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Abstract: Acute kidney injury (AKI) is a serious complication of acute pancreatitis (AP), which
occurs in up to 70% of patients with severe AP and significantly increases the risk of mortality. At
present, AKI is diagnosed based on dynamic increase in serum creatinine and decreased urine output;
however, there is a need for earlier and more accurate biomarkers. The aim of the study was to review
current evidence on the laboratory tests that were studied as the potential biomarkers of AKI in AP.
We also briefly summarized the knowledge coming from the studies including sepsis or ICU patients
since severe acute pancreatitis is associated with systemic inflammation and organ failure. Serum
cystatin C and serum or urine NGAL have been shown to predict or diagnose AKI in AP; however,
this evidence come from the single center studies of low number of patients. Other markers, such as
urinary kidney injury molecule-1, cell cycle arrest biomarkers (tissue inhibitor metalloproteinase-2
and urine insulin-like growth factor-binding protein 7), interleukin-18, liver-type fatty acid-binding
protein, or calprotectin have been studied in other populations suffering from systemic inflammatory
states. In AP, the potential markers of AKI may be significantly influenced by either dehydration
or inflammation, and the impact of these factors may be difficult to distinguish from kidney injury.
The subject of AKI complicating AP is understudied. More studies are needed, for both exploratory
(to choose the best markers) and clinical (to evaluate the diagnostic accuracy of the chosen markers in
real clinical settings).
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1. Introduction

Acute kidney injury (AKI) is a rapid decline of renal excretory function that may be caused by
various etiological factors. Its mechanism can vary, as it can develop after major surgeries, sepsis,
in consequence of low cardiac output, hypovolemia, rhabdomyolysis, urinary obstruction, or drug
toxicity [1]. The symptoms of the underlaying disease are accompanied by the symptoms of inadequate
elimination of nitrogenous waste products, such as weakness, nausea, vomiting, or loss of appetite [1].
The urine output often decreases, but it may also be within the normal range or even increased. The
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results of laboratory tests: elevated serum urea and creatinine concentrations reflect the diminished
elimination of nitrogen waste products.

It is estimated that from about 7% to more than 20% of hospitalized patients develop AKI [1,2].
In a group of critically ill patients, the incidence increases to as much as 50%, and it is tightly
linked to mortality [1,3]. The American data reveal an increasing number of patients who develop
dialysis-requiring AKI and an increasing number of deaths from AKI [4]. Recent meta-analysis
estimates that the overall mortality in AKI exceeds 20% [2].

The critically ill patients that require treatment in intensive care unit (ICU) constitute the population
that is most often studied in the context of AKI. However, ICU patients suffer from the most severe
conditions, have multiple comorbidities, and are most aggressively treated, thus, the conclusions of
such studies cannot be easily translated to other populations [4]. AKI puts additional strain on a
critically ill patient, which significantly increases mortality risk [5]. The mechanism of renal failure
in critically ill patients is complex, with overlapping factors. These include hemodynamic changes
and microcirculatory dysfunction, constriction of renal vessels, increase in intraabdominal pressure,
the injury related to systemic inflammation, and the influence of nephrotoxic drugs. Adverse clinical
outcome can be further influenced by factors, such as male gender, elderly age, sepsis, lung or liver
failure, comorbidities, and other severe conditions [6].

Acute pancreatitis AP represents an inflammatory disorder that is associated with variable severity.
A major event in the pathophysiology of the disease is the premature activation of pancreatic enzymes
within the gland associated with injury to acinar cells and intrapancreatic inflammatory response [7].
Various causes may lead to AP; however, patients with biliary stones or sludge and those consuming
excess of alcohol represent the majority of AP cases. Pancreatic duct obstruction and toxic effects
of bile acids and alcohol both have been pathophysiologically linked to the premature activation
of trypsinogen to trypsin, the most powerful pancreatic protease (reviewed in [8]). Rarer causes
include hypertriglyceridemia, post-endoscopic retrograde cholangiopancreatography complication,
autoimmune diseases, trauma, infections, adverse drug reactions, or genetic disorders (mutations of
PRSS1, SPINK1, or CFTR genes) [7]. Local pancreatitis may resolve without complications; however,
excessive pancreatic injury and inflammation is associated with pancreatic necrosis, release of pancreatic
enzymes, inflammatory cytokines and damage-associated molecular patterns into systemic circulation,
systemic activation of inflammatory cells, kinin pathway and complement, endothelial dysfunction,
coagulation abnormalities, and oxidative stress [7,8]. AP is diagnosed based on characteristic acute
abdominal pain (often accompanied with nausea and vomiting), any abnormal results of laboratory tests
for pancreatic enzymes (serum lipase or amylase at least three times above the upper reference limit),
and the signs that were observed in abdominal imaging (contrast-enhanced computed tomography,
magnetic resonance imaging, or ultrasonography) [9]. Most commonly used consensus, the Atlanta
classification revised in 2012 [9] defines three grades of AP severity: mild AP not associated with
local or systemic complications; moderately-severe AP associated with either local complications,
exacerbation of preexisting conditions, or short-lasting (resolving within 48 h) organ failure; and,
severe AP associated with persistent (i.e., lasting longer than 48 h) organ failure.

AKI is a well-known complication of AP, regarding about 20% of patients, although the prevalence
rates varies across the studies (Table 1). A multicenter study that was conducted by Zhou et al. [10] has
shown that AKI occurs in almost 70% of cases of severe acute pancreatitis (SAP) that were admitted
to ICU. Of note, almost half of AKI cases in this study were classified as stage 3 according to Kidney
Disease: Improving Global Outcomes (KDIGO) criteria [10]. In a retrospective analysis of over
220,000 ICU admissions, Lin et al. [11] observed AKI that among patients with AP was more common
(with odds ratio of 4.862) than in patients with other diagnoses. The prevalence of AKI in ICU patients
with AP (15.05%) even exceeded the prevalence of AKI in sepsis (13.2%). Additionally, SAP was one
of the eight most common surgical diagnoses among the patients with AKI [12]. The development
of AKI in patients with SAP significantly increases the risk of death: among the patients with SAP,
the mortality rates are doubled in those who developed AKI (over 40% versus 20%) [10,13] (Table 1).
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On the other hand, a recent study showed that isolated renal failure in SAP is associated with better
prognosis and less mortality than multi-organ failure and it requires much shorter ICU admissions
than isolated respiratory failure (mean length of ICU stay of 2.4 and 15.7 days, respectively) [14].

