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Abstract: Transforming growth factor (TGF)-β is a multifunctional peptide growth factor that has
a vital role in the regulation of cell growth, differentiation, inflammation, and repair in a variety
of tissues, and its dysregulation mediates a number of pathological conditions including fibrotic
disorders, chronic inflammation, cardiovascular diseases, and cancer progression. Regulation
of TGF-β signaling is multifold, but one critical site of regulation is via interaction with certain
extracellular matrix (ECM) microenvironments, as TGF-β is primarily secreted as a biologically
inactive form sequestrated into ECM. Several ECM proteins are known to modulate TGF-β signaling
via cell–matrix interactions, including thrombospondins, SPARC (Secreted Protein Acidic and Rich
in Cystein), tenascins, osteopontin, periostin, and fibulins. Fibulin family members consist of eight
ECM glycoproteins characterized by a tandem array of calcium-binding epidermal growth factor-like
modules and a common C-terminal domain. Fibulins not only participate in structural integrity
of basement membrane and elastic fibers, but also serve as mediators for cellular processes and
tissue remodeling as they are highly upregulated during embryonic development and certain disease
processes, especially at the sites of epithelial–mesenchymal transition (EMT). Emerging studies have
indicated a close relationship between fibulins and TGF-β signaling, but each fibulin plays a different
role in a context-dependent manner. In this review, regulatory interactions between fibulins and
TGF-β signaling are discussed. Understanding biological roles of fibulins in TGF-β regulation may
introduce new insights into the pathogenesis of some human diseases.

Keywords: matricellular protein; extracellular matrix (ECM); epithelial–mesenchymal transition
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1. Introduction

Transforming growth factor-β (TGF-β) is a multifunctional peptide growth factor that plays a vital
role in regulating cell proliferation, differentiation, inflammation, angiogenesis, and tissue repair [1,2].
Dysregulation of TGF-β is known to mediate multiple pathological conditions including tissue fibrosis,
chronic inflammation, cardiovascular diseases, and cancer progression [3–6]. TGF-β activation is
regulated at multiple levels and consists of a very complex network [7–9]. After mRNA translation,
TGF-β precursor is processed and secreted into the extracellular matrix (ECM), where it stays
as a latent form with TGF-β binding proteins (LTBP) and latency-associated protein (LAP) [10].
TGF-β has to be cleaved from this latent complex to become a biologically active form, and several
proteases including plasmin, matrix metalloproteinase (MMP)-2, and MMP-9 have been identified
as latent TGF-β activators [7,11,12]. Free TGF-β executes its role via specific cell surface receptors,
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TGF-β receptors type I and type II, to phosphorylate Smad proteins as an essential component.
TGF-β also activates other signaling cascades, including extracellular-signal-regulated kinase (ERK),
c-Jun-N-terminal kinase (JNK), TGF-β-activated kinase 1 (TAK-1), and p38 mitogen-activated protein
kinase (MAPK) pathways [13,14]. TGF-β is also known to activate phosphatidylinositol-3 kinase
(PI3K)/AKT, Rho-GTPase, Wnt, and Notch pathways, comprising complex signaling cross-talks [15].
Other newly introduced regulatory mechanisms include microRNAs [16], DNA methylation,
and histone modification [17].

Extracellular regulation of TGF-β ligand activation is mediated, in part, by certain ECM proteins
via matrix–matrix interactions [18]. These proteins are called matricellular proteins, which do not
contribute to the structural integrity of tissues but mainly play a functional role in activating tissue
enzymes and proteases during tissue remodeling [19,20]. Thrombospondins, SPARC (Secreted Protein
Acidic and Rich in Cystein), tenascins, osteopontin, and periostin are known to modulate TGF-β
activity [18,21]. These ECM proteins not only regulate TGF-β activation but also in turn may be
regulated by TGF-β, providing complex cross-talks via matrix–matrix and cell–matrix interactions.
Other structural ECM proteins including fibrillin [22,23], fibronectin [24], and decorin [25,26] play
a pivotal role in TGF-β activation. A fibulin family is a group of ECM glycoproteins that have
both a structural contribution to ECM integrity and a functional role of regulating cell behavior via
multiple interactions with other ECM molecules and cell receptors [27–29]. Fibulins also assume
certain regulatory roles in TGF-β signaling in various ways with or without participating in structural
integrity of the tissues. In this review, biological roles of fibulins will be discussed in conjunction with
extracellular regulation of TGF-β in pathogenesis of certain human diseases.

