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Abstract: Energy homeostasis is crucial for cell fate, since all cellular activities are strongly dependent
on the balance between catabolic and anabolic pathways. In particular, the modulation of metabolic
and energetic pathways in cancer cells has been discussed in some reports, but subsequently has
been neglected for a long time. Meanwhile, over the past 20 years, a recovery of the study regarding
cancer metabolism has led to an increasing consideration of metabolic alterations in tumors. Cancer
cells must adapt their metabolism to meet their energetic and biosynthetic demands, which are
associated with the rapid growth of the primary tumor and colonization of distinct metastatic sites.
Cancer cells are largely dependent on aerobic glycolysis for their energy production, but are also
associated with increased fatty acid synthesis and increased rates of glutamine consumption. In
fact, emerging evidence has shown that therapeutic resistance to cancer treatment may arise from
the deregulation of glucose metabolism, fatty acid synthesis, and glutamine consumption. Cancer
cells exhibit a series of metabolic alterations induced by mutations that lead to a gain-of-function
of oncogenes, and a loss-of-function of tumor suppressor genes, including increased glucose
consumption, reduced mitochondrial respiration, an increase of reactive oxygen species, and cell
death resistance; all of these are responsible for cancer progression. Cholesterol metabolism is
also altered in cancer cells and supports uncontrolled cell growth. In this context, we discuss the
roles of peroxisome proliferator-activated receptors (PPARs), which are master regulators of cellular
energetic metabolism in the deregulation of the energetic homeostasis, which is observed in cancer.
We highlight the different roles of PPAR isotypes and the differential control of their transcription in
various cancer cells.

Keywords: nuclear receptors; energy metabolism; cancer metabolism

1. Introduction

Mammalian cellular activities require a significant energy source, which is produced by specific
mechanisms involved in the regulation of cellular energy homeostasis. The correct balance between
catabolic and anabolic pathways strongly influence cellular fate, since they are involved in biochemical
reactions that drive ATP (adenosine triphosphate) production/consumption. Oxidative glucose
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metabolism by OXPHOS (oxidative phosphorylation) produces up to 36 ATP per mole of glucose,
whereas non-oxidative glucose metabolism by glycolysis results in two ATP per mole of glucose [1].
Hence, oxygen availability provides an optimal cellular condition to produce high levels of energy,
while hypoxia determines a less efficient cellular condition in which the cells prefer to use glycolysis to
produce energy. Another way to meet cellular energy demands is lipid metabolism by the peroxisomal
and mitochondrial β-oxidation of fatty acids (FAs), which provides energy in the form of redox
potential [2,3]. Regarding lipid metabolism, many cell types present cytosolic lipid deposits, also called
lipid droplets (LDs). These are dynamic organelles that contain triacylglycerols (TAGs) and cholesteryl
esters, and present several functions such as reducing lipotoxicity, lipid storage, and lipid metabolism,
and they are directly involved in cellular physiology [4–7]. Unlike normal cells, cancer cells exhibit
uncontrolled proliferation that needs energy metabolism adjustments in order to ensure their cell
growth and division. The high proliferation rate in tumor cells leads to significant metabolic changes
that are closely related to the environmental conditions and genetic/epigenetic characteristics of the
tissue from which tumor arises. To safeguard their survival, cancer cells metabolically switch from less
efficient energy pathways to higher performing energy pathways in order to cope with the considerable
energy demands of tumor bulk. Meanwhile, neoplastic cells show altered glucose and lipid metabolism
in association with unstable OXPHOS and glutamine metabolism; accordingly, PPARs play a key
role in regulating these metabolic switch events. Therefore, our purpose in this review is to describe
recent observations concerning the pivotal role of PPARs in promoting or preventing the characteristic
metabolic switch that provides the energy for tumor survival. The main metabolic mechanisms
adopted by tumor cells that are under the control of PPARs will be briefly described below.

1.1. Glucose Metabolism and OXPHOS in Cancer Cells

Although in normoxia, healthy cells use the degradation of glucose to pyruvate and later the TCA
(tricarboxylic acid) cycle to produce ATP, neoplastic cells prefer to use glycolysis to produce energy
rather than oxidative phosphorylation. The first observation of this phenomenon is about 88 years old,
when Otto Warburg noticed that tumor cells switch toward a glycolytic metabolism with high lactate
production, even in aerobic conditions, and mitochondrial metabolism suppression. This metabolic
adaptation is called “aerobic glycolysis” or the “Warburg effect” [8]. Despite aerobic glycolysis not
being influenced by oxygen levels, in hypoxic conditions, tumor cells present an overexpression of the
genes involved in the glycolytic pathway. Usually, in solid tumors, near the core, there is a hypoxic area,
and this hypoxic environment supports glycolytic metabolism and provides chemotherapy resistance
as well as an optimal niche for the maintenance of CSCs (cancer stem cells) [9–11]. It was also observed
that many types of cancer cells (glioma, hepatoma, and breast) are able to obtain ATP from OXPHOS,
and they can pass from a fermentative to an oxidative metabolism and vice versa, and glucose is directly
involved in this switch [12–15]. On the other hand, tumor cells can perform a glucose-dependent
suppression of mitochondrial respiration, which is called the “Crabtree effect” [16]. This effect is
reversible and collaborates with the “Warburg effect” to ensure cancer cell survival, independently
from the presence of oxygen [17]. In a recent study, using a mathematical computational model, Epstein
and collaborators [18] explored the coexistence between glycolytic and oxidative pathways in cancer
cells, starting from the assumption that cancer cells quickly need ATP, but at the same time need to
maintain baseline levels of ATP, mainly during moments of apparent standby. Consequently, in relation
to fluctuating energy demands and assuming that tumor cells exist in a heterogeneous environment,
they can use a glycolytic pathway to produce ATP quickly in short-term energy requests; conversely,
baseline levels of energy are obtained through OXPHOS [18]. In addition, although lactate is a waste
product of aerobic glycolysis, it is recycled by subpopulations of cancer cells and directed toward the
TCA cycle [19]. These evidences lead to the belief that there is cooperation between different types of
cells within the tumor, which could be a key mechanism for tumor progression. Several genes involved
in the glycolytic pathway regulate the adjustment of cancer cells to the metabolic switch; some of
them are oncogenes. Among them, PI3K/Akt signaling induces the expression of proteins related to
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glucose transport (GLUTs) in association with high hexokinase II (HKII) activity. HKII is able to bind
to the voltage-dependent anion channel (VDAC) on the outer mitochondrial membrane to protect
cells from apoptosis [20,21]. Moreover, altered c-Myc (cancer-myelocytomatosis) regulation affects the
expression of the genes that are related to glutamine metabolism and aerobic glycolysis (HKII, lactate
dehydrogenase (LDH), pyruvate kinase isoenzyme M2 (PKM2), phosphofructokinase 1 (PFK1), and
GLUT1) [21,22], and PKM2 plays a central role in the shift of cellular metabolism to aerobic glycolysis
in cancer cells. PKM2 is the specific isoform that is mainly expressed in tumor cells [23]. Whereas PKM1
is a constitutively active tetrameric enzyme, the 22 amino acid differences in PKM2 create a fructose
1,6-bisphosphate (FBP) binding pocket that renders it dependent on the allosteric binding of FBP for
formation of an active tetramer. PKM2 activity is more flexible than PKM1 activity, which is why
PKM2 is more suitable to guarantee the metabolic switch in cancer cells. In addition, PKM2 presents
a low activity index, probably allowing the storage of glycolytic metabolites to ensure macromolecule
biosynthesis [24]. In this context, the hypoxic environment provides an additional incentive to trigger
the transcription of genes linked to the Warburg effect, and they are directly under the transcriptional
control of hypoxia inducible factor-1α (HIF-1α) [25]. However, aerobic glycolysis is also essential for
the macromolecule biosynthesis, in order to provide the structural components for cell proliferation.
An increased flux of pyruvate provides the carbon source for the anabolic process, such as the de
novo synthesis of nucleotides, lipids, and proteins. At the same time, the synthesis of macromolecules
in cancer cells is necessary to produce reducing equivalents, such as NADH (nicotinamide adenine
dinucleotide H) and NADPH (nicotinamide adenine dinucleotide phosphate H); in turn, they are
essential for ensuring glucose metabolism, biosynthesis, and the degradation of macromolecules [26].

