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Abstract: Magnetic fluid is a stable colloidal suspension of nano-sized, single-domain
ferri/ferromagnetic particles dispersed in a liquid carrier. The liquid can be magnetized by the
ferromagnetic particles aligned with the external magnetic field, which can be used as a wavefront
corrector to correct the large aberrations up to more than 100 µm in adaptive optics (AO) systems.
Since the measuring range of the wavefront sensor is normally small, the application of the magnetic
fluid deformable mirror (MFDM) is limited with the WFS based AO system. In this paper, based on the
MFDM model and the relationship between the second moment (SM) of the aberration gradients and
the far-field intensity distribution, a model-based wavefront sensorless (WFSless) control algorithm
is proposed for the MFDM. The correction performance of MFDM using the model-based control
algorithm is evaluated in a WFSless AO system setup with a prototype MFDM, where a laser beam
with unknown aberrations is supposed to produce a focused spot on the CCD. Experimental results
show that the MFDM can be used to effectively compensate for unknown aberrations in the imaging
system with the proposed model-based control algorithm.
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1. Introduction

Magnetic fluid is a stable colloidal suspension of nano-sized (about 10 nm in diameter),
single-domain ferri/ferromagnetic particles dispersed in a liquid carrier. In the presence of an external
magnetic field, the ferromagnetic particles align with the field, and the liquid becomes magnetized.
The reflective surface can be deformed with the magnetic fluid using a locally applied magnetic field
and thus serves as a deformable mirror in adaptive optics (AO) systems [1–3]. Conventional AO
systems utilize spatial light modulators (SLMs) or solid deformable mirrors (DM) as a wavefront
corrector (WFC). However, the SLMs are limited by the relatively small magnitude of correction that
they can provide, usually in the range of a few micrometers [4,5] and they cannot transmit the beams
with wavelengths longer than 1.6 µm [6]. Solid deformable mirrors offer small inter-actuator strokes
and the maximum deflection magnitudes are normally limited to tens of micrometers [7,8], which
cannot be used to correct the large aberrations. For example, the defective aberrations of the rotating
liquid telescope could reach a peak-to-valley amplitude of more than 180 µm [9,10]. The proposed
magnetic fluid deformable mirror (MFDM) in this paper consists of the magnetic fluid, miniature
electromagnetic coils, Maxwell coil, and a thin film of a reflective material. The magnetic fluid can be
deformed by the perturbed magnetic field generated by the miniature electromagnetic coils placed
underneath the fluid layer. In order to linearize the response of the mirror surface, an external strong
and uniform magnetic field produced by the Maxwell coil is superposed to the magnetic field of the
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actuators. In addition, magnetic fluids can be coated with silver liquid-like thin films to improve
the reflectance [11,12]. Due to the property of free surface movement, the MFDM can easily produce
strokes of more than 100 µm both for the single actuator or inter-actuators. Furthermore, it also has
other advantages such as the smooth continuous mirror surface, low manufacturing cost and easy
scalability [2,3]. In papers [13,14], the traditional multi-input multi-output (MIMO) PID controller and
the mixed sensitivity H∞ controller have been used to control the mirror surface of MFDM, where
the performance of the designed control loops are based on the accurate real-time measurement of
the distorted wavefront using a Shack-Hartmann wavefront sensor (SHWS). However, the measuring
range of the most widely used wavefront sensor in AO systems is normally smaller than 60 µm [15],
which could limit the use of the MFDM in those applications with large aberrations. In order to
extend the applications of MFDM for the large aberration correction, in this paper, a model-based
wavefront sensorless (WFSless) control method for MFDM has been developed. WFSless AO systems
operate by sequentially modulating the WFC and maximizing a feedback signal according to particular
optimization algorithms. The typical WFSless model-free control methods need many intensity
measurements or evaluations of the metric function, which limit the convergence rate of AO systems
and may drop into local optima [16–18]. The model-based control methods often use a certain mapping
relationship between the performance index and the control input to design the control algorithms,
such as the modal approach [19], the nonlinear model identification approach [20] and geometric optical
principles [21,22]. In this paper, based on the established MFDM model, a model-based WFSless AO
control algorithm is proposed. Since the control approach only uses Z+1 photodetector measurement
for the Z aberration modes as the predetermined bias functions, the correction capability and the
convergence speed of the AO system are improved.