2. Fibulin Family

Fibulins are a family of eight ECM glycoproteins characterized by a tandem array of
calcium-binding epidermal growth factor (cbEGF)-like modules and a homologous C terminal domain
(fibulin-type carboxyl-terminus, FC) of 120 to 140 amino acids [29]. The signature structural features
(tandem cbEGF and FC) are also present in fibrillins, which constitute the core of microfibrils [30].
The fibulins are found in a variety of tissues in association with diverse supramolecular structures,
including elastic fibers, basement membrane networks, fibronectin microfibrils, and proteoglycan
aggregates [28,31]. Based upon length and domain structures, these eight fibulins are divided into
two subgroups: long fibulins (fibulin-1, -2, -6, and -8) and short fibulins (fibulin-3, -4, -5, and -7)
(Figure 1) [31–33]. The biological significance of fibulins has been studied through the expression and
tissue deposition patterns, in vitro cell culture experiments, the phenotypic assessment of genetically
modified experimental animals, and human diseases of specific fibulin mutations.
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2.1. Long Fibulins

Fibulin-1 and fibulin-2 are the original fibulins larger in size than fibulin-3, -4, and -5 [31]. Recently,
fibulin-6 and -8 (hemicentin-1 and -2, respectively) have been added to this group based upon the
large molecular mass.

2.1.1. Fibulin-1

Fibulin-1 (BM-90) is the first fibulin discovered by Argraves and his colleagues as an ECM
protein of approximately 90 kDa in size expressed in the ECM of multiple organs [34]. Fibulin-1 is
widely expressed in association with basement membrane [35] and matrix fibers, especially elastic
fibers through amorphous elastin components [36]. Fibulin-1 has been shown to interact with
integrin, proteoglycan aggrecan and versican [37], nidogen [38], and e ADAMTS (A Disintegrin
And MMP with ThromboSpondin motifs)-1 [39], suggesting its role in tissue remodeling. Fibulin-1
is highly upregulated in early embryonic development and is a constituent of most basement
membranes [40]. Subsequently, extensive extracellular accumulation of fibulin-1 is shown at the sites
of epithelial–mesenchymal transition (EMT), such as endocardial cushion tissue during valvuloseptal
formation [40,41]. Fibulin-1 is widely expressed in the connective tissues throughout the body of
mouse embryos including lung, intestine, kidney, brain, blood vessels, and liver [42]. In adult human
tissue, fibulin-1 is predominantly expressed in connective tissue rich in elastic fibers, such as blood
vessels, lungs, and skin [36]. Fibulin-1 is also present in a soluble form in plasma and interacts with
fibrinogen [43].

Fibulin-1 null mice display a severe perinatally lethal phenotype involving multiple organ systems
consistent with its early onset and severe defects in the basement membranes of many organs including
kidneys and lungs resulting in fetal hemorrhage and organ malformations [44]. Another model of
fibulin-1 deficient mice by gene trap insertion technique demonstrated that fibulin-1 is essential in
cell motility of migrating mesenchymal cells including endocardial cushion cells and neural crest
cells during embryonic heart development [45]. With this fibulin-1 deficient mouse model, it was
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shown that fibulin-1 is required for ADAMTS1-mediated versican cleavage that suppresses trabecular
myocyte proliferation during the development of ventricular myocardium, a critical step in forming
a myocardial compact zone [46]. It was previously shown in the mouse embryonic kidney that fibulin-1
mediates ADAMTS-1-induced proteoglycan proteolysis through their direct molecular interaction,
suggesting a regulatory role of fibulin-1 in the morphogenesis of kidney epithelium [39].

Fibulin-1 is known to possess both tumor suppressive and enhancing effects [47]. The expression
of fibulin-1 is low in many tumor-derived cell lines, and exogenous fibulin-1 (fibulin-1D) suppresses
cell growth and invasion in human fibrosarcoma, suggestive of its inhibitory role for tumorigenesis [48].
Fibulin-1 inhibits in vitro cell adhesion and motility in a cell- and matrix-specific manner; fibronectin
is required for fibulin-1 to suppress cell motility of breast cancer [49,50] and ovarian cancer cells [50].
On the other hand, breast cancers exhibit elevated fibulin-1 expression compared with surrounding
normal tissue, implicating fibulin-1 as a promoter of breast cancer development and progression [51].
Moll et al. demonstrated that fibulin-1C is preferentially upregulated in ovarian cancer cells,
suggesting fibulin-1C, not fibulin-1D, promotes ovarian cancer progression [52]. Thus, cell specificity,
ECM microenvironment, and specific domain of the protein all contribute to the complex outcome of
fibulin-1 involvement in tumorigenesis [53].