1.2. Lipid, Cholesterol, and Glutamine Metabolism in Cancer Cells

Fatty acids synthesis is typically reactivated in cancer cells by the upregulation of lipogenic
enzymes to provide monomeric components for membrane building, lipid signaling, and post-
translational protein modification [27]. Breast and prostate cancer show an increased expression
of fatty acids synthase (FAS) and enzymes involved in the elongation of very long-chain fatty acids
such as ELOVL1-7 (elongation of very long chain fatty acids protein 1-7) [28,29]. The stability and
fluidity of cellular membranes are cholesterol-dependent, and lipid rafts (which are involved in the
regulation of intracellular transduction signals) are mainly composed of cholesterol [30]. Furthermore,
the mevalonate pathway (MVA), which is responsible for cholesterol synthesis, is linked to the
production of intermediates that are crucial for post-translational modifications of Rho, Ras, and other
small GTPase (isoprenylation, farnesylation, and genarylation) [31]. Interestingly, statins, which are
drugs that are used to decrease plasma cholesterol levels in hypercholesterolemic conditions, inhibit
HMG-CoA (3-hydroxy-3-methyl-glutaryl-coenzime A) reductase (HMGCR); this is the rate-limiting
step of MVA. In support of the lipid importance in tumors, it was demonstrated that statins are able to
decrease the proliferative index in breast cancer and acute myeloid leukemia cells, and make colorectal
cancer cells more sensitive to chemotherapy [32–34]. Moreover, prostate cancer cells showed high
levels of cholesterol [35]. The excess quantity of LDs in cancer cells are further evidence that FAs and
cholesterol accumulate in many types of cancer. Label-free Raman spectroscopy imaging of high-grade
prostate cancer and metastasis revealed the accumulation of abnormal LDs associated with PTEN
(phosphatase and tensin homolog) loss and PI3K/Akt activation [36]; similar evidences were observed
in the breast cancer cell line [37] and colon cancer stem cells [38]. Meanwhile, in gliomas, a higher
amount of LDs was directly proportional to the degree of tumor aggressiveness [39]. As previously
mentioned, FAs derived from free triacylglycerides or intracellular deposits can be metabolized
to produce energy in the form of redox fuel. The early phases of this process occur in cytoplasm
(triglyceride and monoacylglycerol lipases), and the late phases occur in mitochondria and are called
fatty acid β-oxidation (FAO), but can occur also in the lumen of peroxisomes. The end products of
lipid decomposition, such as NADH, FADH2, and acetyl-CoA, are directed toward the TCA cycle;
this is the reason why some non-glycolytic cancers, such as prostate cancer and large B-cell lymphoma,
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need FAO to meet their energetic demands [40–43]. In spite of this, even some glycolytic tumors, under
certain conditions require FAO to produce energy [43], while in glioblastoma, FAO contributes to
protect the cells from oxidative stress by upregulation of detoxification enzymes, such as glutathione
(GSH) [44]. Unlike aerobic glycolysis, where a hypoxic condition increases glucose utilization, lipid
biosynthesis is not encouraged by oxygen lack, resulting in lipid accumulation into LDs [45,46].
In this scenario, the carbon source to synthesize lipid compounds is supplied by glutamine; isocitrate
dehydrogenase-1 (IDH1) activity releases citrate in the cytosol after carboxylation of glutamine-derived
α-ketoglutarate [47–49]. Moreover, Ras oncogene together with hypoxia induces the pyruvate
dehydrogenase kinase 1 (PDK1), which in turn inhibits pyruvate dehydrogenase (PDH) and forces
cells to implement glutamine-dependent anaplerotic behavior [45,48,50]. This phenomenon restores
the TCA cycle under specific conditions and highlights the key role of glutamine metabolism in cancer
cell growth. Beyond anaplerotic involvement, glutamine catabolism provides nitrogen to synthetize
the nucleotide glutathione, resulting in the major energy source in some transformed cells [51]. Cancer
cells rely on glutamine uptake to ensure a further pathway to support their accelerated metabolism.
Gao et al. [22] showed that c-Myc stimulates glutaminase (GLS) expression through the suppression
of miR-23a/b, while the inhibition of Rho-GTPase by a small compound determines the reduction
of glutaminase activity, which is dependent of NFκB (nuclear factor kappa-light-chain-enhancer
of activated B cells) in breast cancer and B lymphoma cells [52]. In addition, DeBerardinis and
collaborators [53] observed that glioblastoma cells performed aerobic glycolysis associated with
elevated glutamine catabolism to obtain redox energy and TCA cycle intermediates in order to support
biosynthetic activity, mainly FAs. Interestingly, highly invasive ovarian cancer cells showed more
remarkable glutamine dependence than low-invasive ovarian cancer cells; this feature is related to
glutamine-mediated STAT3 (signal transducer and activator of transcription 3) modulation [54].

