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Abstract: The mammalian brain is enriched with lipids that serve as energy catalyzers or secondary
messengers of essential signaling pathways. Docosahexaenoic acid (DHA) is an omega-3 fatty acid
synthesized de novo at low levels in humans, an endogenous supply from its precursors, and is
mainly incorporated from nutrition, an exogeneous supply. Decreased levels of DHA have been
reported in the brains of patients with neurodegenerative diseases. Preventing this decrease or
supplementing the brain with DHA has been considered as a therapy for the DHA brain deficiency
that could be linked with neuronal death or neurodegeneration. The mammalian brain has, however,
a mechanism of compensation for loss of neurons in the brain: neurogenesis, the birth of neurons
from neural stem cells. In adulthood, neurogenesis is still present, although at a slower rate and with
low efficiency, where most of the newly born neurons die. Neural stem/progenitor cells (NSPCs) have
been shown to require lipids for proper metabolism for proliferation maintenance and neurogenesis
induction. Recent studies have focused on the effects of these essential lipids on the neurobiology of
NSPCs. This review aimed to introduce the possible use of DHA to impact NSPC fate-decision as a
therapy for neurodegenerative diseases.

Keywords: omega-3 fatty acids; docosahexaenoic acid; neural stem cell; adult
neurogenesis; neuroprotection

1. Introduction

The human brain is a network of a great diversity of cells that ensure proper cerebral function.
Neurodevelopment during embryogenesis is particularly important. It was thought for a long time that
neurons, the main actors of cerebral electrical activity, were only produced during neurodevelopment
and that their number was definite at the end of brain maturation. While still debated, the process
of the creation of new neurons has been observed more and more in the adult human brain [1–5].
Adult neurogenesis is made possible by the maintenance of a pool of pluripotent cells, neural
stem/progenitor cells (NSPCs), and their subsequent differentiation into mature functional cells, namely
neuronal cells for neurogenesis [6–9]. There is, however, a loss of neurogenesis rate with age [10],
which could explain the still ongoing debate around the existence of adult neurogenesis.
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Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, is uniquely enriched in
the brain and the retina [11,12], and is required for proper human brain development and visual
functions [13–16]. Several studies conducted both in animal models and in humans have suggested
that an adequate dietary intake of omega-3 fatty acids can prevent cognitive decline and attenuate the
physiological disturbances of the brain that are associated with ageing or with neurological disorders,
such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) [17–21]. This is particularly interesting
and could be linked to the important role played by DHA in NSPC metabolism. With descriptions of
adult neurogenesis and DHA metabolism, we have emphasized the importance of DHA for NSPC cell
fate decision-making, and updated the current knowledge of DHA and omega-3 fatty acid effects on
neurogenesis and neuroprotection.

2. Adult Neurogenesis Is Linked with a Metabolic Shift

2.1. Adult NSPC Origin and Neurogenic Niches

Mammalian brains are composed of a diversity of cell types that ranges from glial cells (i.e.,
astrocytes, microglia, and oligodendrocytes) to neuronal cells (i.e., neurons). During embryonic
development, all cells are generated from a single cell type: the embryonic neural stem progenitor
cells. These are pluripotent cells that can divide symmetrically to increase the cell population pool,
or proliferate—divide asymmetrically to produce fate-committed cells, a process of differentiation or
specification [22–25]. Rapid proliferation followed by differentiation into glial cells, gliogenesis, or
neuronal cells, neurogenesis, has been observed in mice embryos [26–29]. This ensures proper brain
development for cognitive functions. In rodent neocortex, neurogenesis mainly occurs from E12 to E18,
followed by gliogenesis starting from E18 up to postnatal age. Oligodendrogenesis happens in several
waves during embryogenesis and postnatally. It is generally accepted that NSPCs that have divided
less are more likely to produce neurons compared to NSPCs that have undergone more divisions,
which are considered more gliogenic [30].

