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Abstract: Studies on the specific and nonspecific interactions of biosurfactants with proteins are
broadly relevant given the potential applications of biosurfactant/protein systems in pharmaceutics
and cosmetics. The aim of this study was to evaluate the interactions of divalent counterions
with the biomolecular anionic biosurfactant surfactin-C15 through molecular modeling, surface
tension and dynamic light scattering (DLS), with a specific focus on its effects on biotherapeutic
formulations. The conformational analysis based on a semi-empirical approach revealed that Cu2+

ions can be coordinated by three amide nitrogens belonging to the surfactin-C15 cycle and one
oxygen atom of the aspartic acid from the side chain of the lipopeptide. Backbone oxygen atoms
mainly involve Zn2+, Ca2+ and Mg2+. Subsequently, the interactions between metal-coordinated
lipopeptide complexes and bovine serum albumin (BSA) were extensively investigated by fluorescence
spectroscopy and molecular docking analysis. Fluorescence results showed that metal-lipopeptide
complexes interact with BSA through a static quenching mechanism. Molecular docking results
indicate that the metal-lipopeptide complexes are stabilized by hydrogen bonding and van der
Waals forces. The biosurfactant-protein interaction properties herein described are of significance for
metal-based drug discovery hypothesizing that the association of divalent metal ions with surfactin
allows its interaction with bacteria, fungi and cancer cell membranes with effects that are similar to
those of the cationic peptide antibiotics.

Keywords: biosurfactant; lipopeptides; molecular modeling; fluorescence quenching; BSA;
divalent counterions

1. Introduction

Lipopeptide biosurfactants are surface-active biomolecules that are produced by a variety
of microorganisms [1]. These compounds gained the attention of microbiologists, chemists and
biochemists due to their high biodiversity, but also to their activity, low toxicity and good
biodegradability in comparison to their synthetic counterparts [2]. Recent studies highlighted a
number of interesting biological and chemical properties of biosurfactants and many pharmaceutical
and medical applications have been suggested [3–5]. In particular, their ability to disturb the integrity
of cell membranes of bacteria, yeasts and tumor cells, leading to metabolites leakage and ultimately
to cell lysis; as well as their propensity to partition at the interfaces, modifying surface properties
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and thus affecting microorganisms adhesion, which are important functions for antimicrobial and
anti-biofilm applications [6,7].

Surfactin is a cyclic lipopeptide biosurfactant, produced by various strains of Bacillus subtilis [8,9].
Surfactin consists of a heptapeptide head group with the sequence Glu-Leu-d-Leu-Val-Asp-d-Leu-Leu
closed to a lactone ring by a β-hydroxyl fatty acid (Figure 1). Surfactin exhibits significant biological
activities [10]. For example, it shows potent antimicrobial and anti-adhesive action against several
pathogenic microorganisms on medical implants [11,12] as well as antitumor activities.
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[21–23]. Serum albumins are the most abundant proteins in blood plasma and the circulatory system 
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Figure 1. Chemical structure of surfactin-C15. Seven amino acids are arranged in the cyclic ring
connected with a β-hydroxyl fatty acid with a chain length of fifteen carbon atoms to form a cyclic
lactone ring.

The chemistry of metal coordination surfactants is nowadays becoming popular, particularly
in the design of drugs exhibiting improved biological activity [13,14]. The potential application
of cationic double-chained metallosurfactants in medicine has been studied over the past few
years [15]. Several metal chelates are known to exhibit anticancer, antiviral, antibacterial, and antifungal
activities [16,17]. In several cases, the metal coordination surfactants have been found to exhibit better
antimicrobial activity than the chelating agents themselves [16].

Interactions of proteins with surfactants have been extensively studied for the past few years due to
their numerous applications in biological and industrial systems [18–20]. Investigating the interaction
of biological active compounds with albumins may provide useful information on the structural
features of drug-protein complexes that determine the therapeutic effectiveness of drugs [21–23].
Serum albumins are the most abundant proteins in blood plasma and the circulatory system and
are responsible for binding a wide variety of metal ions, drugs, fatty acids, and surfactants [24].
Thus, the study of the binding of probes or drugs with albumins becomes a relevant research field in
chemistry, life sciences, and clinical medicine [19,25]. Several biophysical methods such as surface
tension analysis, fluorescence and circular dichroism (CD) spectroscopy, and molecular docking have
been used to unravel the interactions between surfactants and proteins [18,20].