Table 1. The data on the prevalence of acute kidney injury (AKI) in patients with acute pancreatitis (AP).

Reference Study Design and
Patients Definition of AKI Prevalence of AKI Remarks

Lin et al., 2011 [11]
Retrospective study of
1734 patients with AP

admitted to ICU

AKI was identified
using the ICD-9
code 584 (AKI).

15.05% of ICU
patients with AP

Mortality was
23.76% in AP with
AKI versus 8.08%

in AP without AKI.

Pavlidis et al., 2013 [15]
Retrospective analysis
of 50 patients with SAP

admitted to ICU

AKI was defined
according to AKIN

criteria.

54% of patients
with SAP; 44% of
patients with SAP

required RRT

AKI more common
among

non-survivors
(100%) than

survivors (42%)

Zhou et al., 2015 [10]

Retrospective
multi-center analysis
of 414 patients with

SAP admitted to ICU

AKI was defined
according to AKIN

criteria based on
serum creatinine.

69.3% of patients
with SAP; 59.2% of
patients with SAP

required RRT

Mortality was
44.9% in AP with
AKI versus 20.5%

in AP without AKI

Kumar et al., 2015 [16]

Retrospective analysis
of 72 patients with SAP
admitted to a tertiary

center

AKI was defined
and classified

according to the
RIFLE criteria

19.4% of patients
with SAP; 13.9% of
patients with SAP

required RRT

Mortality was 57%
in AP with AKI
versus 0 in AP
without AKI

Párniczky et al., 2016 [17]

Prospective
multicenter study of
600 patients with AP

(61% MAP, 30% MSAP,
9% SAP)

Renal failure as an
organ complication

in patients with
SAP; no strict

definition given

36% of patients
with SAP

Mortality was
43.8% in SAP with
renal failure versus

21.4% in SAP
without renal

failure

Gougol et al., 2017 [14]

Prospective
observation of 500 AP
patients admitted to a

tertiary center

Isolated renal
failure according to

the modified
Marshall scoring

system

Isolated renal
failure reported in

15% of patients
with SAP

No deaths in
isolated renal
failure versus

22.4% mortality in
MOF

Devani et al., 2018 [18]

3,466,493 patients
hospitalized with AP
(ICD-9 code) between

2003–2012, from
Nationwide Inpatient

Sample database

AKI was identified
using the ICD-9

codes for AKI (584;
584.5; 584.6; 584.7;

584.8; 584.9)

Prevalence of AKI
in AP nearly

tripled from 4.1%
in 2003 to 11.7% in

2012. Overall
prevalence within
the study period

was 7.9%.

Mortality of
patients with AKI
complicating AP
decreased from
17.4% in 2003 to

6.4% in 2012.

Chai et al., 2018 [13]

Retrospective analysis
of 237 patients with AP
(79% MAP, 16% MSAP,

5% SAP)

2012 KDIGO
criteria, any stage

7.6% of all patients
with AP

50% of patients
with AKI had stage
1 AKI according to

2012 KDIGO
criteria

Manokaran et al., 2018 [19] 100 patients with SAP
from tertiary hospital

KDIGO 2012, any
stage

32% of patients
with SAP

Mortality 12.5% in
SAP with AKI

versus 1.5% in SAP
without AKI

Abbreviations: SAP, severe acute pancreatitis; AKIN, Acute Kidney Injury Network; RIFLE, risk, injury, failure,
loss of kidney function, end-stage kidney disease; MOF, multi-organ failure; ICD-9, International Classification of
Diseases-9; ICU, intensive care unit; MAP, mild acute pancreatitis; MSAP, moderately-severe acute pancreatitis;
KDIGO, Kidney Disease: Improving Global Outcomes; RRT, renal replacement therapy.

Pathophysiological mechanisms that are responsible for kidney failure in the course of AP are
diverse and multifactorial (Figure 1). The clinical symptoms associated with AP, such as vomiting and
the loss of appetite result in fluid depletion. In the course of AP, toxins, free radicals, cytokines, and
other inflammatory mediators are released to the circulation, which lead to endothelial dysfunction and
increased permeability of blood vessels [8], which further exacerbates the hypovolemia. The systemic
inflammatory response causes the constriction of blood vessels and the stimulation of baroreceptors.
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The redistribution of body fluids and the shift towards the third space decrease the intravascular
volume. These mechanisms lead to hypoperfusion of the kidneys. Additionally, the intrabdominal
pressure increases due to ascites and sometimes hemorrhages, leading to the development of abdominal
compartment syndrome and the decline in renal perfusion. Ischemia and oxygen deficiency lead to the
impairment of renal function [16,19]. Higher fluid sequestration in AP has been associated with more
severe course of the disease being reflected by more organ failure [20]. However, the disrupted control
of microvascular pressure tone that is observed in consequence of systemic inflammation may be a more
important factor leading to kidney injury. An aggressive fluid resuscitation in AP has been associated
with more renal failure in recent clinical studies [21,22]. The aggressive fluid resuscitation efficiently
reverses renal hypoperfusion; however, it cannot reverse the microcirculation failure. The other factors
that are associated with kidney injury in AP may include thrombotic microangiopathies [23], adverse
reactions to drugs [24], hypertriglyceridemia [25,26], or the apoptotic cell death of renal tubules and
necrosis that are caused by the accumulation of phospholipase 2 released in the course of AP [27].
Recent animal experiment demonstrated the potential of antithrombin III to alleviate renal injury in
AP [28]. In a later stage of AP, bacterial infection and endotoxemia become the important factors in the
development of organ failure [29]. Table 2 summarizes recent pathophysiological data stemming from
animal studies on AKI as a complication of AP.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 20 
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At present, the diagnosis of AKI is based on the dynamic increase in serum creatinine and/or
decreased urine output [30]. However, a substantial increase in serum creatinine is regarded as a late
sign of AKI. There has been a continuous search for an adequate biomarker, which could outperform
creatinine, allowing for early diagnosis and treatment of AKI before the irreversible changes occur.
An ideal biomarker of AKI should allow for early detection with high diagnostic sensitivity and
specificity. It should remain detectable long enough to allow for diagnosis in real clinical settings,
but change quickly enough to allow for monitoring of the course of the disease. Additionally, a
diagnostic test used for the detection of AKI should be minimally invasive, widely available, cheap,
easy to conduct, and reproducible. An ideal biomarker should predict the course of the disease and
its outcome.