However, two neurogenic niches are found in mouse brain: the subgranular zone (SGZ) of
the dentate gyrus of the hippocampus [8,31,32] and the subventricular zone of the lateral ventricles
(SVZ) [6,33–35]. Some research groups suggest that adult NSPCs originate from embryonic NSPCs
that went into a quiescent state for maintenance of a life-long pool [36–40]. Adult NSPCs from the
two niches both have the same capacity to differentiate into neuronal or glial cells [6–9], although the
functions they serve are suggested to be different depending on the production site and their migration
trajectory. The SVZ NSPCs have been mainly observed to integrate into the olfactory bulb and to serve
the functions of olfactory recognition and memory [41,42], while the SGZ NSPCs are mainly involved
in hippocampal functions, including learning and spatial memory and mood [43–45].

In adult age, neurogenesis is significantly lower than in young individuals [10]. The determining
factors for the cell-fate decision of adult NSPCs are still under study, but most studies have converged to
the hypothesis that low adult neurogenesis is observed because most NSPCs are dormant/quiescent [46],
and that exiting this stage to proliferate or differentiate does not lead to the birth of healthy and
functional cells, rather leading to the premature death of the cells [47–50]. This phenomenon has also
been suggested to be involved in neurodegenerative diseases [51]. It is thus important to identify the
signaling pathway behind adult NSPCs’ complex metabolism. We note that human adult neurogenesis
is still an open debate, although evidence of the existence of neural stem cells has been observed in
human brains [1–5]. Numerous reviews have detailed the biology of adult NSPCs [52–58].
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2.2. Cell-fate Decision and Increased Lipogenesis

The factors inducing the transitions between proliferation and differentiation and between
neurogenesis and gliogenesis are still not fully understood. They include extrinsic factors: cytokines,
growth factors, neurotransmitters, and morphogens. Intrinsic factors are also involved, and include
transcription factors, epigenetic regulators, and non-coding RNAs such as microRNAs [59–61].
They have been covered extensively in previous reviews [56,58,62–64]. Proliferation and differentiation
of NSPCs is energy-consuming, and cells need substrates to initiate cell cycle entry and progression [65].
Possible stocks include glucose and lipids from the cell membrane, as well as uptake from the
extracellular environment. Proliferating stem cells favor high glycolysis for energy production
and proliferate in hypoxic conditions with low oxygen consumption, as observed in other stem
cells [66,67]. This has also been observed in quiescent stem cells with less glycolysis and even less
oxygen consumption. However, a metabolic shift has been observed during fate commitment of the
stem cells, ensuring differentiation and maturation. The energy production site of stem cells is the
mitochondria. Mitochondria use oxidative phosphorylation (OXPHOS) to produce ATP (adenosine
triphosphate), which has been shown to be required to initiate differentiation [68,69]. As a result,
there is an elevation in reactive oxygen species (ROS) during neurogenesis [70]. ROS might act
on differentiating pathways [71] but have a downfall effect. ROS elevation intracellularly is linked
with oxidative stress and DNA damage [72–74], and could lead to the premature death of newly
differentiated cells [75–77]. The essential role of the mitochondria has been detailed in previous
reviews [78–80].