In this work, the biomolecular interactions between divalent counterions and surfactin-C15 were
studied by conformational analysis using semi-empirical methods, changes in surface tension and
dynamic light scattering (DLS). Subsequently, the interactions between surfactin-C15 and metal-surfactin
complexes with BSA were studied by fluorescence spectroscopy. In addition, molecular docking was
used to better understand the interaction between surfactin-C15 and metal-surfactin complexes with
BSA. This study provides a molecular basis for the applications of surfactin/BSA and metal-surfactin/BSA
complexes in biological, pharmaceutical, and medical systems.
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2. Results and Discussion

2.1. Conformational Analysis

The conformational analysis was performed to get an insight in the molecular structure of
metal-lipopeptide complexes and to determine the impact of ions binding to the conformation of
surfactin. Moreover, the results obtained became the starting point for further investigation concerning
the self-aggregation ability of the lipopeptide after complexation and molecular docking. The data are
presented in the Sections 2.2 and 2.4.

Our previous studies [26,27] have shown that Cu2+ ions preferentially bind to amide nitrogens,
whereas the remaining divalent cations (Zn2+, Mg2+ and Ca2+) are associated with the oxygen atoms
of lipopeptide biosurfactants. Additionally, Gang et al. [28] reported that based on their molecular
dynamic simulations, surfactin exhibits high binding affinity to calcium counterions and both carboxyl
groups present in its structure are accessible for metals.

In the present study, the metal coordinated geometries of surfactin-C15 were examined at PM6 level
of theory considering our experimental findings. The lowest energy conformers of analyzed complexes
are represented in Figure 2.
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As can be observed from Figure 2, the simulated structures reveal that the oxygen atoms 
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Zn2+ and Ca2+ ions. Contrary to the results obtained for pseudofactin, the main chain carbonyl oxygen 

Figure 2. Predicted orientations of the lowest energy conformations of surfactin-C15 and its complexes
with divalent metal ions: Cu2+-surfactin (a), Zn2+-surfactin (b), Mg2+-surfactin (c), Ca2+-surfactin (d) and
surfactin (e).

As can be observed from Figure 2, the simulated structures reveal that the oxygen atoms belonging to
the carboxyl groups of aspartic and glutamic acid are important binding sites for Mg2+, Zn2+ and Ca2+

ions. Contrary to the results obtained for pseudofactin, the main chain carbonyl oxygen atoms were not
involved in coordination [26]. Additionally, we were not able to obtain the four-coordinated complex for
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zinc. Similar to our earlier findings, three amide nitrogens from the main chain of surfactin-C15 ring can
coordinate the Cu2+ ions in almost planar configuration. Furthermore, in complex formation the oxygen
atom from the lipopeptide ring is involved. Additionally, the stabilization of some complexes was enhanced
by the presence of hydrogen bonds. Finally, complex formation led to significant changes in the structure of
the lipopeptide, the most important of which are recorded in the case of zinc and copper complex formation.
The comparison of the calculated structures is presented in the Supplementary information (Figure S1).

2.2. Divalent Counterions Effects on Surface Tension

The surface tension curves of surfactin-C15 at different concentrations of Cu2+, Zn2+, Mg2+ and
Ca2+ are shown in Figure 3. For the pure surfactin in the Hepes buffer without divalent counterions,
the critical micelle concentration (CMC) value was 0.045 mM. Regarding the effect of divalent cations,
Ca2+ decreased the CMC value of surfactin-C15 more than the other cations. Compared with the
surfactin-C15 solution without metal ions, the CMC of Ca2+-surfactin decreased from 0.045 mM to
0.017 mM. The addition of 0.1 mM of Cu2+, Mg2+ and Zn2+ to surfactin-C15 reduced the CMCs to
0.033 mM, 0.036 mM and 0.038 mM, respectively. All the tested metal ions led to reductions of the
surface tension of surfactin-C15 at the CMC (γcmc), being the highest reductions obtained with Cu2+