In the following, the surface dynamic model of the magnetic fluid deformable mirror is first
established, then based on the mapping relationship between the second moment (SM) of the aberration
gradients and the far-field intensity distribution, the iterative control algorithm is presented. Finally,
the correction performance of the MFDM to the unknown aberrations is evaluated in a WFSless AO
setup system with the proposed WFSless control algorithm.

2. Modeling of Magnetic Fluid Deformable Mirror

As shown in Figure 1, in a circular coordinate system, the shape of the mirror is described by the
deflection ζ(r,θ, t) of the deformed surface as measured with respect to a point (r,θ) in the horizontal
plane. The deflection is produced by the cumulative magnetic field generated by the array of miniature
electromagnetic coils located underneath the magnetic fluid layer. The magnetic field generated by
any given coil j, j = 1, 2, . . . , J centered at the horizontal location

(
r j,θ j

)
, is idealized as that of a point

source of magnetic potential ψ j(t).
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The deflection of the free surface of a magnetic fluid results from the fluid flow induced by the
applied magnetic field. The fluid flow is governed by the fundamental principles of fluid dynamics
appropriately modified to account for the effects of the magnetic field. The equations governing the
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fluid field, derived from the principles of conservation of mass and momentum, respectively, are as
follows [23]:

∇ · Ṽ = 0 (1)

ρ

(
∂Ṽ
∂t

+ Ṽ · ∇Ṽ
)
= −∇(p + ps + pm) + η∇2Ṽ + ρg + µ0M∇H (2)

where Ṽ is the velocity of the fluid; p, ps and pm are, respectively, the thermodynamic, magnetostrictive,
and fluid-magnetic pressures; ρ and η are the density and viscosity of the fluid; g is the gravitational
acceleration; µ0 is the magnetic permeability of free space; and M and H are the magnitudes of the
magnetization vector M and the magnetic field vector H, respectively.

The magnetic field itself is governed by Maxwell’s equations. Since the magnetic field of the micro
coils is idealized as that of point sources of magnetic potential located at the fluid domain boundary, a
current-free electromagnetic field can be assumed. Using this assumption and further assuming that
the displacement currents in the fluid are negligible, Maxwell’s equations can be written as follows:

∇×H = 0, ∇ ·B = 0 (3)

where B is the magnetic flux density, which is related to the magnetic field H and the magnetization M
by the following constitutive relationship:

B = µH = µ0(H + M) (4)

where µ is the magnetic permeability of the magnetic fluid. Assuming the magnetic fluid is linearly
magnetized by the applied field, the magnetization vector M can be written as

M = χH (5)

where χ = ((µ/µ0) − 1) is the susceptibility of the fluid, which is considered to be constant.
The velocity field Ṽ can be written in terms of a scalar potential Φ(x, y, z, t) as

Ṽ = −∇Φ (6)

such that Φ obeys the Laplace equation

∇
2Φ = 0 for − h < z < ζ (7)

The magnetic field H can be written in terms of a scalar potential Ψ(x, y, z, t) as

H = −∇Ψ (8)

such that Ψ obeys the Laplace equation

∇
2Ψ = 0 for − h < z < ζ (9)

Since the applied magnetic field is not expected to induce any volume change in the fluid, the
magnetostrictive pressure ps can be ignored. Moreover, the assumption that the magnetization of the
fluid depends on the magnetic field only allows the magnetic pressure term −∇pm and the magnetic
body force µ0M∇H in Equation (2) to cancel each other. Using these simplifications, the surface
dynamic can be written as

−ρ
∂Φ
∂t

+ ρgζ−
µ0χ

2

(
∇Ψ · ∇Ψ + χ(∇Ψ · n̂)2

)
+ pa + 2σκ = 0 at z = ζ (10)
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where p is the fluid pressure immediately below the interface, pa is the air pressure immediately above
the interface, 2σκ is the capillary pressure expressed as a function of the coefficient of surface tension σ
and the surface curvature κ, and n̂ is a unit vector directed normal to the surface.

The set of Equation (7), (9), (10) can be solved to obtain the three unknowns ζ, Φ, Ψ. However,
Equation (10) above is nonlinear in Ψ, therefore, linear solution methods cannot be applied to it.
This complication can be circumvented by introducing a large uniform magnetic field with a constant
flux density B0 superimposed on the input field generated by the array of microcoils.