2. PPARs

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors
belonging to the nuclear hormone receptor superfamily. PPARα (NR1C1) was the first described as the
receptor mediating peroxisome proliferation in rodent hepatocytes in 1990; later, two related isotypes,
PPARβ/δ (NR1C2) and PPARγ (NR1C3) were found and characterized. PPARα is mainly expressed in
tissues presenting high fatty acid catabolism activity, such as the liver, the heart, the brown adipose
tissue, the kidney, and the intestine; it is also involved in regulating lipoprotein synthesis. Regarding
PPARγ, there are two isoforms: γ1 and γ2, which are obtained by alternative splicing. Both isoforms
act in the white and brown adipose tissue to promote adipocyte differentiation and lipid storage,
while only PPARγ1 is expressed in other tissues, such as the gut or immune cells. PPARγ transcriptional
targets are also involved in regulating inflammatory processes, the cell cycle, and glucose metabolism
by improving insulin sensitivity; in fact, it is a useful target for type 2 diabetes therapy. PPARβ/δ is
ubiquitously expressed, and it has important functions in the skeletal muscle, adipose tissue, skin, gut,
and the brain, including fatty acid oxidation regulation, keratinocyte differentiation, and wound
healing [55–58].

Ordinarily, PPARs are active at transcriptional levels only in presence of their specific ligands,
and each ligand is able to trigger a specific PPARs response; conversely, some findings demonstrated
the basal activity of PPARs in the absence of ligands [59]. Unlike the steroid hormone receptors
(nuclear receptors class 1) that function as homodimers, PPARs (nuclear receptors class 2) are active
when they heterodimerize with retinoid x receptors (RXR); then, each monomer binds a specific DNA
sequence, called PPREs (peroxisomes proliferator response elements). PPREs are direct repetitions
that are located in the promoter region of the target gene as single or multiple copies [58,60,61].
As mentioned above, specific PPARs transcriptional activities are strictly related to lipid ligand type,
and consequently, a wide range of natural or synthetic lipids can bind to the LBD (ligand-binding
domain) of PPARs. These ligands can be obtained from diet or intracellular signaling pathways,
among which FAs from prostaglandins and leukotrienes, as well as synthetic ligands, are described.
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Peculiar fatty acid-binding proteins (FABPs) allow the ligand delivery toward the nucleus, where
PPARs reside [62]. Long-chain unsaturated FAs, eicosanoids, and hypolipidemic drugs (fibrates) can
activate the PPARα, while thiazolidinediones (TZDs) are able to active PPARγ and increase insulin
sensitivity. In this regard, PPARs are considered important therapeutic targets, mainly for metabolic
diseases [63,64]. Given their role as master regulators of cellular energy pathways and considering the
metabolic alterations in tumor cells, PPARs’ modulation can be involved in the specific metabolic plan
undertaken by neoplastic cells. The central debate is whether the transcriptional activity of PPARs
promotes or hinders tumorigenesis and tumor progression. To date, research activity has yielded
conflicting evidence in this regard. There are several evidences about the tumor suppression role
of PPARα and PPARγ [65–71], but there are also several evidences about their cancer promotion
activity [72–74]; instead, regarding PPARβ/δ, the majority of study conducted shows its oncogenic
role [75–77]. Although PPARs can have a dual role that is oncogenic as well as oncosuppressive,
their behavior is severely influenced by the tissue type from which the tumor arises and by the
tumor microenvironment.

2.1. PPARα and Cancer Metabolism

The process of tumorigenesis can be described by a series of molecular features, among which the
alteration of cellular metabolism has recently emerged. This metabolic rewiring fulfills the energy and
biosynthetic demands of fast proliferating cancer cells and amplifies their metabolic reserves to survive
and proliferate in the poorly oxygenated and nutrient-deprived tumor microenvironment. In these
harsh environmental conditions, the deregulation of glucose and glutamine metabolism, alterations
of lipid synthesis and FAO, and a complex rewiring of mitochondrial and peroxisomal function are
required. However, mitochondria and peroxisomes display close relationships; in fact, it was recently
reported that in glioblastoma, an increase of peroxisomes leads to the increase of mitochondria [78].

PPARα mainly regulates the gene expression of specific proteins that are involved in mitochondrial
and peroxisomal functions, such as fatty acids’ β-oxidation, glucose metabolism, and fatty acid
transport [56,58]. The relationship between gene transcription regulated by PPARα and tumor
metabolism can determine oncogenic or oncosuppressive effects. PPARα activation and tumor
suppression was reported in melanoma [79] and glioblastoma [80]; on the other hand, PPARα
activation demonstrated a positive role in stimulating the proliferation of breast and renal carcinoma
cell lines [81,82], while PPARα-null mice were insensitive to hepatic carcinogenesis induced by PPARα
agonist [83].

Several evidences support the paradigm that tumors originate from cancer stem cells and/or
cancer stem progenitor cells, namely, tumor initiating cells or cancer stem-like cells (CSCs). CSCs
represent a small population of cancer cells that exhibit self-renewal and differentiation features similar
to normal stem cells, although they differ in the regulation of their self-renewal pathways. Based on the
CSC presence, they are responsible for tumor formation, progression, metastasis, and relapse, as well
as drug resistance. Even if it is generally known that tumor cells, particularly CSCs, show glucose
and lipid metabolism alterations, the specific metabolic pathways and their regulation are still poorly
understood [11]. Due to their crucial roles in energetic metabolism, the PPARs have been investigated
by many authors regarding their involvement in tumorigenesis, showing an upregulation of the α

isotype in several tumors and CSCs.
Recently, we demonstrated decreased tumor proliferation with an alteration of glucose and