and Ca2+ (from 28.4 mN·m−1 up to 24.5 and 25.1 mN·m−1, respectively). The peptide ring of surfactin
adopts a “horsesaddle” structure in solution, with the two charged residues forming a “claw”, which
is a potential binding site for divalent cations [29].
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As it was reported in earlier studies, divalent cations can significantly influence the properties of
micellar systems [30,31]. For example, it is known that the addition of metal ions decreases the CMC of
surfactin. This is probably related with two important competing forces during the micellization process.
Electrostatic interactions, which are responsible for the repulsion of hydrophilic groups of the lipopeptide
inhibit the formation of micelles. On the other hand, hydrophobic interactions are responsible for initiation
of micellization through exclusion of fatty acid chains from the aqueous environment. The presence of
divalent cations additionally supports the self-assembly process. From the data shown in Table 1, it can
be concluded that metal ions binding significantly affects the molecular volume of surfactin complexes.
In the case of the Cu2+-surfactin system, Vmic

PM6 is twice lower than in the case of the free lipopeptide.
Such big differences influence the aggregation number. Generally, Nagg decreases after binding of cations.
The experimental micelle volumes and hydrodynamic radii with their theoretically calculated counterparts
and aggregation numbers are shown in Table 1. The experimental (RH

DLS) and theoretically calculated
(RH

PM6) hydrodynamic radii of surfactin-C15 were 2.46 nm and 2.40 nm, respectively. Addition of Cu2+,
Zn2+, Mg2+ and Ca2+ reduces the size of the microstructures. In this study, we observed the largest
modifications of surfactin-C15 conformation due to the binding of Cu2+; in that case RH

DLS and RH
PM6
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were 1.82 nm and 1.80 nm, respectively. The data obtained from the semiempirical study are in agreement
with DLS spectroscopy results (Table 1).

Table 1. Selected properties of the micellar systems studied. Experimental results represent the mean
of 9 replicates ± SD.

DLS

Micelle Size Surfactin Cu2+-Surfactin Zn2+-Surfactin Mg2+-Surfactin Ca2+-Surfactin

RH
(DLS) (nm) 2.46 ± 0.03 1.82 ± 0.05 2.05 ± 0.05 2.12 ± 0.07 2.38 ± 0.02

Vmic
(DLS) (nm3) 62.36 25.25 36.08 39.91 56.47

PM6

Micelle Size Surfactin Cu2+-Surfactin Zn2+-Surfactin Mg2+-Surfactin Ca2+-Surfactin

RH
(PM6) (nm) 2.4 1.8 2 2.05 2.29

Vmon (nm3) 1.61 1.35 1.46 1.54 1.46
Vmic

(PM6) (nm3) 57.9 24.43 33.51 36.09 50.3
Nagg

(PM6) 36 18 23 23 34

V(DLS)
mic = 4

3 ·π·
(
R(DLS)

H

)3
; V(PM6)

mic = 4
3 ·π·
(
R(PM6)

H

)3
; Nagg = V(PM6)

mic /V(PM6)
mon

2.3. Fluorescence Measurements

Fluorescence spectroscopy is a valuable tool for studying ligand-protein interactions. BSA contains
two tryptophan residues, Trp134 and Trp213, which are located in sub-domain IB and sub-domain
IIA, respectively [32]. The effect of surfactin and metal-surfactin complexes on intrinsic fluorescence of
BSA is shown in Figure 4. The maximum emission wavelength of BSA was found at 348 nm, and the
intensity decreased regularly upon increasing the concentration of surfactin and metal-surfactin complexes.
This interaction takes place adjacent to the Trp in BSA and changes the polarity around the fluorophore.
This phenomenon is ascribed to the formation of surfactin/BSA and metal-surfactin/BSA complexes [33].
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Figure 4. Fluorescence emission spectra of bovine serum albumin (BSA) with different concentrations
of Cu2+-surfactin (a), Zn2+-surfactin (b), Mg2+-surfactin (c), Ca2+-surfactin (d) and surfactin (e).
Conditions: BSA: 15 µM; metal-lipopeptide (a–g): 0, 10, 20, 50, 70, 100 and 120 µM; pH = 7.4; T =25 ◦C.