NSPC metabolism has also been shown to depend on lipid biogenesis and metabolism.
One research group showed that impairment of lipogenesis, the production of lipids from end-products
of glucose metabolism, could prevent NSPC differentiation [81]. They also discovered that fatty
acid oxidation (FAO) inhibition in SGZ NPSCs led to quiescent cell death and reduction of cell
proliferation [82]. Another group found that FAO blocking decreased proliferation of SVZ NSPCs [83].
Both discoveries suggest that FAO is required for sustaining energy production in proliferating cells,
while lipogenesis is necessary for differentiation. Interestingly, providing fatty acids as a source of
energy instead of glucose increased the developmental stage of human-induced pluripotent stem
cell-derived cardiomyocytes, with a preferential switch to energy production via FAO [84]. In another
model of human pluripotent stem cells, researchers observed that lipid deprivation maintained cells
in a pluripotent state [85]. FAO occurs in mitochondria, while de novo lipogenesis takes place in
the cytoplasm, emphasizing once more the close link between mitochondrial function and NSPC
metabolism [86] (see summary in Figure 1). Lipids are stored in cell bilayer membranes, in structures of
higher complexity such as glycerophospholipids. They serve many purposes, like the above-mentioned
energy production, but are also key players of signaling pathways for inflammation, oxidation,
or apoptotic cascades. Among the abundant lipids composing brain cells, there is evidence of an
enrichment in the omega-3 fatty acid DHA in the brain and the retina compared to other tissues [11,12],
and poor DHA and other omega-3 fatty acid dietary supply during pregnancy leads to high risks of poor
visual and cerebral development of infants and to increased risk of cognitive function impairments and
possibly neurodegenerative diseases (as reviewed previously [16,87–90]). This hints at the important
role played by DHA and other omega-3 fatty acids in NSPC metabolism.
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(ROS) generation and defense in neural stem/progenitor cells (NSPCs) during cell-fate decision. 
Illustrated for NSPC metabolism from quiescent cells to immature neuron differentiation in the adult 
subgranular zone (SGZ) and the developing forebrain. From Knobloch et al. [86]. 
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double bonds, the first double bond being present at the carbon 3, counting opposite to the terminal 
methyl group. They are essential fatty acids that are synthesized at low levels de novo in human 
metabolism and are mainly incorporated through our diets. The main omega-3 fatty acids are, in 
increasing chain length order: alpha-linoleic acid (ALA,18:3n-3), eicosapentaenoic acid (EPA,20:5n-
3), and DHA (22:6n-3). Omega-3 fatty acids are particularly enriched in oily fishes such as salmon, 

Figure 1. Representation of the major metabolic pathway changes of glycolysis, oxidative
phosphorylation (OXPHOS), fatty acid oxidation (FAO), lipogenesis, and reactive oxygen species (ROS)
generation and defense in neural stem/progenitor cells (NSPCs) during cell-fate decision. Illustrated
for NSPC metabolism from quiescent cells to immature neuron differentiation in the adult subgranular
zone (SGZ) and the developing forebrain. From Knobloch et al. [86].

3. DHA Is a Major Component of Brain Lipids

3.1. Omega-3 DHA Levels in the Brain

Omega-3 fatty acids are polyunsaturated fatty acids that are characterized by the presence of
double bonds, the first double bond being present at the carbon 3, counting opposite to the terminal
methyl group. They are essential fatty acids that are synthesized at low levels de novo in human
metabolism and are mainly incorporated through our diets. The main omega-3 fatty acids are,
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in increasing chain length order: alpha-linoleic acid (ALA,18:3n-3), eicosapentaenoic acid (EPA,20:5n-3),
and DHA (22:6n-3). Omega-3 fatty acids are particularly enriched in oily fishes such as salmon,
anchovies, or sardines for DHA dietary supply, but also in vegetable oils (i.e., soybeans) for ALA
supply [91]. DHA synthesis is possible via the elongation-desaturation pathway from ALA through
conversion into EPA. Although this DHA supplementation is considered to be sufficient for proper
brain DHA accretion [92], it still requires the dietary supplementation of ALA.

DHA is seldom observed in the free fatty acid form in brain cells; it is mostly incorporated
into the glycerophospholipids contained in the cell membranes. The main phospholipids
are phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylinositols (PI),
and phosphatidylserines (PS), with a preferential abundance in ethanolamine glycerophospholipids
(EtnGpl) [93–95]. In aged mammalian brain, DHA is recovered mainly in the cortex and cerebellum [95].
An exhaustive study of determination of the fatty acid composition in several brain regions according
to experimental models of mice and different diets was performed and showed that DHA content is
very dependent on dietary supply [96].

3.2. DHA Metabolism and Oxygenated Metabolites

There is competition for enzymes and incorporation into phospholipids between omega-3 and
omega-6 fatty acids, which are polyunsaturated fatty acids with double bonds starting from the carbon
6, away from the terminal methyl group. Moreover, omega-6 signaling cascades include the formation
of cytokines, some of which are key players of inflammatory pathways, through synthesis involving
the same enzymes as those required by omega-3-derived metabolite generation [97]. Being highly
unsaturated, DHA has the potential to be oxygenated by various lipoxygenases to produce oxylipins
that regulate several biological processes within the brain. Although being identified only at low
levels in vivo in the brain, these mediators are mainly produced by lipoxygenase action and include
hydroxylated DHA, while some of them can be metabolized into potent mediators, such as protectin
D1 (PD1), resolvins, and maresins [98,99]. One isomer of PD1 was identified by our group and
named protectin DX (PDX [100]), and was observed in mice brains in vivo [101]. Other reviews have
explored in more details the different derivatives of omega-3 fatty acids and their potent effects as
neuroprotective agents or neurogenesis inducers [102–104]. As mentioned before, fatty acids also
participate in cell energy production by serving as substrates for FAO.