Consider that the magnetic fluid layer in an initial equilibrium state will be perturbed by the
input magnetic field applied at the bottom of the layer, the perturbation part of the surface dynamic
governing equations can then be written as [24]:

∇
2φ = 0, −d ≤ z ≤ ζ (11)

∇
2ψ(i) = 0, i = 1, 2, 3 (12)

−ρ
∂φ

∂t
+ ρgζ+ χB0

∂ψ(2)

∂z
− σ

(
∂2ζ

∂r2 +
1
r
∂ζ
∂r

+
1
r2
∂2ζ

∂θ2

)
= 0 at z = ζ (13)

where φ and ψ(i), i = 1, 2, 3 are the perturbation components of the velocity potential and the magnetic
potential, respectively.

Consider the following two boundary conditions:

−
∂φ

∂z
=
∂ζ
∂t

at z = ζ (14)

−
∂φ

∂z
= 0 at z = −d (15)

the solution of φ then can be solved as:

φ(r,θ, z, t) = −
1
λ

cosh[λ(z + d)]
sinh(λd)

dζ̃
dt

R(t)Θ(θ) (16)

where λ is the separation constant, and Θ(θ) and R(r) satisfy the following ordinary
differential equations:

d2Θ
dθ2 + m2Θ = 0 (17)(

d2R
dr2 +

1
r

dR
dr

)
+

(
λ2
−

m2

r2

)
R = 0 (18)

where λ is yet another separation constant.
Based on the magnetic field boundary conditions between the three different materials and

considering the magnetic potential sources of input magnetic coils as follows:

lim
z→∞

ψ(1) < ∞ (19)

n̂×
(
H(2)

−H(1)
)
= 0 at z = ζ (20)

n̂ ·
(
B(2)
−B(1)

)
= 0 at z = ζ (21)

ẑ×
(
H(3)

−H(2)
)
= 0 at z = −d (22)

ẑ ·
(
B(3)
−B(2)

)
= 0 at z = −d (23)
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ψ(3)(r,θ, z, t) =
J∑

j=1

ψ j(t)
1
r
δ
(
r− r j

)
δ
(
θ− θ j

)
at z = −h (24)

The ψ(i), i = 1, 2, 3, in Equation (12) can be further solved as:

ψ(1)(r,θ, z, t) = −A(t)
µ

µ0
e−λzR(r)Θ(θ) (25)

ψ(2)(r,θ, z, t) = −
(
A(t)X(λz) +

χ
µ0

B0ζ̃(t) cosh(λz)
)
R(r)Θ(θ) (26)

ψ(3)(r,θ, z, t) =
(
A(t)Y(λz) −Z(λz)B0ζ̃(t)

)
R(r)Θ(θ) (27)

where A(t) is the integration constant, and

X(λz) =
µ

µ0
cosh(λz) − sinh(λz) (28)

Y(λz) = −
(
µ

µ0

β

α
+
χ
α

)
cosh(λz) +

(
µ

µ0

(
α
β
−
χ
α

)
−
χ2

αβ

)
sinh(λz) (29)

Z(λz) = (β cosh(λz) + χsinh(λz))
χ
µ

1
α

(30)

α = tanh(λd) − coth(λd) (31)

β =
µ

µ0
tanh(λd) − coth(λd) (32)

Θ(θ) =

sin mθ, m = 1, 2, 3, . . .

cos mθ, m = 0, 1, 2, . . .
(33)

R(r) = CJm(λr) (34)

C is the constant of integration and Jm(·) is the Bessel function of the first kind.
Considering that the miniature coils are located far from the walls of the fluid container, we

have Jm(λR) = 0, at r = R, providing the eigenvalue λmn for each mode as λmn = εmn/R. Combing
Equations (33) and (34), the mode shapes of Hmnc = Jm(λmnr) cos(mθ) and Hmns = Jm(λmnr) sin(mθ)
are obtained.