Fluorescence quenching can occur through dynamic and static mechanisms. Both dynamic and
static quenching require molecular contact between the fluorophore and the quencher. The Stern–Volmer
quenching (KSV) values decrease with an increase in temperature for static quenching, but the reverse
effect is observed for dynamic quenching. Quenching parameters were calculated from the Stern–Volmer
equation [34]:

F0/F = 1 + KSV [Q] = 1 + kqτ0[Q] (1)

where F0 and F are the fluorescence intensities in the absence and presence of surfactin or metal-surfactin
complexes, respectively; KSV is the Stern–Volmer quenching constant; [Q] is the concentration of
surfactin or metal-surfactin complexes; kq is the biomolecular quenching rate constant; and τ0 is the
lifetime of the fluorophore. The fluorescence lifetime of BSA is about 5 ns [35]. The KSV values obtained
from the plot of [Q] versus F0/F (shown in Figure 5) were in the range from 6.696 × 103 to 7.787 × 103

M−1 corresponding to the surfactin and metal-surfactin complexes. The KSV values obtained from
the Stern–Volmer plot at three different temperatures (25, 30, and 37 ◦C) are presented in Table 2.
We observed that for the surfactin/BSA and metal-surfactin/BSA systems, the kq values range from
6.294 × 1011 to 1.557 × 1012 M−1

·s−1 and are greater than the maximum collision quenching constant:
2 × 1010 M−1

·s−1 [36]. This suggests that the formation of the surfactin/BSA and metal-surfactin/BSA
complexes occurred through a static quenching.
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Figure 5. Stern–Volmer plots of the fluorescence titration of Cu2+-surfactin (a), Zn2+-surfactin (b),
Mg2+-surfactin (c), Ca2+-surfactin (d) and surfactin (e) with BSA. Conditions: BSA: 15 µM; pH = 7.4;
T = 25/30/37 ◦C.

Table 2. Summary of Stern–Volmer data for BSA quenching by surfactin and metal-surfactin complexes.

System T (◦C) KSV (M−1) kq (M−1·s−1) R2 SD

Cu2+-surfactin
25 7.292 × 103 1.458 × 1012 0.999 0.02432
30 5.102 × 103 1.020 × 1012 0.999 0.06321
37 3.267 × 103 6.534 × 1011 0.999 0.07431

Zn2+-surfactin
25 7.787 × 103 1.557 × 1012 0.997 0.08432
30 5.186 × 103 1.037 × 1012 0.998 0.01275
37 3.439 × 103 6.878 × 1011 0.999 0.06432

Mg2+-surfactin
25 6.917 × 103 1.383 × 1012 0.997 0.01876
30 4.973 × 103 9.946 × 1011 0.998 0.03871
37 3.148 × 103 6.296 × 1011 0.998 0.07312

Ca2+-surfactin
25 6.992 × 103 1.398 × 1012 0.997 0.05423
30 4.993 × 103 9.986 × 1011 0.999 0.06531
37 3.245 × 103 6.490 × 1011 0.998 0.01254