Our aim was to review current evidence on the laboratory tests studied as the potential biomarkers
of AKI in AP. However, renal failure accompanying AP is understudied. Simultaneously, there is
growing evidence on laboratory markers supporting the diagnosis of AKI in patients with sepsis and
other acute states that require intensive care. We briefly summarized the knowledge coming from
the studies, including sepsis or ICU patients to show the data on AKI complicating AP in a broader
context, since severe acute pancreatitis is associated with systemic inflammation and organ failure.

2. The Markers of Glomerular Filtration

2.1. Serum Creatinine

Creatinine is a parameter that is widely used in the clinical practice; nevertheless, it has significant
limitations. Creatinine is mainly filtered in renal glomeruli, but it is also secreted in renal tubules,
a process that can be influenced by non-renal factors, such as medication [31]. Additionally, the
concentrations of creatinine in serum depend on age, gender, muscle mass, and hydration status [32].
Sudden changes in glomerular filtration do not always correlate with creatinine, because of its relatively
long half-life. The accurate estimation of glomerular filtration rate based on serum creatinine requires
the steady state between creatinine production and excretion—these conditions are not fulfilled in
AKI [31]. A substantial increase in serum creatinine occurs after the 50% drop in the glomerular
filtration rate [33]. Therefore, especially in early stages of kidney injury, creatinine concentration in
serum does not accurately reflect disease severity, and its interpretation can be misleading [32,33].

2.2. Serum Cystatin C

The evidence regarding the usefulness of serum cystatin C in the course of AKI is inconsistent.
Cystatin C is a low molecular weight protein that is produced by all nucleated cells of the body, filtered
through glomeruli, and almost completely reabsorbed in the proximal tubule [33]. Serum (or plasma)
concentrations of cystatin C is rather independent of factors, such as age and gender, but hypo- or
hyperthyroidism, insulin, or glucocorticoid administration must be considered [33]. Cystatin C is
documented to be a good marker of AKI in sepsis, allowing for prognosis 24 h before diagnosis [33,34].
In a study of 113 patients that were admitted to ICU with sepsis [33], cystatin C concentration was
evaluated on days following admission and then compared with routinely assessed serum creatinine
concentration. Both serum creatinine and cystatin C were increased in patients with AKI at all study
days [33]. The measurement of cystatin C concentration in the serum was also proposed for monitoring
renal replacement therapy [35]. In 2018, Chai et al. [13] assessed the diagnostic accuracy of serum
cystatin C among 237 patients with AP, of who 18 developed AKI. At a cut-off of 1.865 mg/L, the
diagnostic sensitivity was estimated for almost 90% and specificity for 100%; the area under the receiver
operating characteristic (ROC) curve was 0.948 [13] (Table 3).



Int. J. Mol. Sci. 2019, 20, 3714 6 of 20

Table 2. The recent evidence on AKI in AP coming from animal studies.

Reference Description of the Study and Results

Zhang et al., 2014 [36]

Sprague-Dawley rats with SAP was induced by retrograde infusion of 5%
sodium taurocholate into the bile-pancreatic duct were treated with
caspase-1/interleukin-1β-converting-enzyme inhibitor. The inhibitor
attenuated intrarenal IL-1β and caspase-1 expression, the histopathologic
changes in kidneys and increased serum creatinine observed in SAP.

Li et al., 2015 [37]

SAP was induced in Male Sprague-Dawley rats by retrograde injection of
5% sodium deoxycholate into bile-pancreatic duct. Serum creatinine and
blood urea nitrogen significantly increased in rats with SAP 12 h after
surgery. Histological changes in kidney tissue and injury to renal
endothelial cells were most pronounced at 36-48 h post-surgery. These
changes were preceded by increase in mRNA and protein expression of
matrix metalloproteinase-9 (MMP-9), also in active form, and
vasodilator-stimulated phosphoprotein (VASP) at 12-24 h post-surgery.

Wu et al., 2017 [26]

Severe hypertriglyceridemia in ApoC III transgenic mice aggravated kidney
injury in the course of AP established by retrograde injection of 0.5% sodium
taurocholate to pancreatic duct. ApoC III transgenic mice developed more
severe pancreatic damage and more advanced histological changes in the
kidneys associated with higher serum creatinine than wild type mice.

Kong et al., 2018 [28]

Sprague-Dawley rats with AP induced by retrograde infusion of body
weight of 3.5% sodium taurocholate solution into the biliary-pancreatic duct
were pretreated with antithrombin III (AT III), or AT III was administered
postoperatively. Both ways of AT III administration attenuated increase in
serum creatinine, renal tubular detachment, brush border loss, and necrosis
of tubular cells.

Gori et al., 2019 [38]

The authors studied the diagnostic utility of urinalysis and urinary gamma
glutamyl transpeptidase-to-urinary creatinine (GGT/Cr) in dogs with
spontaneously developed AP. Non-survivors showed higher dipstick
bilirubin levels and urine protein-to creatinine ratio >2 than survivors. The
GGT/Cr was not useful in the prognosis of outcome.

