP3A4 (in black; 5VCC model) and its complexes with mibefradil and $6^{\prime}, 7^{\prime}$-dihydroxybergamottin (60O9 and 60OB structures, respectively). Virtually no structural rearrangement was induced upon association of both substrates (shown in space-filling representation). Root-mean-square deviation between the $\mathrm{C} \alpha$-atoms of the superimposed structures was $<0.45 \AA$.

Figure S4. Superposition of the ligand-free (5VCC; in black) and azamulin-bound CYP3A4 (6OOA; in beige). Residues undergoing conformational rearrangement are displayed and labeled. The F-F' loop, shown in purple in the 5VCC structure, becomes disordered in the CYP3A4-azamulin complex due to steric clashing with the amino-triazolyl end-group. Root-mean-square deviation between the $C \alpha$ atoms of the 5 VCC and 6 OOA structures is $0.63 \AA$. .

Figure S5. A and B, Spectral changes observed during equilibrium titrations of bergamottin- and DHB-bound CYP3A4, respectively, with ritonavir. Spectra of substrate-bound CYP3A4 are in red. Spectra of the CYP3A4-ritonavir complex and its ferrous and ferrous CO-bound forms are in brown, green and blue, respectively. Bergamottin and DHB concentrations were $20 \mu \mathrm{M}$ and $70 \mu \mathrm{M}$, respectively. Left and right insets are the difference spectra and titration plots with quadratic fittings, respectively. The derived spectral dissociation constants for ritonavir ($\mathrm{K}_{\mathrm{S}}{ }^{\mathrm{RIT}}$) were similar and equal to 35 and 32 nM , respectively.

Table S1. Data collection and refinement statistics.

Ligand dihydroxybergamottin PDB code	mibefradil	azamulin $6^{\prime}, 7^{\prime}-$	
	6009	600A	600B
Data collection statistics			
Space group	I222	I222	I222
Unit cell parameters$\AA,$	$a=78 \AA, b=103 \AA$,	$a=77 \AA, b=102 \AA$,	$a=78 \AA$, $b=102$
	$\begin{aligned} & c=127 \AA \\ & \alpha, \beta, \gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & c=126 \AA \AA \\ & \alpha, \beta, \gamma=90^{\circ} \end{aligned}$	$\begin{aligned} & c=127 \AA ; \\ & \alpha, \beta, \gamma=90^{\circ} \end{aligned}$
Molecules per asymmetric unit	1	1	1
Resolution range (\AA)	79.99-2.25 (2.37-2.25) ${ }^{\text {a }}$	78.97-2.52 (2.66-2.52)	79.82-2.20 (2.27-
2.20)			
Total reflections	120,774	94,344	196,832
Unique reflections	22,832	16,915	26,105
Redundancy	5.3 (5.1)	5.6 (5.6)	7.5 (5.2)
Completeness	93.4 (93.7)	100.0 (100.0)	99.7 (97.6)
Average $I / \sigma I$	8.7 (0.9)	11.1 (1.2)	6.8 (1.0)
$\mathrm{R}_{\text {merge }}$	0.082 (1.481)	0.074 (1.502)	0.102 (0.882)
$\mathrm{R}_{\mathrm{pim}}$	0.038 (0.691)	0.034 (0.691)	0.047 (0.628)
CC 1/2	0.998 (0.458)	0.999 (0.366)	0.998 (0.482)
Refinement statistics			
$R / R_{\text {free }}{ }^{\text {b }}$	19.9/26.1	19.5/25.2	20.7/27.5
No. of protein atoms	3748	3650	3689
No. of ligand atoms	35	32	26
No. of water molecules	59	15	37
Average B-factor (\AA^{2}):			
Protein	92.2	103.9	97.0
Ligand	105.4	104.4	133.9
Ligand fit:			
RSCC	0.89	0.94	0.88
RSR	0.43	0.25	0.45
r.m.s. deviations: Bond lengths, \AA	0.009	0.009	0.009

Bond angles, ${ }^{\circ}$	1.129	1.159	1.123
Ramachandran plot $^{\mathbf{c}}($ residues; \%)			
Preferred	$418(93.5 \%)$	$414(93.9 \%)$	$418(92 \%)$
Allowed	$29(6.5 \%)$	$27(6.1 \%)$	$37(8 \%)$
Outliers	none	none	$1(0.2 \%)$

$\overline{{ }^{a}}$ Values in brackets are for the highest resolution shell.
${ }^{\mathbf{b}} R_{\text {free }}$ was calculated from a subset of 5% of the data that were excluded during refinement. ${ }^{\mathrm{c}}$ Analyzed with PROCHECK.