Surfactin
25 6.696 × 103 1.339 × 1012 0.998 0.03186
30 4.926 × 103 9.852 × 1011 0.998 0.04873
37 3.147 × 103 6.294 × 1011 0.998 0.07126
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For the static quenching interaction, the binding constant (Kb) and the number of binding sites (n)
can be determined by the following equation:

log[(F0 − F)/F] = log Kb + n log[Q] (2)

where F0 and F are the fluorescence intensities in the absence and presence of surfactin or metal-surfactin
complexes, respectively, and [Q] is the concentration of surfactin or metal-surfactin complexes.
Binding constants obtained from the plot of log [Q] versus log [(F0−F)/F] (Figure 6) corresponding
to surfactin and metal-surfactin complexes ranged from 0.746 × 104 to 1.315 × 104 M−1. The binding
parameters are summarized in Table 3. Surfactin exhibits more efficient binding properties than
the metal-surfactin complexes. Regarding the binding constants (Kb), surfactin has values higher
than all the tested metal-surfactin complexes. The value of n represents the number of binding
sites, and it is close to one in our experiment, which might suggest that the tryptophan in BSA is
accessible to surfactin and metal-surfactin complexes. The above results are similar to those reported
for metal-amphisin/BSA [27].
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Table 3. Binding constants (Kb) and number of binding sites (n) of BSA with surfactin and metal-surfactin
complexes at 25 ◦C.

Complex Kb (M−1) n R2 SD

Cu2+-surfactin 0.980 × 104 1.03 0.995 0.001542
Zn2+-surfactin 0.746 × 104 0.99 0.996 0.002106
Mg2+-surfactin 1.267 × 104 1.07 0.997 0.001042
Ca2+-surfactin 0.986 × 104 1.03 0.996 0.001216

Surfactin 1.315 × 104 1.07 0.997 0.001492

Thermodynamic parameters for a binding interaction can be used as major evidence for the nature
of intermolecular forces. There are four types of interaction forces, which could play a role in ligand
binding to proteins: Van der Waals forces, hydrophobic forces, electrostatic interactions and hydrogen
bonds [37]. Thermodynamic parameters relying on temperatures were analyzed to characterize the
acting force between surfactin and metal-surfactin complexes with BSA. To obtain such information,
the thermodynamic parameters were calculated from the Van’t Hoff relation [37]:

ln K = −
∆H0

RT
+

∆S0

R
(3)

∆G0 = ∆H0
− T∆S0 = −RT ln K (4)
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where K is the binding constant, R is the gas constant and T is the experimental temperature. ∆H denotes
the enthalpy change and ∆S denotes the entropy change of the binding process. The ∆H and ∆S values
were calculated from the slope and intercept of the Van’t Hoff plot (Figure S2), respectively. The values
of the thermodynamic parameters are shown in Table 4. The negative sign for ∆G means that the
interaction process is spontaneous. The negative ∆H and ∆S values showed that both hydrogen bonds
and the van der Waals interaction played major roles in the binding of surfactin and metal-surfactin
complexes to BSA. This observation is supported by the docking results.

Table 4. Thermodynamic parameters for the binding of surfactin and metal-surfactin complexes to BSA.