Gori et al., 2019 [39]
The authors studied the prevalence of AKI complicating spontaneously
developed AP in 65 dogs. Higher serum urea and creatinine and oligo- or
anuria predicted death of the animals. AKI was diagnosed in 26.2% of dogs.

3. The Markers of Tubular Dysfunction

3.1. Neutrophil Gelatinase-Associated Lipocalin (NGAL)

NGAL is a glycoprotein that is expressed in many cells of the body i.e., hepatocytes, kidney
tubular cells, and endothelial cells, but it was initially isolated from neutrophils’ granules [40]. NGAL
in humans is present in blood and urine in three different forms: a monomer, homodimer, and
heterodimer (covalently bound to gelatinase, or matrix metalloproteinase 9). Endothelial cells of kidney
tubules produce monomers (ascending part of the loop of Henle and collecting duct), and dimers by
neutrophils, which can also secrete monomers [41].

NGAL is actively synthesized in the distal part of a nephron following tubular injury. Moreover,
NGAL (present in plasma) is filtered through the glomeruli and is reabsorbed in the proximal
part of the convoluted tubule; however, the reabsorption is diminished in case of proximal tubule
dysfunction [42–44]. These two mechanisms may be responsible for increased urinary concentrations of
NGAL in AKI. Simultaneously, the plasma NGAL concentrations increase. Urine NGAL concentrations
rise quickly in AKI and dynamically change, which allows for the monitoring of kidney injury [45,46].
The NGAL measurements can have been shown to predict AKI that is caused by bacterial infection [47]
and sepsis [34]. A meta-analysis on the diagnostic accuracy of plasma NGAL measurements to
diagnose AKI among patients with sepsis [48] has shown high diagnostic sensitivity (88.1%) but low
specificity (47.4%). Another meta-analysis summarized the evidence regarding the diagnosis of AKI
among patients of critical care units [49]. The diagnostic sensitivity and specificity of plasma NGAL in
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this setting have been estimated for 72% an 81%, while the diagnostic sensitivity and specificity of
urine NGAL have been estimated for 70% and 79%, respectively [49].

Siddappa et al. [50] evaluated serum and urine NGAL as the prognostic markers of AKI in a
small cohort of patients with AP and reported satisfying diagnostic accuracy of the markers that
were measured on day 1, following patients’ admission (area under the ROC curve of 0.8 and 0.9,
respectively) (Table 3). In another study of 65 patients with AP, the concentrations of NGAL measured
in serum and in urine on admission and two subsequent days were significantly higher in 11 patients
who developed AKI in comparison to those who did not [51]. Additionally, the concentration of
serum [52] and urine [53] NGAL correlated with AP severity that was evaluated according to Atlanta
classification, BISAP scale, Marshall scale, imaging test results, and selected markers of inflammation
(Table 4). However, these studies [52,53] did not report the association of serum or urine NGAL with
AKI complicating AP or the proportion of AP patients who developed AKI. Serum NGAL, as measured
by Sporek et al. [52] at 24, 48, and 72 h from the onset of AP, increased between the first and second
day of AP, which was reflected by higher cut-off value to differentiate between mild and moderately
severe/severe AP at 48 h (183 µg/L versus 165 µg/L at 24 h) (Table 4).

3.2. Kidney Injury Molecule 1 (KIM-1)

KIM-1 is a transmembrane glycoprotein that is expressed on epithelial cells of renal proximal
tubule after ischemia or toxic injury [40]. Extracellular domain of KIM-1 is cleaved and released to urine
under the influence of kidney damaging factors [54]. The KIM-1 concentrations in urine are positively
correlated with the degree of renal damage, but they also indicate the severity of inflammation. [32]
The presence of KIM-1 in urine is a sign of kidney (proximal tubule) damage, since in healthy kidneys
KIM-1 is present in very low (or undetectable) concentrations [1]. KIM-1 seems to be a valuable marker
of AKI when considering its very low concentrations in healthy kidneys, the noticeable response to
renal ischemia with reperfusion and the expression on tubular cells until renal recovery [55,56]. Its
urine concentrations increase in the course of AKI in comparison to those with chronic kidney disease
without AKI [57] and have been suggested to predict renal outcomes following AKI [58].

A study of patients with sepsis has reported a high area under curve value (AUC 0.912) for KIM-1
in diagnosis of AKI at the 24 h following ICU admission [59]. A significant increase in urinary KIM-1
was confirmed as soon as after 6 h from ICU admission and it remained elevated for 48 h. Additionally,
a higher concentration of KIM-1 was observed in the patients who died [59]. In turn, metanalysis
gathering 11 clinical studies has shown that diagnostic sensitivity for KIM-1 in AKI prognosis is 74%
and specificity reaches 86% [60]. Urinary KIM-1 has been shown to predict of the need for dialysis and
the risk of death in patients with AKI [61–63]. To our best knowledge, no studies have been published
regarding the diagnostic performance of KIM-1 in renal failure that is associated with AP.
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Table 3. Laboratory markers evaluated for prognosis or diagnosis of AKI in patients with AP.