lipid tumor metabolism, antagonizing PPARα by synthetic ligand (GW6471) in glioblastoma stem
cells (GSCs) [84]. GSCs are responsible for drug resistance and relapse; they reside in intratumoral
perivascular and necrotic/hypoxic niches, which provide the GSCs with the optimal environment to
keep their stemness features. Hypoxia is associated with glioblastoma progression and plays a crucial
role in stem cells’ biology. HIF proteins regulate the cellular response to hypoxia or variable oxygen
concentrations by upregulating the genes related to tumor progression, angiogenesis, drug resistance,
and the phenotype maintenance of GSCs. Between HIF proteins, HIF-1α triggers the expression of
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genes related to tumor metabolic switch, which in turn induces glucose uptake, glycolytic enzyme
activity, lactate production, and the anaerobic production of ATP. However, it is also able to control
synthetic pathways (fatty acids and glycogen synthesis), stimulating the expression of anabolic
enzymes, which are related to glucose–glycogen conversion [11,85,86]. In addition, we demonstrated
that glioblastoma and GSCs in hypoxic condition show higher levels of PPARα compared with the
normoxic condition [87], while PPARγ levels are downregulated under hypoxia [84]. In GSCs, glycogen
storage appeared more abundant in hypoxia than in normoxia, since hypoxic cells need glucose to
quickly produce ATP through glycolysis, and the glycogen storages are essential to maintain this fast
energetic process. Moreover, HIF-1α stimulates the expression of genes involved in glycogen synthesis,
as glycogen synthase kinase 3β (GSK3β). When GSK3β is phosphorylated at Ser 9, it is then inactive
and unable to phosphorylate glycogen synthase, thus allowing the start of the anabolic process [88].

GW6471 treatment decreased the viability of GSCs, the number and size of neurospheres, and
induced apoptosis, which was associated with low glycogen supplies. Increasing glycogen degradation
was due to the upregulation of glycogen phosphorylase (GPBB) and downregulation of phosphorylated
GSK3β at Ser 9. Furthermore, a decreased amount of GLUT3 and glucose uptake in hypoxic-treated
GSCs have been reported. Moreover, it was also demonstrated higher amounts of LDs in cancer
cells, mainly in the hypoxic environment, which is in line with previous evidence [21,39,87,89].
FABP7 (fatty acid binding protein 7) transports the fatty acids toward the nucleus; in the same way,
it supplies the LDs to promote tumor growth [90,91], and it appears increased by hypoxia. GW6471
treatment induced the loss of LDs amounts, cholesterol supply, and the transcriptional activity of
genes encoding for mevalonate pathway enzymes. However, FABP7 levels appeared decreased only
in antagonist-treated hypoxic GSCs, since the inhibition of PPARα transcriptional activity in hypoxic
GSCs adversely affects fatty acid and cholesterol amounts. The MVA pathway plays a central role in
glioblastoma survival; besides, its inhibition by PPARα antagonist is linked to cell death and tumor
suppression. This effect is similar to the downregulation of the MVA pathway together with the
upregulation of PPARγ induced by statins. These results seem to emphasize the key role of PPARα
in the metabolic switch that occurs in cancer hypoxic cells, such as GSGs. In harsh environmental
conditions PPARα was upregulated and could result in metabolic directives to ensure energy for
tumor cells. In this regard, the antagonist GW6471 was able to reduce the synthetic processes, such as
glycogen synthesis and LDs biogenesis, which normally ensure fast-acting energy for cancer cells
(as summarized in Figure 1A).

In another study, Abu Aboud et al. [82] used the same PPARα antagonist (GW6471) to treat
two cell lines (Caki-1 and 786-O cell line) of renal cell carcinoma (RCC). They observed that PPARα
levels were higher in high-grade RCC tissue compared with low-grade tissue, linking PPARα protein
levels to RCC aggressiveness. High-grade RCC presents more energy demands than low-grade RCC,
and therefore requires active fatty acid oxidation (FAO), which is regulated upstream by PPARα [92].
Both the antagonist and siRNA directed against the PPARα showed the capability of reducing c-Myc
protein levels, which is likely by PPARα-mediated alteration of oncoprotein stabilization. This event
was associated with the downregulation of cyclin D1/CDK4 and the G1/S transition block with cell
cycle arrest in G0/G1 phase [93,94]. The authors hypothesized that the transcriptional activity of
PPARα was inhibited, which was the reason why the renal carcinoma cells were unable to use FAO
by converging on glycolysis to obtain energy. In fact, GW6471 effects were more pronounced in
media with low glucose concentrations than media with normal glucose concentrations. Furthermore,
2-Deoxy-D-glucose (2-DG), which is an inhibitor of glycolysis, acted in synergy with GW6471 to induce
tumor death. Regarding that, by blocking PPARα in the RCC cell line, the researchers demonstrated
the reduction of cell viability with a marked reduction of c-Myc, cyclin D1, and CDK4 protein levels in
synergy with glycolysis inhibition (as shown in Figure 1A).
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tumor cells under the transcriptional control of PPARs. These hypotheses of molecular mechanisms 
are based on evidence obtained by different cancer types. For each PPAR isotype, the specific 
activated/inhibited metabolic pathways are reported together with some of the PPARs’ target genes. 
(A) Hypoxia-inducible factor-1 (HIF-1) can active PPARα, which in turn activates the transcription of 
specific genes resulting in high glycolysis, high glycogen storage, and high proliferation rate (glucose 
transporter 3 (GLUT3), c-Myc, and cyclin D1). However, PPARα activation is also related to the 
induction of fatty acid oxidation (FAO) by upregulation of carnitine palmitoyltransferase 1 (CPT1). 
In addition, PPARα induces fatty acid synthesis by upregulation of fatty acid synthase (FAS) 
enzymes. It is noteworthy that mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) 
is upregulated by PPARα; besides, HMGCS2 can form a heterodimeric complex with PPARα to 
induce Src expression. The phosphorylation of Src triggers the mevalonate (MVA) pathway, 
resulting in high levels of cholesterol (CHOL). Lipid components and cholesterol are useful for 
membrane synthesis, and their large amounts are confined in lipid droplets. Extracellular lipids and 
some intracellular lipids (from lipid droplets) can be PPARα ligands; they are delivered to the 
nucleus by fatty acid binding protein (FABP). (B) PPARγ transcriptional activity activates some 
proteins related to fatty acid synthesis, such as FAS, c-Myc, PBP (PPARγ-binding protein), NR1D1 
(nuclear receptor subfamily 1, group D, number 1), and ODC1 (ornithine decarboxylase 1). ODC1 is 
able to inhibit krüppel-like factor 2 (KLF2), which in turn is unable to inhibit PPARγ. Other 
PPARγ-dependent mechanisms are able to reduce palmitate toxicity by confining it into lipid 
droplets. Moreover, PPARγ 41 kDa fragment, which is derived from caspase 1 cleavage, is able to 
inhibit FAO. (C) PPARβ/δ stimulates glycolysis by the overexpression of GLUT1, angiopoietin-like 4 
(ANGPTL4), phosphoinositide-dependent protein kinase 1 (PDPK1), and PI3K/Akt; likewise, PDPK1 
and PI3K/Akt can activate PPARβ/δ expression. Fatty acid synthesis and FAO are activated by 
PPARβ/δ transcriptional activity on FAS and SLC1A5 (solute carrier 1 A5) genes. SLC1A5 is linked to 
the uptake of amino acids; thus, anaplerosis is also positively affected by PPARβ/δ. Anaplerosis also 
supports FAO. Interesting, PPARβ/δ upregulates cytokines expression; for example, interleukin 8 
(IL8) and cytokines in concert with PPARβ/δ induce STAT3 overexpression. The MVA pathway is a 
downstream process triggered by STAT3. The thin black continuous lines with arrows indicate 
upregulation events. The thick black continuous lines with arrows indicate a stimulation of the 
metabolic pathway. The thin blue continuous lines with bars indicate inhibition events. The thick 
blue continuous lines with bars indicate the inhibition of a metabolic pathway. The HIF-1-mediated 
upregulation of PPARs is represented by a grey dash dot and arrow at the end, while 
FABP-mediated ligand-dependent activation of PPARs is represented by a gold dash dot and arrow 
at the end. 