2.1.2. Fibulin-2

Fibulin-2 (FBLN-2) was identified from sequence analysis of cDNA clones obtained from
a mouse fibroblast library [54]. Fibulin-2 is a dimer of two disulfide-bonded 195-kDa monomers [55].
Fibulin-2 binds to tropoelastin and thus serves as an interface between the elastin core and fibrillin
microfibrils during vascular development [54,56,57]. Fibulin-2 also binds to other ECM molecules,
including fibronectin, fibrillin-1, fibulin-1, nidogen, laminin, and versican [29]. Fibulin-2 expression
partially overlaps with that of fibulin-1 but shows a more restricted tissue distribution pattern [58].
During embryonic development, fibulin-2 shows an abrupt increase in expression in the endocardial
cushion tissue in E10.5 mouse embryo [59,60]. Fibulin-2 continues robust expression throughout
the development of cardiac valves and septa, coronary vessels, and aortic arch vessels, suggesting
its involvement in EMT [60]. Fibulin-2 is also expressed in the developing cartilages and the
thin capsule-like connective tissue sheaths covering internal visceral organs including lung, liver,
and kidney [42,58]. In adult mouse tissues, fibulin-2 continues to show restrictive expression in cardiac
valves, epicardium, endothelial basement membrane of the blood vessels, interstitial tissue of skeletal
muscle, cornea, and skin [54]. Fibulin-2 is upregulated in skin wound healing, suggesting its role in
tissue remodeling [61]. Fibulin-2 serves as a specific marker of rat liver myofibroblasts distinct from
other fibrogenic liver cells (e.g., hepatic satellite cells) [62] and is upregulated in chronic liver fibrosis
induced by carbon tetrachloride (CCl4) [63].

Fibulin-2 null mice show normal phenotype with normal growth, development, and fertility [64],
but the phenotypic features may be subtle or transient. Compensatory upregulation of fibulin-1 is
seen in aorta and skin tissues [64] and mammary gland [65] of fibulin-2 null mice, which may be
responsible for the lack of obvious phenotype. There is a transient and partial abnormality in skin
basement membrane formation in the newborn fibulin-2 null mice similar to integrin α3β1 null mice,
which show diminished fibulin-2 induction, suggesting fibulin-2 is necessary in supporting integrin
α3β1-induced neonatal skin basement membrane stability [66].

A biological role of fibulin-2 has been investigated in several human cancer disorders,
as fibulin-2 is highly upregulated during EMT. However, the role of fibulin-2 in cancer development
is not straightforward; it may inhibit or promote tumorigenesis. In human nasopharyngeal
carcinoma, fibulin-2 is indicated to assume tumor-suppressive effects by inhibiting cell growth and
proliferation, cell migration and invasion, and angiogenesis by downregulating pro-angiogenesis
factors [67]. In Kaposi’s sarcoma, an angioproliferative tumor of vascular endothelial cells, significant
downregulation of fibulin-2 is demonstrated in combination with downregulated fibulin-3 and
fibulin-5 and upregulation of fibulin-1, suggesting that loss of fibulin-2 compromises the structural
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integrity of vascular basement membrane due to loss of interactions between fibulin-2 and other
ECM proteins, inducing uncontrolled cell proliferation, migration, and invasion [68]. In breast
cancer cell lines, fibulin-2 inhibits cancer progression by suppressing cell migration and invasion,
demonstrated by the fact that fibulin-2 is significantly reduced in invasive breast cancer cell lines
and the reintroduction of fibulin-2 into these cell lines reduced cancer cell motility and invasion [69].
In contrast, fibulin-2 is shown to enhance malignant progression of metastatic lung adenocarcinoma
by promoting cross-linking of secreted collagen molecules and tumor cell adherence [70]. Fibulin-2
plays a complex role in cancer development depending upon the cell types, cancer stages, and the
degree of malignancy. The recent study by Fontanil et al. showed the interaction between fibulin-2
and ADAMTS-12, a secreted metalloproteinase, promotes antitumor effects in breast cancer cells,
while ADAMTS-12 may elicit protumor effects in the absence of fibulin-2 [71]. These interactions
may underlie the molecular mechanisms by which some protumor metalloproteinases exert their
antitumor activities.

2.1.3. Fibulin-6 and Fibulin-8

Hemicentins are an ECM glycoprotein in C. elegans newly identified by Vogel et al. as an
evolutionarily conserved ECM protein with roles in tissue organization, migration, basement membrane
invasion, and cell–cell and cell–matrix contacts mainly in epithelial tissues [72]. Because of their
molecular structure with typical fibulin modules (cbEGF repeats and FC module), hemicentin-1 and
-2 are classified as fibulin-6 and -8, respectively [73,74]. With a molecular size of more than 600 kDa,
fibulin-6 and -8 are by far the largest members of the fibulin family. Mutation in fibulin-6 leads
to massive blistering in the developing fins of zebrafish, suggesting its role in mesenchymal cell
migration and epidermal–dermal junction formation [75]. On the other hand, loss of fibulin-8, only with
concomitant loss of fibulin-1, induces the similar blistering phenotype in zebrafish [76]. Further studies
are warranted to characterize the biological significance of these newer fibulins.