Marker Reference Study Design and Patients Definition of AKI Cut-off Value Diagnostic
Sensitivity

Diagnostic
Specificity AUC

Serum cystatin C Chai et al., 2018 [13]
Retrospective analysis of 237 patients

diagnosed with AP: 5% diagnosed with SAP;
7.6% of all AP patients diagnosed with AKI

KDIGO criteria 1.865 mg/L 88.9% 100% 0.948 (95% CI:
0.875–1.0)

Serum NGAL Siddappa et al., 2018 [50]
Prospective study of 50 patients with AP
admitted to tertiary center: 23 patients

diagnosed with SAP, 21 with AKI

Modified Marshall
scoring system

and AKIN criteria

790.9 ng/mL 64% 96% 0.8

Urine NGAL 221 ng/mL 82% 80% 0.9

Serum
procalcitonin Huang et al., 2013 [64] 305 patients with AP admitted to ICU: 52 cases

of AKI RIFLE criteria 3.30 ng/mL 97.2% 92.3% 0.986 (95% CI:
0.966–1.000)

Serum uromodulin
Kuśnierz-Cabala et al.,

2017 [65]
Prospective study of 66 patients with AP:

5 diagnosed with SAP, 11 diagnosed with AKI KDIGO criteria no data

0.684 (95% CI:
0.508–0.860)

Serum uromodulin
to creatinine ratio

0.846 (95% CI:
0.706–0.987)

Serum
angiopoietin-2 Sporek et al., 2016 [66] Prospective study of 65 patients with AP:

5 diagnosed with SAP, 11 diagnosed with AKI KDIGO criteria
Higher concentrations of angiopoietin-2 was observed in patients with AKI during
first 72 h from the onset of AP. OR for AKI 1.12 (1.02–1.24) at 24 h; 1.37 (1.12–1.68) at

48 h, and 1.49 (1.17–1.90) at 72 h per 1 ng/mL increase in angiopoietin-2

Serum soluble
fms-like tyrosine
kinase-1 (sFlt-1)

Dumnicka et al., 2016
[67]

Prospective study of 65 patients with AP:
5 diagnosed with SAP, 11 diagnosed with AKI

Modified Marshall
scoring system

OR for renal failure at 24 h from the onset of AP symptoms 1.31 (1.06–1.63)
per 10 pg/mL increase in sFlt-1

Abbreviations: AUC, area under the receiver operating characteristic curve; OR, odds ratio; CI, confidence interval; NGAL, neutrophil gelatinase-associated lipocalin.
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3.3. Tissue Inhibitor Metalloproteinase-2 (TIMP-2) and Urine Insulin-Like Growth Factor-Binding
Protein 7 (IGFBP7)

In 2013, Kashani et al. [68] published the results of a large study, including ICU patients, introducing
TIMP-2 and IGFBP7 as the early markers of AKI. The diagnostic accuracy of the combination of the two
proteins measured in urine has been shown to outperform numerous other potential biomarkers [68].
The expression of TIMP-2 and IGFBP-7 increases in the renal tubular cells (of distal and proximal
tubule, respectively) in the early phase of cellular injury and their increase induces cell cycle arrest in G1
phase [69]. In the experimental study on rats, TIMP-2 and IGFBP7 in combination had better diagnostic
accuracy for AKI that each marker alone [70]. Similarly, in the American multi-centered study on 232
patients with sepsis, the area under ROC curve was 0.84 for the markers used in combination [71].
Metanalysis that was conducted by Liu et al. [69] covering nine studies that were conducted throughout
2013–2016, encompassing 1886 adult patients from America and Europe, has proved the usefulness
of combined TIMP-2 and IGFBP7 as reliable AKI markers, with the combined area under the ROC
curve of 0.86. Another meta-analysis encompassing 10 prospective studies described by Su et al. [72]
has shown the diagnostic sensitivity of 0.84, specificity of 0.57, and area under ROC curve of 0.88.
However, both meta-analyses [68,72] were based on heterogenous studies, including patients in various
health-care settings (mainly critically ill ICU patients and post-surgical patients). Some limitations of
the TIMP-2 and IGFBP-7 have been suggested, such as dependence on age [73] or increase in diabetic
patients [74]. There are no studies evaluating this promising combination of markers in patients with
AP. Additionally, we have not found the studies evaluating IGFBP-7 in AP in any way (neither human
nor animal).

TIMP-2, as an inhibitor of extracellular matrix metalloproteinases (MMPs), was mostly studied in
the context of chronic pancreatitis, where MMPs are implicated in extracellular matrix remodeling
and pancreatic fibrosis [75,76]. Matrix metalloproteinase-9 (MMP-9) was implicated in renal injury in
SAP: MMP-9 seems to be involved in renal capillary injury and leakage, as its expression in kidneys
preceded the histological signs of renal injury [37] (see Table 2). Additionally, earlier works have
shown the pathophysiological role of MMP-9, being released by activated neutrophils, in gut-barrier
disruption and organ failure in SAP [77,78]. Nonetheless, to our knowledge, there are no reports on
TIMP-2 in association with AP, or AKI in AP, although it seems to be reasonable to study the marker
in this context. In a small study of Wereszczyńska-Siemiątkowska et al. [79], TIMP-1 (a more potent
inhibitor of MMP-9 than TIMP-2), although it was increased in patients with (mild and severe) AP in
comparison.to healthy controls, was shown to be too low to inhibit the increased MMP-9 levels. More
recently, Nukarinen et al. [80] have shown the high diagnostic accuracy of MMP-8 in differentiation
between mild and moderately-severe AP and SAP (area under the ROC curve of 0.939). MMP-7 did
not differ according to AP severity, MMP-9 and TIMP-1 only differed significantly between mild and
severe AP; moreover, MMP-7 and TIMP-1 significantly correlated with serum creatinine in 176 patients
with AP [80]. The study [80] confirmed the higher concentrations of MMP-7 to −9 and TIMP-1 among
patients with AP in comparison to the healthy controls.
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Table 4. Novel laboratory markers of renal dysfunction or injury associated with prognosis or diagnosis of AP severity.