With the derived φ, ψ, and Equation (13), the following surface dynamic equation with respect to
the mode shape Hmnc is obtained as:

d2ζ̃mnc(t)
dt2 +ωdmn

dζ̃mnc(t)
dt

+ω2
mnζ̃mnc(t) = fmnc(t) (35)

where

ω2
mn = gtanh(λmnd)λmn +

σ
ρ

tanh(λmnd)λ3
mn +

χ
ρ

B2
0tanh(λmnd)λ2

mn
Z(−λmnh)
Y(−λmnh)

(36)

ωdmn = 4
η

ρ
λ2

mn (37)

fmnc(t) = Fmn

J∑
j=1

ψ j(t)H
j
mnc (38)

Fmn = −
χ
p

B0
tanh(λmnd)
Y(−λmnh)

λ2
mn

k

πR2[Jm+1(εmn)]
2 (39)
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H j
mnc = Jm

(
λmnr j

)
cos

(
mθ j

)
(40)

m = 0, 1, 2, . . . , n = 1, 2, 3, . . . , j = 1, 2, 3, . . . , J (41)

Similarly, the surface dynamic equation with respect to the mode shape Hmns is also obtained as:

d2ζ̃mns(t)
dt2 +ωdmn

dζ̃mns(t)
dt

+ω2
mnζ̃mns(t) = fmns(t) (42)

where

fmns(t) = Fmn

J∑
j=1

ψ j(t)H
j
mns (43)

H j
mns = Jm

(
λmnr j

)
sin

(
mθ j

)
(44)

Based on the ζ̃mnc(t), Hmnc and ζ̃mns(t), Hmns, the total surface displacement at any desired location
(rk,θk) is then given as:

ζ(rk,θk, t) =
∞∑

m=0

∞∑
n=1

ζ̃mnc(t)Hmnc(rk,θk) +
∞∑

m=1

∞∑
n=1

ζ̃mns(t)Hmns(rk,θk) (45)

Based on Equations (35), (42) and (45), the state-space model of the mirror can be further written as:

.
x = Ax + B

′

u
′

y = Cx
(46)

where x = [ζ̃01

.

ζ̃01 · · · ζ̃0N

.

ζ̃0Nζ̃11c

.

ζ̃11cζ̃11s

.

ζ̃11s · · · ζ̃MNc

.

ζ̃MNcζ̃MNs

.

ζ̃MNs]
T

(1×2N(2M+1)) is the vector of the

generalized displacements and the corresponding velocities, u
′

= [ψ1ψ2 · · ·ψJ]
T
(1×J) is the vector of

input magnetic potentials, and y = [ζ1ζ2ζ3 · · · ζK]
T
(1×K) is the vector of wavefront produced by the

deformable mirror at K sampling points. A, B
′

and C are the corresponding system matrices. If ϑ is the
slope of the current-potential relationship, then u

′

= ϑU
(
B = ϑB

′
)
, and a discrete-time equivalent

representation of model is given by

x(k + 1) = Adx(k) + BdU
y(k) = Cdx(k)

(47)

where x(k) is the vector of state variables, U is the vector of control currents, y(k) is the vector of
the mirror surface deflections, Ad= eTA is the system matrices, Bd =

∫ T
0 eτAdτB is the input matrices,

Cd = C is the output matrices and T is the sampling period.
The direct current (DC) gain of the system relating the steady-state response to the input current

can be obtained as
G = Cd(I−Ad)

−1Bd (48)

The DC gain of the system can also be represented as the following influence matrix w.r.t each
actuator:

G =


G1(P1) G2(P1) · · · GJ(P1)

G1(P2) G2(P2) · · · GJ(P2)
...

...
. . .

...
G1(PK) G2(PK) · · · GJ(PK)


K×J

(49)

where Pk represents the kth sampling point (k = 1, 2, . . . , K).
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3. The Model-Based Control Algorithm

3.1. Relationship Between the Second Moment of the Aberration Gradients and the Far-Field
Intensity Distribution

The centroid of the far-field intensity distribution in geometric optics is related to the aberration
of the input wavefront, which can be described as follows [21]:

SM ≈ c0(1−MDS) (50)

where c0 is a tunable parameter. On the left-hand side of Equation (50), SM represents the second
moment of the aberration gradients that is defined as

SM =

s

s

{[
∂
∂x W(x, y)

]2
+

[
∂
∂y W(x, y)

]2
}

dxdy

s
(51)

where W(x, y) stands for the aberration, s is the area of incident light pupil plane whose coordinate is
indicated as (x, y). At the right-hand side of Equation (50), MDS is the signal of optics intensity that
can be defined as follows:

MDS =

∫
x′

∫
y′

I(x′, y′)
[
1− r′2

R′2

]
dx′dy′∫

x′

∫
y′

I(x′, y′)dx′dy′
(52)

where I(x′, y′) is the far-filed intensity at (x′, y′), r′ =
√

x′2 + y′2 is a suitable chosen CCD radius, and
R′ is weighted by the system’s diffraction limitation. According to the relationship introduced by
Equation (50), we will build the general model-based method for the WFSless AO system.