Figure 1. Schematic representation of PPARs-dependent oncogenic metabolic pathways highlighted
in this review. The representation concerns the metabolic mechanisms that are activated/inhibited in
tumor cells under the transcriptional control of PPARs. These hypotheses of molecular mechanisms
are based on evidence obtained by different cancer types. For each PPAR isotype, the specific
activated/inhibited metabolic pathways are reported together with some of the PPARs’ target genes.
(A) Hypoxia-inducible factor-1 (HIF-1) can active PPARα, which in turn activates the transcription
of specific genes resulting in high glycolysis, high glycogen storage, and high proliferation rate
(glucose transporter 3 (GLUT3), c-Myc, and cyclin D1). However, PPARα activation is also related
to the induction of fatty acid oxidation (FAO) by upregulation of carnitine palmitoyltransferase 1
(CPT1). In addition, PPARα induces fatty acid synthesis by upregulation of fatty acid synthase (FAS)
enzymes. It is noteworthy that mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (HMGCS2) is
upregulated by PPARα; besides, HMGCS2 can form a heterodimeric complex with PPARα to induce
Src expression. The phosphorylation of Src triggers the mevalonate (MVA) pathway, resulting in high
levels of cholesterol (CHOL). Lipid components and cholesterol are useful for membrane synthesis,
and their large amounts are confined in lipid droplets. Extracellular lipids and some intracellular
lipids (from lipid droplets) can be PPARα ligands; they are delivered to the nucleus by fatty acid
binding protein (FABP). (B) PPARγ transcriptional activity activates some proteins related to fatty acid
synthesis, such as FAS, c-Myc, PBP (PPARγ-binding protein), NR1D1 (nuclear receptor subfamily 1,
group D, number 1), and ODC1 (ornithine decarboxylase 1). ODC1 is able to inhibit krüppel-like factor
2 (KLF2), which in turn is unable to inhibit PPARγ. Other PPARγ-dependent mechanisms are able
to reduce palmitate toxicity by confining it into lipid droplets. Moreover, PPARγ 41 kDa fragment,
which is derived from caspase 1 cleavage, is able to inhibit FAO. (C) PPARβ/δ stimulates glycolysis by
the overexpression of GLUT1, angiopoietin-like 4 (ANGPTL4), phosphoinositide-dependent protein
kinase 1 (PDPK1), and PI3K/Akt; likewise, PDPK1 and PI3K/Akt can activate PPARβ/δ expression.
Fatty acid synthesis and FAO are activated by PPARβ/δ transcriptional activity on FAS and SLC1A5
(solute carrier 1 A5) genes. SLC1A5 is linked to the uptake of amino acids; thus, anaplerosis is also
positively affected by PPARβ/δ. Anaplerosis also supports FAO. Interesting, PPARβ/δ upregulates
cytokines expression; for example, interleukin 8 (IL8) and cytokines in concert with PPARβ/δ induce
STAT3 overexpression. The MVA pathway is a downstream process triggered by STAT3. The thin
black continuous lines with arrows indicate upregulation events. The thick black continuous lines
with arrows indicate a stimulation of the metabolic pathway. The thin blue continuous lines with
bars indicate inhibition events. The thick blue continuous lines with bars indicate the inhibition of
a metabolic pathway. The HIF-1-mediated upregulation of PPARs is represented by a grey dash dot
and arrow at the end, while FABP-mediated ligand-dependent activation of PPARs is represented by a
gold dash dot and arrow at the end.



Int. J. Mol. Sci. 2018, 19, 1907 9 of 30

It has been ascertained that the most of oncogenes are involved in the metabolic reprogramming
of tumor cells [95,96]. Among them, cyclin D1, contrary to what has just been mentioned,
was demonstrated to inactivate the PPARα-mediated gene expression of enzymes related to FAO in
hepatocytes as well as hepatocellular and breast cancer-derived cell lines [97]. Previous evidences
have demonstrated the role of cyclin D1 in the regulation of androgen receptors, estrogen receptors,
thyroid hormone receptor, and PPARγ [98,99] in different cell types. Several pieces of evidence about
the cyclin D1 regulation of cell metabolism, via the inhibition of PPARα transcription factor has
been provided, while the overexpression of cyclin D1 induced the low expression of genes related to
FAO. On the other hand, knockdown of cyclin D1 promoted FAO enzymes expression, but PPARα
gene silencing weakened this effect. These results highlight the role of cyclin D1 in affecting FAO in
a PPARα-dependent manner; for instance, a mitogen-stimulated cancer cell line showed low PPARα
and FAO activity, indicating that the transition from a quiescent state to a proliferation state requires
less energy from fatty acid [99]. Data reported in the paper of Kamarajugadda et al. [97] suggest that
cyclin D1 blocks the binding of PPARα on the PPRE of specific FAO enzymes in a not clear way. At the
same time, cyclin D1 could disturb the association of specific co-activators with PPARα, and then
determine some changes in chromatin conformation; besides, cyclin D1 controls the expression of
CBP/p300 [100,101].