Marker Reference Study Design and Patients Severity Assessment Cut-off Value Diagnostic
Sensitivity

Diagnostic
Specificity AUC (95% CI)

Serum NGAL Sporek et al., 2016 [52]
Prospective observation of 65 adult
patients admitted with AP; NGAL

was measured at 24, 48 and 72 h from
the onset of AP

Moderately severe and severe
AP according to 2012 Atlanta
Classification versus mild AP

165 µg/L (at 24 h) 63% 80% 0.727 (0.582–0.872)

183 µg/L (at 48 h) 90% 72% 0.860 (0.773–0.948)

182 µg/L (at 72 h) 84% 78% 0.843 (0.730–0.956)

Urine NGAL Lipinski et al., 2015 [53] Observational cohort study of 104
patients with acute pancreatitis

SAP according to 2012
Atlanta Classification; organ
failure according to modified

Marshall scoring system

Prediction of SAP:
68.9 ng/mL 81.2% 71.5% 0.750 (0.622–0.890)

Prediction of MOF:
86.5 ng/mL 75% 76% 0.870 (0.779–0.964)

Prediction of
death: 86.5 ng/mL 75% 74% 0.800 (0.632–0.968)
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3.4. Interleukin 18 (IL-18)

Interleukin-18 is a proinflammatory cytokine that is released by monocytes/macrophages and
other antigen presenting cells, which belongs to interleukin-1 family, and its conversion to an active
form is mediated by caspase-1 [81]. IL-18 is an inflammatory mediator that is produced in response
to ischemia of various organs i.e., kidneys, heart, or brain. Its concentrations in serum increase in
sepsis, joints inflammation, liver inflammation, inflammatory bowel syndrome, and lupus [1]. It has
been observed that increase in IL-18 urine concentrations occurs relatively fast in response to renal
tubular injury [81]. In consequence of kidney damage, an increased concentration in urine is observed
in the first 6 h with the peak between 12 and 18 h [56]. The animal studies imply the pathological role
of IL-18 in the development of tubular damage in AP. Significant morphological changes have been
observed as soon as after 12 h from AP onset in the microscopic evaluation of kidneys of rats with
SAP [36]. In ischemia-reperfusion induced kidney injury in mice, IL-18 has been documented to be a
key component in the development of AKI [82]. Lin et al. [83] conducted a meta-analysis that evaluated
urinary IL-18 as a marker of AKI, summarizing 11 very heterogenous studies, including patients in
any age (also neonates), treated in ICU, or following cardiac surgery, implementing various definitions
of AKI. The pooled area under the ROC curve was AUC 0.77 [83]. The diagnostic performance of IL-18
was better in children than in adults [83]. No clinical studies regarding AKI in AP have been published.
However, in the light of the role of IL-18 in AKI pathomechanism that was suggested by the results of
experimental studies, further research on this marker seems justified [81].

3.5. Liver-Type Fatty Acid-Binding Protein (L-FABP)

L-FABP is a low molecular weight protein that is mainly produced in the liver, but is isolated from
other organs i.e., kidneys, stomach, intestines, and lungs. The main function of the family of compounds
comprising L-FABP is the binding of fatty acids and their transmembrane transport. L-FABP is filtered
in renal glomeruli and then reabsorbed in the proximal tubule. In a healthy individual, its concentration
in urine is very low. Its expression is induced by hypoxia and has been proposed as a marker of kidney
function in patients post kidney transplantation, where its concentrations correlate with the duration of
ischemia [84]. Other insults may also induce an increased secretion of L-FABP to the lumen of proximal
tubule and the elevated concentration in urine, proportional to the severity of kidney damage [57].
The L-FABP urine concentrations have been shown to increase in sepsis, contrast-induced kidney
injury, heart failure, or after cardiac surgery [1].

In a study that was conducted on 145 patients with AKI in the course of septic shock, higher
concentrations of L-FABP in urine were observed in patients who died and it prognosed mortality
with high accuracy (the area under the ROC curve of 0.99) [85]. In another study on 85 patients, high
diagnostic usefulness of urine L-FABP has been observed in the early prognosis of AKI after cardiac
surgery [86]. In the meta-analysis of the studies on AKI post cardiac surgery [87], urine L-FABP
was a moderately good prognostic marker of AKI (area under the ROC curve of 0.72). Additionally,
in patients of ICU, higher urine L-FABP at admission has been associated with a higher risk of AKI [88].
Higher urine L-FABP has been shown to predict disease progression, need for dialysis and death
among 152 ICU patients in the early phase of AKI [89]. The marker has not been evaluated in the
prediction or diagnosis of AKI complicating AP.

3.6. Calprotectin

Calprotectin is an established marker of local inflammation. It is a protein consisting of two
units: S100A8 and S100A9 and neutrophils and renal tubular cells produce it [90]. In several studies,
calprotectin has been recognized as a marker that differentiates between the kidney injury of pre-renal
and intra-renal origin. Heller et al. [91] and Seibert et al. [92] reported the usefulness of calprotectin
measurements in urine in the detection of AKI. The diagnostic sensitivity and specificity were high (over
90%), although the cut-off values differed between the studies from 219.8 ng/mL [93] to 440 ng/mL [92].
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The usefulness of urine calprotectin has also been reported by Chang et al. [94], who studied patients
admitted to coronary care unit. They reported high diagnostic accuracy (area under the ROC curve of
0.946) for the diagnosis of AKI [94]. Gao et al. [95] and Lee et al. [93] observed higher urine calprotectin
in patients with sepsis complicated with AKI (with areas under the ROC curves of 0.901 and 0.889,
respectively). Again, there are no studies in AP patients.

3.7. Urinary β2-Microglobulin

As a low molecular weight protein, serum β2-microglobulin has been suggested as a marker of
glomerular filtration glomerular injury, although the serum concentrations also increase in non-renal
diseases such as leukemia, lupus and Crohn’s disease [96]. In the urine of a healthy human the
concentrations of β2-microglobulin are very low [96]. However, the increased concentrations in urine
may reflect the injury of proximal tubule that was associated with diminished reabsorption of the
protein [97]. In the study on 252 children admitted to emergency center, β2-microglobulin in urine was
effective in detecting AKI [98]. Two small studies assessed urinary β2-microglobulin in patients with
AP [99,100]. One [99] did not found differences in urine β2-microglobulin concentrations between the
patients with mild and severe AP. The newer one [100] assessed urinary β2-microglobulin to saponin
ratio while using mass spectrometry technology and found increased ratios in severe AP correlated
with kidney injury.