In order to find out the control input for the magnetic fluid deformable mirror, Z orthogonal
modes are taken as the predetermined bias functions and are added by the MFDM sequentially with
coefficient δ to the wavefront aberration that needs be corrected. Then the far-field optical intensity
information is recorded and the MDSi (i = 1, . . . , Z) are calculated according to Equation (52). Zernike
parameters V can be estimated by

V ≈
S−1

(
c0 ∗M− δ2

∗ Sz
)

2 ∗ δ
(53)

where

M = −


MDS1 −MDS0

MDS2 −MDS0

· · ·

MDSZ −MDS0

 (54)

and MDS0 is the corresponding MDS of the wavefront aberration to be corrected. The matrix S is the
second moment of the wavefront gradients, which can be calculated by the bias function. The vector Sz

is the diagonal vector of matrix S. W(x, y) =
Z∑

i=1
viFi(x, y) represents the aberration of the wavefront

that can be expressed by a series of Z orthonormal modes Fi(x, y). Then S can be calculated according
to the following equation:

S(i, q) =

s

s

{[
∂
∂x Fi(x, y) ∂∂x Fq(x, y)

]
+

[
∂
∂y Fi(x, y) ∂∂y Fq(x, y)

]}
dxdy

s
(55)
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3.2. Control Algorithm

According to the relationship between the MDS and the SM of the aberration gradient, the
model-based WFSless control algorithm for the MFDM is developed in the following sections.

3.2.1. Preprocessing

Figure 2 shows the arrangement of electromagnetic actuators of MFDM. The sampling points are
the center of each triangle that makes up the pupil.
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With respect to K sampling points at the mirror surface, the wavefront aberrations at each sampling
point can be written as

W(Pk) =
Z∑

i=1
viFi(Pk), k = 1, 2, . . . , K (56)

Define the Zernike function matrix as:

F =


F1(P1) F2(P1) · · · FZ(P1)

F1(P2) F2(P2) · · · FZ(P2)
...

...
. . .

...
F1(PK) F2(PK) · · · FZ(PK)


K×Z

(57)

Using MFDM to fit the wavefront aberration of Equation (56) described by Zernike polynomials, we
can get:

Z∑
i=1

viFi(Pk) =

J∑
j=1

u jG j(Pk) + E (58)

where u j is the voltage of jth actuators, and E is the wavefront residual error. Multiply both sides of
Equation (58) by the influence matrix GT, and then calculate the average integral on s, which can be
written as:

CzvV = CvU + ε (59)

Czv =
s
K ×GTF

s
=

GTF
K

(60)

Cv =
s
K ×GTG

s
=

GTG
K

(61)

where ε is the vector of the residual error, s
K is the sampling area of each triangle, Czv is the matrix

of the relationship between the influence functions and the Zernike polynomials, Cv is the coupling
matrix between the influence functions that is symmetric reversible. Then, the optimal least-squares
solution of Equation (59) is formulated as:

U∗ = Cv
−1CzvV (62)
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3.2.2. Iterative algorithm

A closed-loop algorithm based on the developed model is used to control the deformation of
MFDM in the WFSless AO system. The algorithm is described as follows:

(1) Gather the corresponding far-field intensity with the wavefront W(x, y) from CCD, then calculate
MDS0 by Equation (52).

(2) For each step i = 1, · · · , Z, denote Vi =
[

0 · · · δ · · · 0
]T

, where only the ith element of
the row is δ and the others are zero. Bring the coefficient Vi into the Equation (62) to obtain
the optimal voltage for each Zernike mode and apply the voltage vector to the actuators of the
MFDM. The wavefront shape introduced by the MFDM is then superimposed to the wavefront
W(x, y). Detect the far-field optical intensity of the modified wavefront aberration from CCD and
then calculate MDSi according to Equation (52).

(3) Repeating (2), obtain MDS1, MDS2, · · · , MDSZ for each Zernike mode, respectively.
(4) Compute M according to Equation (54).
(5) Obtain the corresponding Zernike parameters V of the wavefront aberration based on Equation (53).