2.2. Short Fibulins

Short fibulins contain no more than six cbEGF domains and consist of fibulin-3 (EFEMP1), fibulin-4
(EFEMP2), fibulin-5 (DANCE or EVEC), and fibulin-7 (TM17) [33]. These short fibulins are newer
family members than fibulin-1 and fibulin-2 and have been shown to play multiple roles in elastic
tissue formation and tissue remodeling.

2.2.1. Fibulin-3

Fibulin-3 (EFEMP1) was first found to be overexpressed in senescent human fibroblasts established
from a Werner syndrome patient with premature aging [77]. Fibulin-3 mutation causes an autosomal
dominant macular degenerative disease (Doyne honeycomb retinal dystrophy) [78,79]. Its spatial
expression in mouse tissues is primarily within the elastic tissues and basement membranes and is
more or less overlapped with that of fibulin-1 and fibulin-4 [30,58]. In the mouse embryo, fibulin-3 is
found in developing cartilage and bone [80], suggesting its role in regulating the shaping of the skeletal
elements in the body. Fibulin-3 is abundantly expressed in eye and lung and moderately expressed in
brain, heart, and kidney in adult mice [78].

Fibulin-3 knockout mice show reduced reproductivity; an early onset of aging-associated
phenotypes including reduced lifespan, decreased body mass, and reduced hair growth; and spine
deformity and decreased bone density but no evidence of macular degeneration [81]. These findings
suggest that loss of fibulin-3 function is not the primary mechanism of macular degeneration but that
fibulin-3 plays an important role in maintaining the integrity of connective tissues and regulating
aging [81].

The involvement of fibulin-3 in cancer development is complex and sometimes contradictory as it
exhibits both pro- and anti-neoplastic effects depending upon the cell types and developmental
stages. In lung adenocarcinoma cells, fibulin-3 demonstrates inhibitory effects on EMT and
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self-renewal capacity by suppressing β-catenin through insulin-like growth factor-1 receptor
(IGF1R)/phosphatidylinositide 3-kinase (PI3K)/AKT signaling pathways [82]. High fibulin-3 levels
inhibit progression of breast cancer by suppressing TGF-β-induced EMT, migration, invasion,
and endothelial permeability [83]. On the contrary, fibulin-3 is upregulated in advanced pancreatic
adenocarcinoma and plays a role in enhancing cancer progression by promoting vascular endothelial
growth factor (VEGF)-mediated angiogenesis and inhibiting apoptotic mechanisms [84]. In malignant
glioma, increased expression of fibulin-3 is shown to promote tumor progression and invasion by
enhancing cell adhesion and migration via Notch signaling [85,86]. Fibulin-3 levels in the blood
and pleural fluid are significantly elevated in patients with mesothelioma compared with those with
exposure to asbestos and healthy controls, suggesting its clinical value as a biomarker in determining
diagnosis and prognosis [87,88].

2.2.2. Fibulin-4

Fibulin-4 (EFEMP2) was characterized as an ECM glycoprotein of ~60 kDa with structural
domains similar to fibulin-3 [30]. Fibulin-4 is strongly expressed in the heart; moderately in
the skeletal muscle; and weakly in brain, placenta, lung, and pancreas [30,89]. Fibulin-4 is
expressed intensely in the outer medial layers toward the adventitia in large blood vessels [90].
Fibulin-4 is also expressed in articular chondrocytes and cultured chondrocyte cells [91]. In primary
osteoblast cell culture, proper fibulin-4 fibril formation in the ECM requires the presence of EMILIN
(Elastin-Microfibril-Interface-Located-proteIN)-1, a pro-TGF-β processing protein, for modulating
collagen homeostasis [92]. Mutations of fibulin-4 cause an autosomal recessive form of cutis laxa
syndrome with aortic aneurysms, arterial tortuosity and stenosis, and minor skin involvement,
a different phenotype seen in other forms of cutis laxa either by elastin or fibulin-5 mutation in
which skin involvement is the most prominent clinical manifestation [93,94].

