
 

 

 

Figure S1. At3g08030 expression during Arabidopsis thaliana development using  

pAt3g08030::ER-GFP plants.  A) GFP fluorescence in embryo at heart stage.    B) 

GFP fluorescence in embryo at torpedo state. C) GFP fluorescence in hypocotyl 

and primary root of a 36-h germinating seed.  D) GFP fluorescence in the primary 

root from 7-d seedlings. E) GFP fluorescence in flower. F) GFP fluorescence in 

carpel and G) GFP fluorescence in stamen. pAt3g08030::ER-GFP transgenic 

plants were obtained and laser confocal scanning microscopy was done as 

described in Salazar-Iribe et al. [19]. ER-GFP refers to Endoplasmic Reticulum 

signal peptide fused to GFP, A, B, D are longitudinal sections and C, E, F and G 

are projections of confocal stacks. 

 

 

 



 

 

 

 

 

 

Figure S2. At5g11420 expression during Arabidopsis thaliana development using  

pAt5g11420::ER-GFP plants. A) GFP fluorescence in hypocotyl of a 48-h 

germinating seed. B) GFP fluorescence in the primary root from 7-d seedlings. C) 

GFP fluorescence during lateral root emergence. D) GFP fluorescence in flower. E) 

GFP fluorescence in petals pAt5g11420::ER-GFP transgenic plants were obtained 

and laser confocal scanning microscopy was done as described in Zúñiga-

Sánchez et al. [13]. Images are projections of confocal stacks. 



 

 

 

 

 

Figure S3.  At4g32460/BDX, At5g25460/DGR2 , At5g11420, At3g14310/PME3 , 

At2g41800/TEB and At3g08030 expression during seed germination.  Seeds were 

collected after 2, 4, 6, 8, 12, and 24 h of imbibitions. 0 corresponds to dry seed and 

48 to germinated seeds.  ACT7 expression was used as control. Primers used: 

BDXF 5´GTGATAGTGCTTCTTCTCCTTCAC 3´; BDXR  

5´AGCGACGAATCTCAATGAC 3´; DGR2F 5´CTTCCTTCTTTTCATCGCC 3´; 

DGR2R 5´ACGAGAAATCATCGCTCC 3´; At5g11420F 

5´AATCGCCACCATCACTTC3´;  At5g11420R 5´ CATAACACTTGTGCGGGTC; 

3´At3g08030F 5´GGTTCCCAAAGCCATTATTC 3´; At3g08030R 5´ 

ACAATCTCGTCAATGACAGG 3´; ´TEBF 5´TCCTCCTCCTATCTCTCTGC 3´; 

TEBR 5´AAACGGTTCTCTTCCTGC 3´; PMEF  5´CATCAATGAAAGAAATTTTTTC 

3; PMER 5´AGACCGAGCGAGAAGGGGAAA 3´; ACT7F 

5´GGTCGTACAACCGGTATTGT 3´;  ACT7R 5´GAAGAGCATACCCCTCGTA 3´.   

PCR analyses were done as described in Garza-Caligaris et al. [36]. 

 



 

 

Figure S4. Subcellular localization of BDX in Arabidopsis thaliana primary roots 

under salinity stress conditions using pBDX::BDX-GFP plants. A) GFP 

fluorescence is detected intracellulary in the epidermal cells of the primary root 

from seedlings grown under control conditions.  B) GFP fluorescence is detected in 

the cell wall of the epidermal cells o f the primary toot of seedlings grown under 

salinity stress.  

Seedling were grown in MS with 50 mM NaCl.  pBDX::BDX-GFP plants transgenic 

plants were obtained and laser confocal scanning microscopy was done as 

described in Salazar-Iribe et al. [30]. A is a longitudinal section and B is a  

projection of confocal stacks.   
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