Fatty acid synthase (FAS) is upregulated in a tumor of the urinary tract, such as RCC,
and the downstream intermediates of fatty acid synthesis are endogenous ligands of PPARα,
while the inhibition of FAS in the liver of mice provides rodents with PPARα dysfunction [102–104].
As mentioned above [82], a histological grade of RCC is directly linked to PPARα levels, and its
inhibition leads to cell cytotoxicity, cell cycle arrest with glycolysis, and FAO deregulation. Recently,
in RCC cell lines (Caki-1 and 786-O) and normal human kidney cells (NHK), it was reported that
the inhibition of glycolysis triggered FAO and OXPHOS, even though PPARα inactivation reversed
this metabolic pattern. Moreover, in normal cells, PPARα antagonist did not inhibit the glycolysis;
conversely, in RCC, cell line glycolysis was attenuated, which was likely due to a difference of c-Myc
protein levels between cancer cells and normal cells [105]. FAO can be considered an alternative
metabolic pathway to produce energy when the glycolysis is obstructed. In fact, the RCC cell line
showed increased levels of palmitate 24 h following 2-DG administration. Instead, co-administrations
with GW6471 involve the decay of palmitate levels. Usually, fatty acid β-oxidation provided the
acetyl-CoA groups to supply TCA cycle and OXPHOS, which in turn are more active with glycolysis
inhibition. When RCC cell lines were treated with a combination of 2-DG and PPARα antagonist
(GW6471), the OXPHOS activity levels showed no significant differences compared to the control cells,
while GW6471 alone was able to impair oxidative phosphorylation, but not FAO. Therefore, PPARα
antagonist adversely affected the levels of oncogene c-Myc in the RCC cell line, which is involved in
the overactivation of protein related to glucose uptake and glycolysis. Most likely, PPARα controls
glycolysis via c-Myc at least in RCC cell lines, and the simultaneous administration of 2-DG also
induces FAO inhibition. This double effect is detrimental to the main metabolic pathways that are
normally used by the RCC cell line [82,105].

Human hepatocellular carcinoma (HCC) tissue showed increased mRNA levels of the gene
involved in FAO and glucose metabolism, among which PPARα, carnitine palmitoyl transferase 1A
(CPT1A is the rate-limiting enzyme of FAO), glyceraldehyde 3-phosphate dehydrogenase (G3PDH),
and the upregulation of cyclin D1 mRNA. Although increased levels of PPARα were associated with
the deregulation of metabolic pathways that trigger carcinogenesis, there has not been evidence of
HCC incidence in human patients who were exposed to peroxisome proliferators [106].

Regarding carnitine palmitoyl transferase enzyme, the possible regulatory role of PPARα-CPT1C
axis in tumor proliferation and senescence was recently demonstrated [107]. As mentioned above,
as CPT1A, CPT1C is also a rate-limiting enzyme in FAO, and the enzymatic reaction allows the
acylation of a long fatty acid chain with subsequent entry into the mitochondria. In cancer cells,
the CPT1 enzyme’s family is upregulated [108–110]. Moreover, it was identified as PPRE in the first
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exon of the CPT1B gene [111,112]. In order to investigate the possible relationships between CPT1
genes and PPARα, were performed some analyses on two different cancer cell lines, MDA-MB-231
(breast cancer cell line) and PANC-1 (pancreas cancer cell line) with knockdown or overexpression
of the PPARα gene. Dual-luciferase reporter gene assays showed CPT1C active transcription by
PPARα in association with cell proliferation and senescence interruption. The effects were completely
different when the PPARα gene was depleted; an increase in senescence with low proliferation rate
was observed, indicating that the CPT1C gene is regulated by PPARα. This is further evidence of the
ability of PPARα to modulate cancer cell metabolism (see also Figure 1A) [107].

During carbohydrate deprivation, the cells can adopt ketogenesis to ensure lipid-derived energy;
this process is essential for tumor initiation and metastasis [113]. Mitochondrial 3-hydroxy-3-
methylglutaryl-CoA synthase (HMGCS2) belongs to the HMG-CoA family, and catalyzes the first
enzymatic reaction in ketogenesis. Several proteins related to the ketogenesis pathway were
overexpressed in prostate cancer cells [114], among which HMGCS2 was included; on this basis,
some researchers demonstrated the direct interaction between PPARα and HMGCS2 [115], resulting
in Src activation and the promotion of malignancy and invasion. This study demonstrated the
correlation between the increased mRNA levels of HMGCS2 and poor clinical outcomes as well as
grade malignancy in colorectal cancer (CRC) and oral squamous cell carcinoma (OSCC) tumor biopsy
from affected patients. The demonstration of a direct interaction at the nuclear level between HMGCS2
and PPARα is interesting; besides, other analyses confirmed that the heterodimeric complex binds the
Src promoter region and induced genes linked to tumor invasion (Figure 1A) [115].