The functional role of fibulin-4 was studied in fibulin-4 deficient mice that exhibit perinatal
lethality in association with hemorrhage due to rupture of tortuous and aneurysmal aortic vessels
and emphysematous lung [95]. These severely abnormal vascular and lung defects are attributed to
defects in elastic fiber formation including coacervation, cross-linking and deposition, and organization
processes allowing equal distribution onto microfibrils [33]. Mice homologous for the fibulin-4 reduced
expression allele (Fibulin-4R/R) survive the perinatal period but show dilatation of ascending aorta
and a tortuous and stiffened aorta resulting not only from disorganized elastic fiber assembly but
also likely from the dysregulation of the TGF-β signaling pathway [96]. The number of smooth
muscle cells in the aortic media is also decreased in fibulin-4R/R mice [97]. During aortic development,
fibulin-4 contributes, not only to the formation of elastic fibers, but also to terminal differentiation and
maturation of smooth muscle cells in the aortic wall, especially actin cytoskeleton organization [90].
It was shown that fibulin-4 is essential for elastic fiber assembly in the ascending aorta or large
conduit arteries but not in the medium sized muscular arteries, suggesting elastin assembly has
different requirements depending on vessel types [98]. However, emphysematous lung is not seen
in fibulin-4R/R mice. The degree of aortic aneurysm was shown to be inversely proportional to
the amount of fibulin-4 available in the tissue, and the reduced fibulin-4 allowed MMP activation,
particularly MMP-9, via enhanced TGF-β signaling [99]. Sasaki et al. demonstrated that different
mutations in the fibulin-4 gene result in different molecular defects affecting secretion rates, protein
stability, cross-linking, and molecules of the TGF-β pathway [100].

The role of fibulin-4 in tumorigenesis has not been fully elucidated. Fibulin-4 mRNA expression
is found to be significantly increased in colon tumors [89]. Increased fibulin-4 expression is associated
with poor prognosis of human osteosarcoma, and fibulin-4 promotes osteosarcoma cell invasion and
metastasis by inducing EMT via the PI3K/AKT pathway [101] and Wnt/β-catenin pathway [102].
However, in human endometrial carcinoma, the fibulin-4 protein expression level is inversely correlated
with the malignant phenotype, and fibulin-4 demonstrates inhibitory effects in endometrial carcinoma
proliferation, invasion, metastasis, and EMT through the Wnt/β-catenin pathway [103].
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2.2.3. Fibulin-5

Fibulin-5 (also known as EVEC or DANCE) is 66-kDa in size and was isolated by subtraction
hybridization to identify the genes that regulate the transition from quiescent vascular smooth
muscle cells to the proliferative state; it was originally identified as a secreted molecule involved
in cardiovascular development and remodeling [104,105]. Fibulin-5 is mainly found in elastic
fiber-enriched tissues including aorta, lung, uterus, and skin [104,105], and its mutations are associated
with an autosomal recessive form of a rare congenital skin anomaly called cutis laxa [106,107] and
age-related macular degeneration development [108]. Fibulin-5 is a matricellular protein contributing
to the formation of elastogenic tissues and mediating various cellular functions required for tissue
development and homeostasis [109].

Fibulin-5 is shown as an essential determinant of elastic fiber organization, as fibulin-5 null
mice exhibit a severely disorganized elastic fiber system throughout the body including tortuous
aorta with loss of compliance, severe lung emphysema, and loose skin. Fibulin-5 may provide
anchorage of elastic fibers to cells, thereby acting to stabilize and organize elastic fibers in the skin,
lung, and vasculature [110,111]. Fibulin-5 has multiple binding sites with other ECM proteins including
fibrillin-1 [112], lysyl oxidase-like protein-1 (LOXL-1) [113], extracellular superoxide dismutase [114],
latent TGF-β binding protein (LTBP)-2 [115], and LTBP-4 [116]. These unique binding sites of fibulin-5
suggest its biological role not only in formation of microfibrillar scaffold, deposition of tropoelastin,
and assembly of elastic fibers but also in regulation of functional properties including cell–matrix
interaction and signal transduction [117,118]. Exaggerated injury-induced vascular remodeling in
fibulin-5 null mice is attributed to both loss of structural integrity of the vessel wall and inability to
assemble mature elastic fibers within the neointima and loss of direct inhibitory effects of fibulin-5 on
smooth muscle cell proliferation and migration [119]. Fibulin-5 inhibits angiogenesis and endothelial
cell activities by antagonizing vascular endothelial growth factor (VEGF) signaling independent of its
integrin-binding RGD motif, suggesting its role in regulation of angiogenesis [120].