Plug the control parameters V into Equation (62) to obtain the voltage vector U applied to the
actuators of MFDM.

(6) Regarding the residual wavefront aberration, repeat the iterative step (1)–(5) until the algorithm
satisfies the termination conditions, such as certain number of iterations.

Compared with other WFSless control methods, the above model-based WFSless closed-loop
control algorithm needs fewer steps and has better convergence performance.

4. Experimental Verification

4.1. Experiment Setup

The properties of the magnetic fluid used in this paper are given in Table 1. In order to verify
the performance of the correction ability of the MFDM, Figure 3 shows the schematic diagram of the
designed MFDM that consists of the magnetic fluid in container, a thin film of a reflective material
coated on the free surface of the magnetic fluid, miniature electromagnetic coils placed underneath the
fluid layer, and a Maxwell coil. Figure 4 illustrates the schematic and actual layout of the experimental
setup of the WFSless AO system. Components of the setup have been labeled along with the path of
the laser beam. The 635 nm laser beam is expanded through the first and second optic relays R1, R2
and an optic aperture until it is deflected down to the horizontal MFDM by the folding mirror. The
reflected beam will reflect directly back onto the folding mirror and the third optic relay R3 which
minifies the diameter of the laser beam. The laser beam is focused on the CCD camera by the imaging
lens. The CCD camera (DCU223C, Thorlabs) is used to image the geometric profile and measure the
intensity profile of the beam.

Table 1. Parameters of the magnetic fluid.

Magnetic Fluid Parameters

Saturation magnetization 22 mT
Relative permeability 2.89

Density 1190 kg/m3

Viscosity 3 cP
Thickness 1 mm
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4.2. Experimental Results

To evaluate the correction capabilities of the MFDM with the proposed model-based WFSless
control algorithm in the AO system, MDS0 and Strehl ratio (SR) are used to measure the correction
capability of the AO system, SR is defined as

SR =
P[I(x′, y′)]
P[I0(x′, y′)]

(63)

where P[·] is an operation, which calculates the peak intensity. I0(x′, y′) is the intensity distribution
without aberration. MDS0 based on Equation (52) is defined as the value of MDS before correction.

Figure 5a shows the desired focal spot of the laser beam captured by a CCD camera without the
aberration disturbance in the optical path, and the light intensity distribution is shown in Figure 5b.
Firstly, the inverse matrix S−1, vector Sz (diagonal vector of matrix S), matrix Czv and matrix Cv are
calculated once and for all. The approximate linear relation constant is c0 = 0.023 and the parameter δ
is set to 0.16.
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Figure 5. (a) The focal spot image captured by Charge-coupled Device (CCD) without aberration
disturbance; (b) light intensity distribution

Secondly, an unknown random aberration is generated by applying a vector of 37 random control
signals to the actuators of the magnetic fluid deformable mirror, the corresponding Zernike mode
numbers and the resulting wavefront are shown in Figure 6. The laser beam is incident on the MFDM
with this aberration, and the optical intensity profile distribution after reflection has been shown in
Figure 7. We can see the laser beam become disorderly.

Int. J. Mol. Sci. 2019, 20, x 11 of 14 

 

( )
( )0

,
,

P I x y
SR

P I x y

′ ′  =
′ ′  

 (63)

where [ ]P ⋅  is an operation, which calculates the peak intensity. ( )0 ,I x y′ ′  is the intensity 
distribution without aberration. 0MDS  based on Equation (52) is defined as the value of MDS  
before correction. 

Figure 5. (a) The focal spot image captured by Charge-coupled Device (CCD) without aberration 
disturbance; (b) light intensity distribution 

Figure 5a shows the desired focal spot of the laser beam captured by a CCD camera without the 
aberration disturbance in the optical path, and the light intensity distribution is shown in Figure 5b. 
Firstly, the inverse matrix -1S , vector zS  (diagonal vector of matrix S ), matrix zvC  and matrix vC  
are calculated once and for all. The approximate linear relation constant is 0 0.023c =  and the 
parameter δ  is set to 0.16. 

Secondly, an unknown random aberration is generated by applying a vector of 37 random 
control signals to the actuators of the magnetic fluid deformable mirror, the corresponding Zernike 
mode numbers and the resulting wavefront are shown in Figure 6. The laser beam is incident on the 
MFDM with this aberration, and the optical intensity profile distribution after reflection has been 
shown in Figure 7. We can see the laser beam become disorderly. 