3.3. DHA Delivery Strategy for Better Brain Accretion

For therapeutic use, the primary step is to ensure proper DHA delivery to the brain from
blood through the blood–brain barrier (BBB). We previously published a summary of the known
mechanisms of DHA brain accretion [105]. BBB is a physiological barrier preventing the invasion of toxic
compounds and ensuring correct homeostasis for the healthiest brain conditions. Nutrients from diet
are transported in the blood stream up to the BBB. DHA is either bound to albumin in its free form and
within lysophosphatidylcholine (LysoPC) [106], or is taken up by lipoproteins [107]. The mechanisms
of entry into endothelial cells are still under debate and may include passive diffusion of cleaved
DHA or LysoPC–DHA from albumin and lipoproteins [108], and active transportation via specific
membrane proteins. An emerging candidate is the major facilitator superfamily domain-containing
protein 2A (Mfsd2a), which has been proven to preferentially bind LysoPC–DHA compared to
the free fatty acid form [109,110]. Mfsd2a-knockout animal models showed decreased DHA brain
levels [109], microencephaly [111], and dysregulated lipogenesis and phospholipid accretion in cell
membranes [112]. Other studies showed that LysoPC–DHA supplementation through diet increased
brain DHA content as compared to free fatty acid DHA [113,114], in particular in the cerebellum,
hippocampus, striatum, and amygdala, with improvement of memory functions [115]. One group
recently showed that DHA esterified in PE or PC was better taken up by the brain compared to DHA
in triacylglycerols in adult rats [116], as was shown previously [117].
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We showed previously that a synthetic analog of LysoPC–DHA, called AceDoPC® for
1-acetyl,2-docosahexaenoyl-PC [118–120], was better incorporated into the brain of rats injected
intravenously with AceDoPC compared to the free fatty acid form of DHA and PC–DHA [121].
Preliminary results showed that DHA was particularly accumulated in specific brain regions that
included the hippocampus, one neurogenic niche of mammalian brains. Moreover, we also observed
that this preferred vector of DHA to the brain was neurogenic on adult NPSCs in a model of
hypoxia in vitro [122], and thus could serve two purposes: increasing DHA accretion and providing
neuroprotection. DHA and other fatty acid transport intracellularly is also of primary importance,
and is mainly handled by fatty acid binding proteins [123,124]. Several studies have highlighted the
importance of these proteins for brain development [125,126]. DHA, and phospholipids containing
DHA, also have the ability to modulate membrane composition through lipid rafts and act on
the trafficking of signaling molecules, which could, in turn, impact neuronal processes [127,128].
A comprehensive review of DHA brain uptake and metabolism was published recently [129]
(see Figure 2).
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Figure 2. Docosahexaenoic acid (DHA) uptake through the blood–brain barrier (BBB) and metabolism
in brain cells. Transfer from plasma to endothelial cells is possible through passive diffusion and active
transport of non-esterified DHA (NE-DHA) or lysophospholipid containing DHA (LysoPL), including
LysoPC–DHA. Active transport involves lipoproteins and Mfsd2a. Inside endothelial cells, NE-DHA
and DHA cleaved from LysoPL–DHA are bound to fatty acid binding proteins (FABP) to cross the
intercellular space to reach brain cells. DHA then participates in cell metabolism for energy production
of CoA and production of signaling mediators, specialized pro-resolving mediators (SPM), producing
beta-oxidation. For further details, refer to original figure from Lacombe et al. [129].
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4. DHA Modulation of Neuroprotection and Neurogenesis for Therapeutics