System T ◦C ∆H (kJ·mol−1) ∆S (J·mol−1·K−1) ∆G(kJ·mol−1) R2 SD

Cu2+-surfactin
25

−51.30 −98.23
−22.03 0.997 0.02187

30 −21.54 0.998 0.01254
37 −20.85 0.997 0.01047

Zn2+-surfactin
25

−51.59 −100.02
−21.78 0.998 0.01784

30 −21.28 0.998 0.01354
37 −20.58 0.998 0.01274

Mg2+-surfactin
25

−50.42 −95.67
−21.91 0.998 0.01987

30 −21.43 0.998 0.02487
37 −20.76 0.999 0.01274

Ca2+-surfactin
25

−49.07 −91.10
−21.92 0.999 0.01487

30 −21.47 0.999 0.02478
37 −20.83 0.999 0.01147

Surfactin
25

−48.42 −89.20
−21.84 0.998 0.02249

30 −21.39 0.998 0.01151
37 −20.77 0.997 0.01876

2.4. Molecular Docking Study

BSA contains two major drug binding sites in the sub-domains IIA and IIIA: Tryptophan residues
Trp134 and Trp213, being Trp213 located in the hydrophobic binding pocket of the protein. In order
to predict the binding mode of surfactin and the metal-surfactin complexes to BSA, the docking
simulations were performed and binding forces were discussed. Figure 7 and Figure S3 show the
docking results for the different compounds. The obtained data indicate that all the surfactin complexes
studied can bind to BSA.
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The binding and geometrical orientation of analyzed systems strongly depend on the presence of
divalent metal ions. Docking results revealed that the van der Waals forces play a significant role in the
stabilization of the protein-surfactant complexes and electrostatic terms are negligible. For example,
for the system with the free lipopeptide, the sum of ∆Gvdw, ∆Ghbond and ∆Gdesolv is about −46 kJ·mol−1,
whereas the value of electrostatic energy is −0.3 kJ·mol−1. According to the data, Ca2+-surfactin/BSA
complex is characterized by the lowest binding free energy (−42 kJ·mol−1). All the compounds studied
are located in close proximity of Trp213, but the arrangement of the hydrophilic and hydrophobic
domains of the lipopeptide in the binding site differs significantly. The surfactin-C15 molecule is mainly
surrounded by polar amino acids (Thr190, Gln220, Tyr451, Cys447) and charged amino acids (such as
Lys187, Arg194, Lys221, Glu291, Lys294, Lys439). It can be also observed that the Mg2+-surfactant
complex is located in the hydrophobic cavity created by Pro338, Tyr340, Pro440 and Pro446 residues.
In addition, the amino acids Arg194, Arg217, Lys294 and Lys439 are in the close proximity of the
ligand. A hydrogen bond is found involving the H–N- group of Arg194 and the lipopeptide oxygen
atom (2.04 Å). The second hydrogen bond is formed between the oxygen atom of the side chain of
Glu of surfactin-C15 and the H–N- group of Gln220. Cu2+-surfactin complex is surrounded by a
number of amino acid residues, namely Trp213, Lys221, Ala290, Glu291, Lys294, Asp450 and Tyr 451.
There is also a possibility of H-bonding interaction involving the carboxyl group of Asp from surfactin
and Lys294 from the protein, showing a distance 1.9 Å (Figure 7a). The intermolecular interaction
energies estimated during the molecular docking procedure for the complex in question revealed that
binding between lipopeptide and BSA occurs mainly through hydrogen bonding, van der Waals and
hydrophobic interactions, which supports the experimental results ((∆Gvdw + ∆Ghbond + ∆Gdesolv) =

−71 kJ·mol−1). In the case of Zn2+-surfactin complex (Figure 7b), the polar head group of surfactin
is exposed towards polar and charged amino acid residues (Trp213, Tyr451, Asp450 and Lys439),
while the hydrophobic tail is observed to be encompassed by a number of polar amino acid residues,
namely, Thr190, His287. The binding free energy of Zn2+-surfactin/BSA complex was established as
−40 kJ·mol−1.
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3. Materials and Methods

3.1. Surfactin-C15 Production and Purification

The bacterial strain Bacillus subtilis #309 previously isolated from a crude oil sample obtained from a
Brazilian oil field [38] was used in this study. The strain #309 was stored at −80 ◦C as a glycerol stock in
the Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life
Sciences, Wrocław, Poland. The production of surfactin by B. subtilis #309 was performed in 1000 mL flasks
containing 200 mL of a culture medium with the following composition: 10 g·L−1 of NaCl (POCH, Gliwice,
Poland), 10 g·L−1 of sucrose (POCH), 2 g·L−1 of NH4NO3 (Chempur, Poland), 5 g·L−1 of Na2HPO4 (POCH),
2 g·L−1 of KH2PO4 (POCH), and 0.2 g·L−1 of MgSO4 × 7H2O; pH 7.0. Each flask was inoculated with 1%
(v/v) of a pre-culture of B. subtilis #309 grown in LB medium (10 g·L−1 NaCl; 10 g·L−1 tryptone; 5 g·L−1