As with other fibulins, fibulin-5 also both suppresses and promotes tumorigenesis in
a context-specific manner [53,118]. Fibulin-5 mRNA expression is downregulated in the majority
of human tumors, particularly in metastatic malignancies of the kidney, breast, ovary, and colon,
suggesting its inhibitory role in advanced cancer development [118]. A recent study showed that
fibulin-5 is downregulated in human endometrial cancer and that fibulin-5 knockdown in endometrial
epithelial cancer cells enhances adhesion and proliferation of cancer cells, indicating its antitumorigenic
role in women [121]. On the contrary, fibulin-5 was shown to enhance the malignancy of human
fibrosarcoma cells [118] and mammary epithelial cells via promoting EMT [122]. In pancreatic ductal
adenocarcinoma, fibulin-5 promotes tumor progression by blocking reactive oxygen species production
through competing with fibronectin for integrin binding sites, resulting in increased angiogenesis
and tumor growth [123]. The effects of fibulin-5 on cancer development are complex and warrant
further investigations.

2.2.4. Fibulin-7

Fibulin-7 (or TM14) is a newly introduced fibulin family for its molecular structure containing
cbEGF-like repeats in the center flanked by homologous C-terminal domain and a unique Sushi domain
at the N-terminus [124]. Fibulin-7 is a cell adhesion molecule that interacts with other ECM molecules
in developing teeth, suggesting its role in differentiation and maintenance of odontoblasts and in dentin
formation. Fibulin-7 is also expressed in cartilage, hair follicles, and placenta [124]. In a novel deletion
of human chromosome 2q13 associated with craniofacial malformation and congenital heart disease,
fibulin-7 was identified as one of the responsible genes for the phenotype as fibulin-7 knockdown in
the zebrafish model leads to cardiac and craniofacial defects as well as reduced cartilage deposition in
the pharyngeal arches and impaired branchial arch development [125]. Fibulin-7 also plays a role as
an angiogenesis inhibitor by promoting endothelial cell adhesion and inhibiting endothelial tube
formation via β1-integrin and heparan sulfate receptors [126]. A recent study by Sarangi et al.
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demonstrated that fibulin-7 and its C-terminal fragment negatively regulate monocyte and macrophage
migration, differentiation, and cytokine production, suggesting their potential immunomodulatory
role in treating inflammatory diseases [127].

3. Interaction between Fibulins and TGF-β

Just like many ECM proteins, the expression of fibulins may be regulated by TGF-β during
embryonic development, tissue repair, and pathological processes. At the same time, some fibulins
modulate TGF-β activation and its downstream signaling in multiple different ways. Below,
bidirectional interactions between fibulins and TGF-β signaling with subsequent phenotypical
alterations in cell behavior and ECM components are reviewed.

3.1. Fibulin-1

Biological interactions between fibulin-1 and TGF-β in tissue remodeling have been studied
in respiratory diseases including pulmonary fibrosis and chronic obstructive pulmonary disease
(COPD) [128–130] and bone metastasis of prostate cancer [131]. TGF-β treatment downregulates
fibulin-1 mRNA in airway smooth muscle cells and induces sequestration of soluble fibulin-1 into
ECM [128]. In fibulin-1 deficient mice, cigarette smoking, an experimental model for COPD, fails to
induce airway inflammation, remodeling, and TGF-β secretion, suggesting some stimulatory role of
fibulin-1 over TGF-β release, but the underlying molecular mechanism remains unknown [130]. TGF-β
downstream pathway modulated by fibulin-1 was not investigated in this study. TGF-β treatment
suppresses fibulin-1 mRNA expression and protein abundance, and fibulin-1 downregulation by TGF-β
reduces the ability of human bone marrow stromal cells to induce prostate cancer cell death [131].

3.2. Fibulin-2

Bidirectional interaction between fibulin-2 and TGF-β has been studied in fibulin-2 deficient
mice. In the experimental myocardial infarction in the mouse model, absence of fibulin-2 prevents the
development of progressive ventricular dysfunction and shows a significantly improved survival rate
by attenuating upregulation of other ECM protein synthesis commonly required in wound healing
process, MMP-2 activation, and TGF-β signaling, suggesting a regulatory role of fibulin-2 in ECM
protein synthesis during scar formation after myocardial necrosis [132]. In the angiotensin II (Ang II)
infusion model, absence of fibulin-2 inhibits Ang II-induced myocardial hypertrophy and fibrosis
in vivo with suppression of TGF-β signaling, indicating a critical role of fibulin-2 in Ang II-induced
TGF-β activation and its downstream signaling [133,134]. In isolated mouse cardiac fibroblasts, TGF-β
treatment induces upregulation of fibulin-2 and enhanced TGF-β signaling, both of which are totally
abolished in fibulin-2 null cells [133]. R-Smad (Smad2) is a principal downstream pathway in Ang
II-infusion model when mediated by fibulin-2, but the involvement of ERK1/2, p38MAPK, and TAK1
is variable depending upon the concentration of infused Ang II [133,134]. These studies suggest
a presence of TGF-β-induced positive feedback loop or autoregulation mediated by fibulin-2. Fibulin-2
may be enhancing the release of TGF-β from large latent complex in ECM by competing for the
TGF-β binding site of fibrillin-1 with other ECM proteins, such as latent TGF-β binding protein
(LTBP)-1 [135]. Enhanced TGF-β activation and downstream signaling are noted in combination
with fibulin-2 upregulation in advanced human heart failure myocardium [136,137]. Collectively,
it is plausible that ECM environment altered by upregulated fibulin-2 contributes, in part, to the
pathogenesis of human heart failure via enhancing myocardial TGF-β activation via positive feedback
loop. The same principle of autoregulation is also noted in neuronal tissues, where fibulin-2 mediates
TGF-β-induced proneurogenic effects in the rat model in vivo and in vitro [138].