Chronic lymphocytic leukemia (CLL) patients present poor clinical outcomes, and the most
effective therapy is based on high dose of glucocorticoids (GCs) with or without monoclonal
antibodies. Nevertheless, this therapeutic protocol is not curative, and is characterized by progressive
tumor resistance to GCs [116]. Glucocorticoids have immunosuppressive effects, inhibiting glucose
metabolism and increasing FAO in tissue under starvation condition. Tung et al. [117] found in
CLL that primary culture from patient’s blood increased PPARα expression mediated by GCs with
pronounced tumor dependence on FAO. Lipid oxidation ensures tumor survival, providing an
alternative mechanism to the metabolic limitations dictated by GCs. PPARα antagonist impaired the
tumor chemoresistance mechanism of GCs. Pyruvate kinase M2 (PKM2) activity was downregulated
at the transcriptional and protein level by dexamethasone (DEX); despite this, acetate levels were
kept constant, suggesting an increase in FAO activity linked to DEX. PPARα and PPARβ/δ mRNA
levels were increased after DEX administration, while the downregulation of PKM2 occurred
before the PPARα upregulation; it is likely that the nuclear receptor did not affect pyruvate kinase
gene transcription. Nevertheless, the pyruvate dehydrogenase kinase 4 (PDK4) gene is under the
transcriptional control of PPARα and PPARβ/δ; then, PDK4 phosphorylates and inhibits pyruvate
dehydrogenase. Thus, pyruvate is useful for FAO rather than for OXPHOS [118]. Moreover, in order
to understand the role of DEX in FAO and related chemoresistance triggering, the effects of DEX
administration in association with FAO substrates were investigated. About that, CLL cells were
co-cultured with OP-9-derived adipocytes in order to obtain an in vitro model in which lipids
were derived from cells with an adipocyte phenotype. This model was used to mimic an in vivo
tumor environment, where CLL cells are close to the adipocyte, and the high amount of lipids in
the surrounding environment could improve tumor resistance to drugs by feeding FAO [119,120].
CLL showed greater resistance to DEX when cultured with adipocytes compared with CLL cells in
serum-free media, and the effects were the same with conditioned media from an OP-9-derived
adipocyte. These results highlight that lipids secreted from OP-9-derived adipocytes conferred
chemoresistance. This experimental evidence demonstrated the direct involvement of PPARα in
GCs tumor resistance, since it is upregulated by DEX and is a well-known FAO regulator; in addition,
PPARα antagonists revoked these effects and sensitized CLL cells to DEX [117].

Contrary to what is stated, PPARα activity could be useful to counteract tumor progression in
some tissue, as evidenced in melanoma [79]. In addition, PPARα is able to decrease the transcription
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of fatty acid synthesis genes and positively affect the transcription of FAO enzymes. In this
regard, Chandran et al. reported the protective roles of the clofibrate, which is a PPARα agonist,
in counteracting breast cancer inflammation and invasion [121]. The researchers used two triple
negative breast cancer cell lines, SUM149PT and SUM1315MO2; the first from an invasive ductal
carcinoma of a patient with inflammatory breast cancer, and the second from a highly invasive
breast cancer specimen of a patient with skin metastasis. These two cell lines showed an increased
expression of PPARα with respect to primary human mammary epithelial cells (HMEC). Clofibrate
was able to reduce inflammation by decreasing the levels of COX-2 (cyclooxygenase-2) and 5LO
(5-lipoxygenase) in association with the inhibition of growth tumor. Early events of cancer development
require the upregulation of fatty acid synthesis, which is dramatically exacerbated during the
late events of tumor progression [122]. FAS activity was attenuated by clofibrate, which in turn
downregulated the expression of HMG-CoA synthase 2, acyl-CoA oxidase, and the sterol regulatory
element binding protein 1c (SREBP-1c) gene. HMG-CoA synthase 2 and acyl-CoA oxidase are involved
in the mevalonate pathway, while SREBP-1c is a transcription factor acting on sterol regulatory
element DNA sequences. SREBP-1c (sterol regulatory element binding protein 1c) plays a key role in
regulating de novo fatty acid synthesis, while its cognate SREBP-2 regulates the genes of the cholesterol
metabolism [123]; SREBP’s pathway has a significant role in the de novo fatty acid synthesis of prostate
cancer cells [124]. As reported by Chandran et al. [121], the activation of PPARα by clofibrate was able to
impair the gene expression of SREBPs and reduce the NFκB and Erk1/2 (extracellular signal-regulated
kinase 1/2) protein levels in breast cancer cells derived from high metastatic inflammatory tumor
specimens. Conversely, in the same cancer cells, clofibrate was linked to the CPT-1a (first enzyme in
FAO) upregulation (as reviewed in Figure 2A) [121].

Some evidence has indicated PPARα activation as a possible trigger of ineffective tumor
metabolism. It was reported that the administration of fenofibrate (a PPARα agonist), on cell lines
and a mouse model of oral cancer, supported hexokinase II and VDAC (voltage-dependent anion
channel) dissociation. This event destabilizes the Warburg effect and provides a metabolic switch to
OXPHOS. Furthermore, in these in vivo and in vitro oral cancer models, the activity of fenofibrate
affected hexokinase II, PDH, and VDAC protein levels, as indicated in Figure 2A [125–127]. Recently,
Huang and Chang [128] studied, through proteomic analysis, the differences between normal and
cancer oral tissue from mice, relating it to enzymes involved in the Warburg effect. At the same
time, they investigated the role of PPARα in the fibrate-dependent metabolic changes of the oral
cancer cell line. Proteomic analyses were performed in a basic isoelectric point (pI) range, because the
enzymes of glycolysis, the TCA cycle, and OXPHOS show mainly alkaline pI [128,129]. Seven proteins
showed decreased levels in tumor tissue compared with normal tissue; they were triosephosphate
isomerase and pyruvate dehydrogenase E1 component subunit beta for glycolysis, IDH3 and aconitate
hydratase for the TCA cycle, NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10 and
cytochrome c1 for the respiratory chain. Considering oral cancer cells’ dependence on the Warburg
effect, the researchers evaluated the effect induced by fibrate. PPARα activation induced the reduction
of hexokinase II protein levels, ATP levels, and enhanced PDH activity, alongside reducing cell
viability. Interestingly, they observed a significant increase in TCA cycle metabolites after fenofibrate
administrations in primary cell culture from mouse tongue tumor tissue. Probably, PPARα agonist
increased PDH activity; accordingly, pyruvate was decarboxylated to acetyl-CoA, and TCA cycle was
encouraged. Otherwise, fenofibrate could increase FAO, resulting in high acyl group levels that are
useful for TCA cycle reactions (Figure 2A) [127,128].