4.1. DHA Impacts Cell-Fate Decision and Survival of Newly Born Cells

Much work is now ongoing to determine the exact mechanisms underlying the possible use
of DHA and other omega-3 fatty acids to influence the fate and behavior of neural stem cells.
As mentioned above, DHA can serve as a substrate for the production of energy for the progression
of cell cycle and cell division. To our knowledge, only a few studies have focused on the effects
of DHA on the proliferation of adult NSPCs, compared to numerous studies on embryonic NSPCs
as well as studies on cancer cells. We report here the work of Sakayori et al., who showed that
arachidonic acid (ARA, an omega-6 fatty acid) and DHA have distinct effects on the metabolism
of NSPCs [130]. DHA supplementation to adult NSPCs from rats showed increased proliferation,
as did ARA supplementation. However, in a medium deprived of growth factors, DHA induced
neurogenesis while ARA increased astrogliogenesis. They observed that high concentrations of DHA
(10 micromolar and above) could be detrimental to the proliferation capacity of the NSPCs, which was
also observed by our group [122], and which interestingly was not observed when DHA as esterified
within AceDoPC®, a DHA-containing phospholipid. These high concentrations of DHA have also
been studied in cancer cells, and they were shown to reduce proliferation, invasion, and also survival
of the cells [131,132], due to the accumulation of ROS intracellularly and damage to the mitochondria
that led to the activation of the apoptotic pathway [133].

One emerging hypothesis is that DHA induces the exit of the cells from the S-phase of the cell
cycle to initiate differentiation into specialized mature cells [134]. If the right balance is found between
the non-detrimental effects of DHA, this could lead to an enrichment in mature cells from NSPCs, as
well as maintained cell proliferation. Transgenic mice expressing the Caenorhabditis elegans fat-1 gene
are able to convert omega-3 fatty acids from omega-6 fatty acids, leading to an abundance of the former
lipids. These mice showed an enhancement of proliferating cells in the SGZ of young adult mice and
an increase in performance in spatial learning tests [135], which the authors explained as an increase in
neurogenesis that in turn helped with hippocampal memory. Numerous reviews have reported the
effects of DHA on the neurogenesis of neural stem cells, mainly embryonic [136–139]. DHA promotes
neurogenesis in vitro but does not promote gliogenesis [130,140–142]. DHA can act on transcription
factors such as Hes1 (hairy and enhancer of split 1, a basic helix–loop–helix transcription factor),
increasing p27kip1 level, a cyclin-dependent kinase inhibitor, thus stopping cell cycle progression [143]
and inducing differentiation [144–146]. NeuroD (helix–loop–helix transcription factor) and MAP2
(microtubule-associated protein 2) levels were also increased with DHA addition, suggesting that protein
kinase C-dependent mechanisms might be involved. Another candidate pathway is the activation of
G-protein coupled receptor 40 [140]. The increased number of neurons derived from NSPCs could also
be due to a combination between an increased number of NSPCs differentiating into neurons and a
pro-survival effect on newly born neurons. DHA and omega-3 fatty acids enhance neuroprotection
by anti-apoptotic [143,147,148], anti-oxidative [149–152], and anti-inflammatory effects [153,154].
Furthermore, as mentioned above, DHA metabolites also present pro-survival activity.

4.2. DHA Induces Neuroprotection and Increased Neurogenesis

Normal aging is marked by neurogenesis loss, and thus could be impacted by DHA supply.
However, most studies have indicated that DHA effects on neurogenesis were mostly relevant when
compared with subjects fed with DHA-deficient diets [155,156], except for the recent study mentioned
previously with DHA supplementation through LysoPC–DHA [115]. This could hint at the hypothesis
that DHA effects could be more relevant in patients with impaired neurogenesis and cognitive functions
rather than healthy patients, and that the form of DHA supply is particularly important. Therefore,
DHA has been studied as a potent therapy to treat neurodegeneration.