3.3. Fibulin-3

Interaction between fibulin-3 and TGF-β has not been fully understood. Tian et al. demonstrated
that fibulin-3 has a potent inhibitory effect on TGF-β signaling in breast cancer development where
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fibulin-3 interacts with type I TGF-β receptor by blocking receptor complex formation [83]. However,
TGF-β-induced fibulin-3 regulation in the ECM microenvironment was not studied.

3.4. Fibulin-4

The regulatory role of fibulin-4 in TGF-β signaling has been studied in human cutis laxa [93,139]
and in the mouse models with deficient or reduced fibulin-4 causing upregulation of TGF-β and defect
in elastic tissue formation, resulting in aortic aneurysm and arterial tortuosity [95,96]. Increased TGF-β
signaling, via upregulation of both TGF-β1 and TGF-β2, is demonstrated in isolated aortic smooth
muscle cells in fibulin-4 deficient mice in a dose-dependent manner, indicating an inhibitory effect of
fibulin-4 on TGF-β signaling via R-Smad pathway [140]. Enhanced activation of Smad2 is noted in the
fibroblast cell extracts from the patients with cutis laxa with fibulin-4 mutation [93]. In contrast, aortic
aneurysm in the mouse of smooth muscle cell-specific deletion of fibulin-4 reveals predominantly
enhanced ERK1/2 signaling [90]. As fibulin-4 binds to LTBP-1 with high affinity, fibulin-4 may be
additionally involved in sequestration of the large latent complex (LLC) into fibrillin microfibrils
though LTBP-1 binding [141]. Reduced fibulin-4 expression induces abnormally enhanced TGF-β
signaling responsible for the aortic aneurysm, similar to the phenotype seen in Marfan syndrome and
fibrillin-1 deficient mice [142–144]. Thus, fibulin-4 is a negative regulator of TGF-β signaling, which is
completely opposite to fibulin-2. It is not known, however, whether TGF-β can directly regulate
fibulin-4 expression.

3.5. Fibulin-5

TGF-β is known to stimulate fibulin-5 transcription and mRNA expression in human lung
fibroblasts via PI3K/AKT pathway [145]. TGF-β stimulates murine 3T3-L1 fibroblasts and endothelial
cells to synthesize fibulin-5 transcript and protein through a Smad3-independent pathway, indicating
fibulin-5 as a TGF-β-inducible target gene that regulates cell growth and motility in a context-specific
manner [118,120]. Overexpression of fibulin-5 enhances basal and TGF-β-stimulated activation
of ERK1/2 and p38MAPK in 3T3-L1 fibroblasts [118]. Fibulin-5 expression is enhanced by
TGF-β in human endometrial epithelial cancer cells [121]. In pancreatic ductal adenocarcinoma,
fibulin-5 is produced by stromal cells, and its expression is induced by TGF-β via PI3K/AKT
signaling pathway [146], serving as a protumorigenic factor. Fibulin-5 initiates EMT and enhances
TGF-β-induced EMT in mammary epithelial cells via an MMP-dependent mechanism, suggesting
a positive regulatory role of fibulin-5 in TGF-β signaling [122].

3.6. Other Newer Fibulins (Fibulin-6, -7, and -8)

The regulatory role of fibulin-6 in ventricular remodeling after experimental myocardial infarction
and its role in cardiac fibroblast migration was investigated [147]. Fibulin-6 is upregulated in the
ischemic myocardium, especially in the infarct border zone, but, paradoxically, TGF-β treatment
in isolated mouse cardiac fibroblasts inhibits fibulin-6 expression, indicating complex involvement
of fibulin-6 in TGF-β signaling [147]. Further investigation by the same group demonstrated that
fibulin-6 plays an important role in regulating TGF-β-mediated responses by enhancing TGF-β receptor
dimerization and activation to further trigger downstream pathways [148]. The interaction between
other newer fibulins, fibulin-7 and -8, and TGF-β has not been identified.