yeast extract; pH 7; A&A Biotechnology, Gdynia, Poland) at 37 ◦C and 180 rpm for 24 h. The flasks were
incubated at the same conditions for 24 h. At the end of the incubation period, the cultures were centrifuged
(10,000× g, 15 min), and the cell-free supernatant was used to recover the biosurfactants produced through
acid precipitation. Briefly, the supernatant was adjusted to pH 2.0 with 6 M HCl and left overnight at 4 ◦C.
Afterwards, the precipitate was collected by centrifugation (10,000× g, 15 min) and washed twice with
acidified water (pH 2.0). The precipitated biosurfactants were dissolved in demineralized water and the pH
was adjusted to 7.0 using 1 M NaOH. Subsequently, the biosurfactants present in the crude mixture were
purified through reversed-phase high-performance liquid chromatography (RP-HPLC) using a Waters
600 HPLC system (Waters, Milford, MA, USA) equipped with an Xterra Prep RP18 OBD column (5 µm,
18 × 100 mm; Waters). The solvent system consisted of solvent A (i.e., 0.1% aqueous trifluoroacetic acid)
and solvent B (i.e., 0.1% trifluoroacetic acid in acetonitrile). The surfactin analogs were eluted at a flow rate
of 4 mL min−1 with the following 40-min gradient (% A:B v/v): injection start (30:70), 5 min (30:70), 10 min
(20:80), 20 min (20:80), 21 min (0:100), 31 min (0:100), 32 min (30:70), and 40 min (30:70). Mass spectrometry
of the purified surfactin-C15 revealed a purity greater than 99% (Figure S4).

3.2. Surface Tension Measurements

The surface tension (γ) measurements were performed at room temperature (25 ◦C) according to
the du Noüy’s ring method [39] using a KRÜSS K20 Tensiometer (KRÜSS GmbH, Hamburg, Germany).
Surfactin-C15 and the different metal ions were dissolved in a 10 mM Hepes (Sigma-Aldrich, St. Louis, MO,
USA) buffer (pH 7.4) and mixed to obtain several mixtures containing a constant metal ions concentration
(0.1 mM) while the surfactin-C15 concentration varied from 0.003 to 0.12 mM. Ultrapure water was used
to calibrate the tensiometer. The platinum ring was thoroughly cleaned with Millipore water between
the different measurements. All measurements were performed in triplicate. The surface tension of the
control sample (10 mM Hepes (pH 7.4)) was 69.4 mN·m−1. The surface tension data were analyzed using
the Origin software provided with the equipment to obtain the CMC values.

3.3. Micelles Size Measurement by Dynamic Light Scattering (DLS)

The size of the micelles formed by surfactin-C15 diluted in 10 mM Hepes buffer (pH 7.4) in the presence
of different concentrations of metal ions was examined through DLS using Zetasizer Nano-ZS spectrometer
(Malvern, Worcestershire, UK). The particle size estimations were made at fixed 173◦ backscattered angle,
and the experimental temperature was maintained at 25 ◦C. All measurements were performed in triplicate.

3.4. Fluorescence Measurements

The fluorescence quenching spectra were obtained with a Varian Cary eclipse fluorescence
spectrophotometer. All fluorescence spectra were collected using a 1.0-cm quartz cuvette with both
excitation and emission band-widths of 5 nm. The interior fluorescence spectra of BSA were scanned
over the wavelength range of 300–450 nm with a fixed excitation wavelength at 280 nm. To eliminate
the inner filter, the corrected fluorescence was estimated by using equation [40]:
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Fcor = Fobs × 10(Aex+Aem)/2 (5)

where Fcor and Fobs are the corrected and experimentally measured fluorescence intensities, respectively,
and Aex and Aem are the measured change in absorbance of the system at excitation and emission
wavelengths, respectively.

3.5. Molecular Modeling

The conformational analysis of investigated complexes was performed using the
Gaussian09 program [41]. The surfactin-metal ion structures were studied based on the PM6 level of
theory and optimized geometries were identified as a global minimum on the potential energy surface
by harmonic vibrational frequencies calculations. Previous studies performed by Steward et al. [42]
demonstrated that this level of theory provides structural parameters in good agreement with
experimental data obtained for transition metals biocomplexes. It gives also a good compromise
between the accuracy and cost of calculations. In order to consider the solvent effects the polarizable
continuum model (PCM) was adopted [43–45]. In the present study, we discuss only the lowest
energy conformers of the investigated systems. Vmon

PM6 denotes the molecular volume of surfactin
complexes defined by the volume inside a contour of 0.001 electrons/Bohr3 density. The measured
distance between the most distant atoms was adopted as the micellar radii (RPM6). For example, in the
case of surfactin, RPM6 was the distance between the farthest carbon atom one of Leu5 and the carbon
of the terminal methyl group of β-hydroxydecanoyl fatty acid side chain.