3.8. Monocyte Chemoattractant Protein (MCP-1)

Monocyte Chemoattractant Protein (MCP-1) is a pro-inflammatory chemokine, which takes part
in the recruitment of monocytes during infection or injury. It is secreted in proximal tubules in response
to ischemia [101,102]. MCP-1 plays a major role in selectively recruiting monocytes, neutrophils, and
lymphocytes in response to proinflammatory cytokines [103]. Increased plasma concentrations of
MCP-1 can predict AKI or death in patients after cardiac surgeries [104]. Serum or plasma MCP-1 have
been shown to increase in severe AP as a marker of inflammation [105–107].

3.9. Uromodulin

Uromodulin (or Tamm-Horsfall protein) is a glycoprotein that is exclusively produced by renal
tubular cells of the thick ascending part of the loop of Henle [65]. Recently, serum uromodulin
concentrations have been shown to reflect the mass of remaining renal tissue and strongly positively
correlate with GFR values across all stages of chronic kidney disease [108]. In early phase of AP, serum
uromodulin positively correlated with eGFR (independently of sex and age) and negatively with serum
creatinine and cystatin C; however, the correlations were much weaker as compared to what has been
observed in chronic kidney disease [65]. However, the diagnostic accuracy of serum uromodulin for
the diagnosis of AKI complicating the early phase of AP (area under the ROC curve of 0.684) was
lower than serum creatinine or cystatin C (Table 3) [65].

4. Other Markers Associated with Kidney Injury in AP

The markers of endothelial dysfunction: angiopoietin-2 and serum fms-like tyrosine kinase-1
(sFlt-1) have been shown to correlate with serum creatinine, serum cystatin C, serum, and urine NGAL
in the early phase of AP [66,67,109]. In a small single-center study, serum angiopoietin-2 has been
shown to positively predict AKI diagnosed, according to KDIGO and renal failure diagnosed according
to modified Marshall scoring system during first 72 h of AP [66]. Additionally, sFlt-1 significantly
predicted renal failure in the first two days of AP [67] (Table 3). Increased expression of a protein that
is associated with remodeling of endothelial cells’ cytoskeleton and junctions, vasodilator-stimulated
phosphoprotein (VASP) was observed in kidneys of rats with AP [37]. VASP expression seemed
involved in pathophysiology of AKI complicating AP, as its maximum preceded the maximum
histological changes that are associated with renal failure [37] (Table 2).
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Procalcitonin is a polypeptide precursor of a hormone calcitonin. In thecase of bacterial infections,
it is extensively produced by many cells, including monocytes and macrophages [110]. Huang et al. [64]
demonstrated that higher serum procalcitonin predicted AKI among patients with AP with high
diagnostic accuracy (Table 3). Other inflammatory markers are also associated with AKI in AP. During
the first two days of AP, serum urokinase-type plasminogen activator receptor (uPAR) positively
predicted AKI [111], while serum interleukin 6 positively correlated with renal markers (cystatin C
and NGAL) [112].

5. Associations between Renal Markers and AP Severity

On the other hand, fluid depletion and sequestration in AP are known prognostic factors of a
severe course of the disease [20]. Additionally, the increased intra-abdominal pressure predicts severe
course of AP [113]. Simultaneously, these factors are involved in pathomechanism of kidney injury [29].
Consequently, the markers of renal function and injury have been associated with severity of AP.
Blood urea nitrogen has been included in Ranson and Glasgow/Imrie scores, as one of the variables
significantly associated with SAP [7]. This has been confirmed in more recent analyses and BUN is also
a part of BISAP and BALI models that were used in early prediction of SAP [114,115]. Additionally,
serum and urine NGAL have been reported to predict SAP (Table 4).

6. Conclusions

AKI has long been recognized as a complication of severe AP, which is associated with increased
mortality. However, the good quality studies on this condition are insufficient. Even the recent
epidemiological studies (Table 1) reported conflicting results, with the prevalence of AKI in SAP
ranging from 15% [11] to 70% [10]. Several issues may be related to this discrepancy. Although we
have concentrated on data based on the 2012 revision of Atlanta classification [9], the real clinical
severity of patients that were admitted to various centers might have, in fact, varied depending on
the local settlements, e.g., the availability of ICU care may differ between the centers. The studies
analyzing only the most severe cases admitted to ICU tend to report higher prevalence of AKI [10].
Fluid resuscitation is of utmost importance in the early phase of AP; however, the controversies
regarding the extent of hydration are they still not fully resolved and there may be differences between
centers; both too less and too much fluid seems deleterious to the kidneys [21,22,116]. Probably, the
most important discrepancies between the epidemiological studies result from various definitions of
AKI used: although KDIGO consensus is available since 2012 [117], the AKIN and RIFLE criteria were
also used in the reviewed studies; moreover, some studies do not report anuria/oliguria, only relying
of serum creatinine (e.g., [10]). In AP, the modified Marshall scoring system (as suggested by 2012
Atlanta classification [9]) is also used to define “renal failure”, with a cut-off value of serum creatinine
over 170 µmol/L, giving very different epidemiological data as compared to KDIGO AKI.