4. Biological Significance of Fibulins and TGF-β Signaling

Fibulins not only participate in ECM formation by organizing structural integrity of basement
membrane and elastic fiber tissues. They also regulate a wide spectrum of cellular functions
including embryonic development, tissue homeostasis and remodeling after injury, angiogenesis,
and tumorigenesis [27,29], the processes also frequently mediated by TGF-β signaling [1,2]. Although
complex, fibulins and TGF-β signaling interact in variable ways in certain contexts. The bidirectional
interactions between each individual fibulin and TGF-β signaling are summarized in Table 1.
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Table 1. Bidirectional Interactions between Fibulins and TGF-β.

Fibulin → TGF-β Signaling TGF-β → Fibulin Expression

Fibulin-1 Enhances TGF-β in airway smooth muscle
cells [130]

Inhibits fibuin-1 in airway smooth muscle
cells [128]; bone marrow stromal cells [131]

Fibulin-2

Enhances TGF-β in mouse cardiac
fibroblasts [133]; mouse myocardium
in vivo [133,134]; adult rat neuronal stem
cells [138]

Enhances fibulin-2; mouse cardiac
fibroblasts [133]; adult rat neuronal stem
cells [138]

Fibulin-3 Inhibits TGF-β in breast cancer cells [83] Unknown

Fibulin-4 Inhibits TGF-β in mouse aorta [96,140];
human cutis laxa [93,139] Unknown

Fibulin-5
Enhances TGF-β signaling in mammary
epithelial cells in MMP-dependent
manner [122]

Enhances fibulin-5 expression in human lung
fibroblasts [142]; human endometrial
epithelial cancer cells [121]; mammary
epithelial cells [122]; pancreatic ductal
carcinoma cells [146]

Fibulin-6 Enhances TGF-β signaling in cardiac
fibroblasts [148]

Inhibits fibulin-6 expression in mouse cardiac
fibroblasts [147]

TGF-β suppresses fibulin-1 mRNA expression and protein release in respiratory cells, whereas
fibulin-1 has a stimulatory effect on TGF-β release and subsequent airway remodeling [128–131].
This relationship includes a negative feedback loop between fibulin-1 and TGF-β, although this
may be a partial interaction in the diverse network of cross-talks involving fibulin-1 or TGF-β.
In contrast, fibulin-2 and TGF-β stimulate in both ways to create a positive feedback loop in
mouse cardiac fibroblasts [133] and neuronal cells [138]. TGF-β-mediated positive feedback loop
is considered as one pathogenesis of cancer progression [149,150]. For example, cancer progression is
promoted by TGF-β-mediated positive feedback loop in colorectal cancer involving miR-1269 [151]
and c-KIT signaling in advanced primary hepatocellular carcinoma [152]. Fibulin-2 may play
a similar role in certain pathological conditions. Fibulin-4 plays a totally opposite role in TGF-β
signaling to fibulin-2 as absence of fibulin-4 induces uncontrolled upregulation of TGF-β [93,95,96,139],
but it is unknown whether TGF-β alters fibulin-4 expression. Fibulin-5 expression is enhanced by
TGF-β [121,122,142,146], and fibulin-5 promotes TGF-β-induced EMT through activating MMP-2 and
-9 in mammary epithelial cells [122], suggesting bidirectional interaction similar to fibulin-2. Fibulin-6
plays a role in negative feedback loop in regulating TGF-β-mediated profibrotic response in neonatal
mouse ventricular cardiac fibroblasts [148], similar to fibulin-1. Each fibulin appears to have a unique
biological profile in relation to TGF-β signaling in a context-dependent manner.

5. Conclusions

Fibulins play a dual role as a structural ECG protein and a matricellular protein. Fibulins bind to
multiple ECM molecules to participate in organizing microenvironments affecting tissue integrity and
regulating cell behaviors in both physiological and pathological conditions in a context-dependent
manner. TGF-β regulates expression of fibulins in variable ways, whereas secreted fibulins modulate
TGF-β signaling. In particular, fibulin-2 and -5 promote TGF-β-mediated positive feedback loop
in certain pathological conditions. Fibulins may become relevant therapeutic targets in certain
human disease processes including cancer, chronic fibrotic disorders, and heart failure. Cross-talks
between fibulins and TGF-β have been identified in certain disease pathogeneses, but the level of our
understanding is still at the developing stage. Further research endeavors are encouraged to delineate
the underlying mechanisms of these molecular cross-talks.
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