These studies are, however, limited, as there is no common agreement on the best animal models
with which to study major neurodegenerative diseases such as AD or PD. The most studied pathology
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is AD, and our group previously published a review of the effects of DHA on this widespread
neurodegenerative disease [157]. It was recently published that AD patients have impaired adult
hippocampal neurogenesis compared to healthy patients [5], as was hypothesized before [158].
DHA exerts neuroprotective effects mainly by impairing beta-amyloid production [159,160]. Few of
these studies showed enhancement of memory performances, and only one reported higher proliferation
of cells in the SGZ with the administration of 2-hydroxy-DHA [161]. One explanation could be that
the models of AD used did not completely recapitulate the disease symptoms and did not impair
neurogenesis; however, this recent review hinted at the use of a model of AD with disturbed lipid
metabolism in the SVZ [162]. In PD animal models, DHA has proven to be neuroprotective [163–166],
but there are no reports of increased neurogenesis.

As for acute brain injuries, two recent studies were published on DHA effects upon traumatic
brain injury (TBI) [167,168]. Of particular interest, one group transplanted NSPCs following TBI,
with DHA or without, and observed an increase of neurogenesis with DHA supplementation
compared to NSPCs transplanted alone in the SVZ [167]. Stroke induces important brain lesions,
and improvement of recovery is of particular interest. Numerous studies have been published on DHA
supply post-stroke, and some showed increased neurogenesis in the cortex and striatum with DHA
complexed with albumin [169], increased neurogenesis and oligodendrogenesis in the striatum with
an omega-3 diet [170], and improvement of neurobehavioral scores [21]. We also observed increased
proliferation with DHA supply to NSPCs after oxygen and glucose deprivation, a protocol mimicking
hypoxia–ischemia, and we noted an increase in neurogenesis, this effect being higher when DHA was
esterified in AceDoPC® [122]. However, only a few studies have focused on the capacity of NSPCs to
regenerate the brain, and particular interest lies in the study of the neurogenic niches that are the SVZ
and SGZ of the hippocampus.

5. Conclusions

This review has summed up the current knowledge of the effects of omega-3 fatty acids on adult
NSPCs, with a particular focus on DHA. Omega-3 fatty acids can be incorporated into the cell membrane
in different forms, but they have first to cross the BBB in order to reach the brain and the currently
known neurogenic niches. They are actors and coordinators of the metabolic pathways involved in
NSPC dynamics, and could be applied for therapeutics as prevention or cure to neurodegenerative
diseases, via better survival of the newly born cells from the remaining pool, a neuroprotective effect,
and the induction of neurogenesis in spite of astrogliogenesis. Delivery strategies for better brain
accretion of DHA are currently being tested in animal models and are necessary for enhancement of the
putative neurogenic and neuroprotective effects. To bypass the effect of ROS accumulation and the risk
of DHA toxicity, it is also suggested to focus future work on the effects of potent derivatives of omega-3,
such as resolvins and protectins. We propose that further interdisciplinary studies which combine the
understanding of NSPC fate decision and fate commitment with the comprehension of omega-3 fatty
acid biogenesis and downstream signaling, are of uttermost interest for the development of a relevant,
putative, and non-invasive therapy against neurodegeneration and towards brain regeneration therapy.
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Abbreviations

DHA Docosahexaenoic acid
NSPC Neural stem/progenitor cells
AD Alzheimer’s disease
PD Parkinson’s disease
SGZ Subgranular zone
SVZ Subventricular zone
OXPHOS Oxidative phosphorylation
ROS Reactive oxygen species+
ATP Adenosine triphosphate
FAO Fatty acid oxidation
ALA Alpha-linoleic acid
EPA Eicosapentaenoic acid
PC Phosphatidylcholine
PE Phosphatidylethanolamine
PI Phosphatidylinositol
PS Phosphatidylserine
EtnGpl Ethanolamine glycerophospholipid
PD1 Protectin D1
PDX Protectin DX
BBB Blood–brain barrier
LysoPC Lysophosphatidylcholine
LysoPC-DHA Lysophosphatidylcholine-DHA

Mfsd2a
Major facilitator superfamily domain-containing
protein 2A

AceDoPC® 1-acetyl,2-docosahexaenoyl-PC
PC-DHA Phosphatidylcholine-DHA
NE-DHA Non-esterified DHA
LysoPL Lysophospholipid
SPM Specialized pro-resolving mediators
ARA Arachidonic acid
Hes1 Hairy and enhancer of split 1
MAP2 Microtubule-associated protein 2
TBI Traumatic brain injury
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