Figure 6. Target aberration. (a) Zernike mode numbers of the target aberration; (b) the aberration 
wavefront.  

Figure 7. (a) The image captured by CCD with random aberration generated by the MFDM; (b) light 
intensity distribution. 

Finally, 12 (3–14) modes with the parameter δ  were taken sequentially to be the biases of the 
model-based control method and added by the MFDM to the input wavefront. According to 
Equations (53) and (62), the closed-loop control algorithm computes the ideal control signal vector 
needed for correction of the random aberration and then applies to the MFDM to eliminate the large 

 
(a) 

 
(b) 

 
(a) 

 
(b) 

Figure 6. Target aberration. (a) Zernike mode numbers of the target aberration; (b) the
aberration wavefront.Int. J. Mol. Sci. 2019, 20, x 12 of 14 

 

unknown aberration. After the first iteration, the 0MDS  drops from 67.34 to 24.79 and SR  rises 
from 0.24 to 0.87. In order to further verify the performance of the WFSless control algorithm, several 
iterations have been implemented. The final result after five corrections captured by the CCD has 
been shown in Figure 8, where the divergent spot has been concentrated to the focal spot. Meanwhile, 
Figure 9 shows the trend of the performance metric by the control algorithm after the five iterations, 
where the final 0MDS  is equal to 21.37 and the final SR  is 0.92. It can be seen that the curves of 
different metrics have converged after five iterations and the one iteration can almost make the laser 
beam converge in the AO system with MFDM. Thus, the unknown aberration has been effectively 
corrected by the MFDM with the proposed WFSless control algorithm in the AO system.  

Figure 8. (a) The image captured by CCD after correction; (b) light intensity distribution. 

Figure 9. The trend of the performance metric (a) 0MDS  curve; (b) Sterhl ratio (SR) curve. 

5. Conclusion 

This paper presented a model-based WFSless control method for the magnetic fluid deformable 
mirror to compensate for the unknown large aberrations in the AO system. According to the 
established surface dynamics model of the MFDM, the model-based control approach is developed 
based on a mapping relationship between the second moments of the wavefront gradients and the 
far-field intensity distribution by taking Zernike polynomials as the predetermined bias functions. 

 
(a) 

 
(b) 

 
(a) 

 
(b) 

  
(a) (b) 

Figure 7. (a) The image captured by CCD with random aberration generated by the MFDM; (b) light
intensity distribution.

Finally, 12 (3–14) modes with the parameter δ were taken sequentially to be the biases of
the model-based control method and added by the MFDM to the input wavefront. According to
Equations (53) and (62), the closed-loop control algorithm computes the ideal control signal vector
needed for correction of the random aberration and then applies to the MFDM to eliminate the large
unknown aberration. After the first iteration, the MDS0 drops from 67.34 to 24.79 and SR rises from
0.24 to 0.87. In order to further verify the performance of the WFSless control algorithm, several
iterations have been implemented. The final result after five corrections captured by the CCD has
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been shown in Figure 8, where the divergent spot has been concentrated to the focal spot. Meanwhile,
Figure 9 shows the trend of the performance metric by the control algorithm after the five iterations,
where the final MDS0 is equal to 21.37 and the final SR is 0.92. It can be seen that the curves of different
metrics have converged after five iterations and the one iteration can almost make the laser beam
converge in the AO system with MFDM. Thus, the unknown aberration has been effectively corrected
by the MFDM with the proposed WFSless control algorithm in the AO system.
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5. Conclusions

This paper presented a model-based WFSless control method for the magnetic fluid deformable
mirror to compensate for the unknown large aberrations in the AO system. According to the
established surface dynamics model of the MFDM, the model-based control approach is developed
based on a mapping relationship between the second moments of the wavefront gradients and the
far-field intensity distribution by taking Zernike polynomials as the predetermined bias functions.
The unknown aberrations can be corrected without the wavefront measurement in the closed-loop
AO control system. A WFSless AO experiment platform with a prototype MFDM is also setup for
the experimental evaluation. Experiment results indicate that the MFDM can be effectively controlled
by the model-based WFSless control approach to produce the desired surface deformation for the
unknown aberration elimination in the imaging system.
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