During molecular docking simulations of ligands to BSA we applied the AutoDock 4.2 software [46].
The crystal structure of BSA (PDB code: 3v03) was taken from the Protein Data Bank [47].
Polar hydrogens, Kollman charges and solvent parameters were added to the protein structure
and atomic coordinates were stored in a separate file and used as an input. The binding sites were
defined using a grid of 80 × 80 × 80 point with a grid space of 0.375 Å. The center of box was located
on the binding site of the protein. Lamarckian genetic algorithm with local search was employed with
a total of 100 runs for each complex. All calculations included the population of 150 individuals with
27,000 generations and 250,000 energy evaluations. Cluster analysis were performed on docked results
using a root mean square (RMS) tolerance of 2.0 Å. The calculated free energy of binding (∆Gbinding)
determines the affinity of lipopeptide-BSA complex and can be expressed as:

∆Gbinding = [∆Gintermolecular + ∆Ginternal + ∆Gtors] − ∆Gunbound (6)

While the intermolecular interaction energy (∆Gintermolecular) is the sum of van der Waals, hydrogen
bonding, desolvation and electrostatic contribution between the biosurfactant and the protein binding site.

∆Gintermolecular = [∆Gvdw + ∆Ghbond + ∆Gdesolv] + ∆Gel (7)

The UCSF Chimera System was used to visualize the results obtained [48].

4. Conclusions

In this work, the interactions between divalent counterions and surfactin-C15 were studied through
molecular modeling, surface tension, and DLS analysis. For all the tested divalent metal ions, only
mononuclear complexes were obtained even when the metal ions were used at a molar ratio of 1:2.
Counterions enhanced the surface activity of surfactin-C15 and reduced its CMC. The results obtained from
fluorescence spectroscopy show that surfactin and metal-surfactin complexes bind with BSA and quench
its fluorescence through a static quenching mechanism. On the other hand, surfactin and metal-surfactin
complexes bind at the subdomain IIA of BSA through hydrophobic interaction, forming surfactin/BSA
and metal-surfactin/BSA complexes. The hydrogen bonds and van der Waals forces play a major role
in binding.
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modeling simulations) performed the experiments. T.J. wrote the manuscript. L.R.R. edited and reviewed the
manuscript. All authors have read and approved the final version of the manuscript.

Funding: This work was supported by the National Science Centre, Poland, projects 2018/02/X/NZ6/02201 and
2017/26/E/NZ9/00975. Publication supported by Wrocław Centre of Biotechnology, program the Leading National
Research Centre (KNOW) for years 2014–2018.
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Arg Arginine
Asp Aspartic acid
BSA Bovine Serum Albumin
CMC Critical Micelle Concentration
DLS Dynamic Light Scattering
Gln Glutamine
Glu Glutamic acid
Hepes 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid
Leu Leucine
Lys Lysine
PCM Polarizable Continuum Model
PDB Protein Data Bank
PM6 Parameterization Method 6
Pro Proline
Thr Threonine
Trp Tryptophan
Tyr Tyrosine
UV Ultraviolet
Val Valine

References

1. Biniarz, P.; Łukaszewicz, M.; Janek, T. Screening concepts, characterization and structural analysis of
microbial-derived bioactive lipopeptides: a review. Crit. Rev. Biotechnol. 2017, 37, 393–410. [CrossRef]
[PubMed]

2. Shekhar, S.; Sundaramanickam, A.; Balasubramanian, T. Biosurfactant producing microbes and their potential
applications: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1522–1554. [CrossRef]
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