Except for the most extensively renal markers reviewed above, other potential markers, such as
urine calbindin, glutathione transferase, clasterin, osteopontin, or trefoil factor-3, have been proposed
in the prediction or early diagnosis of AKI in various clinical settings [1,118–121]. However, there are
no data regarding these markers among patients with AP. In general, the studies on biomarkers of AKI
complicating AP are insufficient, and the existing clinical data are based on the observation of a limited
number of patients (Table 3). Moreover, the potential markers of AKI may be significantly influenced
in patients with (severe) AP by either dehydration or inflammation, and the impact of such factors
may be difficult to distinguish from kidney injury itself; this seems to be a significant issue e.g., with
inflammatory markers (procalcitonin, uPAR, IL-6). However, from existing evidence on the markers of
AKI in AP, the diagnostic usefulness of procalcitonin was slightly better than that reported for cystatin C
and NGAL (Table 3). Among the most recognized kidney injury markers, serum cystatin C (the marker
of glomerular filtration) and serum or urine NGAL (the markers of tubular injury) have also been
reported to predict or diagnose AKI in AP with good diagnostic accuracy; however, even this evidence
come from the single center studies of low number of patients. The advantages of serum procalcitonin,
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serum cystatin C, and urine NGAL include the fast and robust fully automated laboratory methods,
allowing for implementing their measurements in practically every routine medical laboratory. This
should encourage larger clinical studies on these markers in near future, and such studies are necessary
to verify the available single-center data.

The other markers already well studied in ICU patients or sepsis (e.g., KIM-1, IL-18, IGFBP-7, and
TIMP-2) should be verified in the AP patients. However, we should also look for serum or plasma
markers, which would be measurable in patients with significant oliguria or anuria at the early phase
of AP. There are also interesting emerging markers, e.g., VASP, that need to be better characterized.
More studies are needed regarding AKI complicating AP, both exploratory (to choose the best markers,
or probably a combination of markers, a strategy that worked well in the case of IGFBP-7*TIMP-2) and
clinical (to evaluate the diagnostic accuracy of the chosen markers in real clinical settings). Happily,
in recent years, the subject of AKI complicating AP seems to gain more interest, as reflected by more
published reports.
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between inflammation, coagulation and endothelial injury in the early phase of acute pancreatitis: Clinical
implications. Int. J. Mol. Sci. 2017, 18, 354. [CrossRef]

9. Banks, P.A.; Bollen, T.L.; Dervenis, C.; Gooszen, H.G.; Johnson, C.D.; Sarr, M.G.; Tsiotos, G.G.; Vege, S.S.
Classification of acute pancreatitis - 2012: Revision of the Atlanta classification and definitions by international
consensus. Gut 2013, 62, 102–111. [CrossRef]

10. Zhou, J.; Li, Y.I.; Tang, Y.I.; Liu, F.; Yu, S.; Zhang, L.; Zeng, X.; Zhao, Y.; Fu, P. Effect of acute kidney injury on
mortality and hospital stay in patient with severe acute pancreatitis. Nephrology (Carlton). 2015, 20, 485–491.
[CrossRef]

11. Lin, H.-Y.; Lai, J.-I.; Lai, Y.-C.; Lin, P.-C.; Chang, S.-C.; Tang, G.-J. Acute renal failure in severe pancreatitis: A
population-based study. Ups. J. Med. Sci. 2011, 116, 155–159. [CrossRef] [PubMed]

12. Sykes, L.; Kalra, P.A.; Green, D. Comparison of impact on death and critical care admission of acute kidney
injury between common medical and surgical diagnoses. PLoS ONE 2019, 14, 1–13. [CrossRef] [PubMed]

13. Chai, X.; Huang, H.-B.; Feng, G.; Cao, Y.-H.; Cheng, Q.-S.; Li, S.-H.; He, C.-Y.; Lu, W.-H.; Qin, M.-M. Baseline
Serum Cystatin C Is a Potential Predictor for Acute Kidney Injury in Patients with Acute Pancreatitis. Dis.
Markers 2018, 2018, 1–7. [CrossRef] [PubMed]

14. Gougol, A.; Dugum, M.; Dudekula, A.; Greer, P.; Slivka, A.; Whitcomb, D.C.; Yadav, D.; Papachristou, G.I.
Clinical outcomes of isolated renal failure compared to other forms of organ failure in patients with severe
acute pancreatitis. World J. Gastroenterol. 2017, 23, 5431–5437. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11255-017-1781-x
http://www.ncbi.nlm.nih.gov/pubmed/29307055
http://dx.doi.org/10.2215/CJN.00710113
http://www.ncbi.nlm.nih.gov/pubmed/23744003
http://dx.doi.org/10.1007/s00134-015-3934-7
http://www.ncbi.nlm.nih.gov/pubmed/26162677
http://dx.doi.org/10.1681/ASN.2012080800
http://www.ncbi.nlm.nih.gov/pubmed/23222124
http://dx.doi.org/10.1186/s13613-019-0534-7
http://dx.doi.org/10.1016/j.bpa.2017.09.001
http://www.ncbi.nlm.nih.gov/pubmed/29248138
http://dx.doi.org/10.1016/S0140-6736(14)60649-8
http://dx.doi.org/10.3390/ijms18020354
http://dx.doi.org/10.1136/gutjnl-2012-302779
http://dx.doi.org/10.1111/nep.12439
http://dx.doi.org/10.3109/03009734.2010.547636
http://www.ncbi.nlm.nih.gov/pubmed/21250932
http://dx.doi.org/10.1371/journal.pone.0215105
http://www.ncbi.nlm.nih.gov/pubmed/30973921
http://dx.doi.org/10.1155/2018/8431219
http://www.ncbi.nlm.nih.gov/pubmed/30581500
http://dx.doi.org/10.3748/wjg.v23.i29.5431
http://www.ncbi.nlm.nih.gov/pubmed/28839444


Int. J. Mol. Sci. 2019, 20, 3714 15 of 20

15. Pavlidis, P.; Crichton, S.; Lemmich Smith, J.; Morrison, D.; Atkinson, S.; Wyncoll, D.; Ostermann, M. Improved
Outcome of Severe Acute Pancreatitis in the Intensive Care Unit. Crit. Care Res. Pract. 2013, 2013, 1–5.
[CrossRef] [PubMed]

16. Kumar, R.; Pahwa, N.; Jain, N. Acute kidney injury in severe acute pancreatitis: An experience from a tertiary
care center. Saudi J. Kidney Dis. Transpl. 2015, 26, 56–60. [PubMed]
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