Regarding the Warburg effect and related aerobic glycolysis, the repression activity of PPARα on
the GLUT1 gene with reduced glucose uptake was reported; these evidences were obtained in different
cancer cell lines (HCT-116, SW480, MCF-7, and HeLa) (as indicated in Figure 2A) [71].
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Figure 2. Schematic representation of PPARs-dependent oncosuppressive metabolic pathways
highlighted in this review. The representation concerns the metabolic mechanisms that are
activated/inhibited in tumor cells under the transcriptional control of PPARs. These hypotheses
of molecular mechanisms are based on evidences obtained by different cancer types. For each
PPAR isotype, the specific activated/inhibited metabolic pathways are reported together with some
PPAR target genes. (A) Aerobic glycolysis is inhibited by the PPARα’s transcriptional repression of
glucose transporter 1 (GLUT1) and hexokinase II (HKII) genes. Meanwhile, the complex between
the voltage-dependent anion channel (VDAC) complex and HKII is destroyed by PPARα activity,
thus adversely affecting glycolysis and increasing oxidative phosphorylation (OXPHOS). In addition,
pyruvate dehydrogenase (PDH) is upregulated by PPARα to promote OXPHOS. Impairment in fatty
acid synthesis by the downregulation of fatty acid synthase (FAS) and impairment of the mevalonate
(MVA) pathway are due to effects adversely exerted by PPARα on specific target genes. Conversely,
carnitine palmitoyl transferase 1 (CPT1) is upregulated by PPARα; this condition promotes fatty acid
oxidation (FAO). Despite the reduced activity of fatty acid synthesis, FAO depletes insufficient lipid
reserves and impairs cancer cells for life. (B) PPARγ downregulates the c-Myc/Wnt/β-catenin axis and
stimulates β-catenin proteasome degradation. Further downregulation of pyruvate dehydrogenase
kinase 1 (PDK1) and upregulation of pyruvate kinase isoenzyme M1 by PPARγ promotes OXPHOS
and impairs aerobic glycolysis. Fatty acid synthesis, amino acid uptake, and anaplerosis are adversely
affected by PPARγ activity in concert with increased levels of FAO. High FAO levels are related to the
upregulation of PDK4 and mitochondrial uncoupling protein 2 (UCP2). Moreover, PPARγ activity
negatively affects ATP binding cassette G2 (ABCG2) and prevents chemoresistance; this is associated
with the high sensitivity of tumor cells to ROS, whose levels are increased through FAO and OXPHOS
metabolic pathways. In addition, there is glutathione (GSH) downregulation, while hypoxia inducible
factor-1 (HIF-1) is able to inhibit PPARγ activity. (C) In the absence of ligands, PPARβ/δ acts as
a repressor, which is probably due to the strong interaction between PPARβ/δ/RXR heterodimer and
a co-repressor. However, the repressor complex is able to downregulate the genes involved in FAO,
this condition is abolished in the presence of exogenous or endogenous PPARβ/δ ligands. The thin
black continuous lines with arrows indicate upregulation events. The thick black continuous lines
with arrows indicate the stimulation of a metabolic pathway. The thin black dashed lines with arrows
indicate a reduction activity of metabolic pathways. The thin blue continuous lines with bars indicate
inhibition events. The thin blue dashed lines with bars indicate a reduction of the inhibition of the
metabolic pathway. The HIF-1-mediated downregulation of PPARs is represented by a grey dash
dotted line with a bar at the end, while the FABP-mediated ligand-dependent activation of PPARs is
represented by a gold dash dotted line with an arrow at the end.
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2.2. PPARγ and Cancer Metabolism

Several cell types express PPARγ, which is involved in different mechanisms that are essential
to sustain normal cell life. Adipose tissue, liver tissue, muscle, brain, and immune cells (mainly
macrophages) require PPARγ activation to meet energy demands and regulate glucose and lipid
metabolism, insulin sensitivity, and cell fate. PPARγ plays a key role in adipocytes and the
differentiation of macrophages [130–132]. As previously mentioned for PPARα, as well as for PPARγ,
there have been several demonstrations about its role in tumorigenesis, some of them related to the
antiproliferative effects of PPARγ activation, such as in breast [133], hepatic [134], lung [135], and
colorectal cancer [136]. Moreover, PPARγ activation negatively affects the epithelial mesenchymal
transition (EMT) [137]. However, there is other proof of the tumorigenic potential of PPARγ activation,
such as in colorectal cancer [138–140], breast cancer [141,142], and urological cancer [143]. Both roles
of PPARγ are strictly tumor tissue-dependent and tumor microenvironment-dependent.

Several types of epithelial cancers show a common feature: deregulation of the Wnt/β-catenin
pathway, resulting in the upregulation of enzymes related to aerobic glycolysis. The availability
of Wnt ligands triggers the nuclear translocation of the β-catenin, where it is able to bind specific
target genes, including pyruvate dehydrogenase kinase (PDK), monocarboxylate lactate transporter-1
(MCT-1), c-Myc, cyclin D1, and COX-2. Without Wnt ligands, β-catenin is phosphorylated and then
demolished by proteasome. In this view, PPARγ downregulation is associated with Wnt/β-catenin
upregulation; on the other hand the inhibition of Wnt/β-catenin is mediated by PPARγ activation
(see also Figure 2B). Accordingly, it is not inconceivable to think about a mechanism of interconnection
between Wnt/β-catenin and PPARγ, in which each one is able to prevent the pathway of the other,
as already demonstrated [144]. PDK1 acts as a phosphorylating pyruvate dehydrogenase, and
then pyruvate is transformed in lactate by the activation of lactate dehydrogenase. Meanwhile,
MCT-1 is involved in lactate secretion outside the cytoplasm. These two events enable improving
the angiogenesis and biosynthesis of macromolecules, thus providing a unique and favorable tumor
microenvironment [21]. In this context, PPARγ suppresses PDK1 gene transcription, resulting in an
ineffective Wnt/β-catenin pathway (Figure 2B) [145].

Studies conducted on PPARγ agonist or with PPARγ overexpressing cells, support the idea that
PPARγ activation is useful to counteract tumor progression; in fact, thiazolidinediones (TZDs) show the
ability to contain tumor growth in vitro and in vivo models of lung cancer. In addition, it was reported
that the overexpression of PPARγ in a group of non-small lung cancer cells and its activation affect some
genetic pattern underlying the tumor metabolic demands [146]. Srivastava and collaborators [135]
reported in two lung adenocarcinoma cell lines (NCI-H2347 and NCI-H1993) that PPARγ activation
compromised glucose, fatty acid, and glutamine metabolism, which are associated with increased ROS
(reactive oxygen species) and hypophosphorylated RB (retinoblastoma protein). Dephosphorylated
RB is opposed to the cell cycle progression. Unlike what was previously mentioned, in this work,
the researchers found an upregulation of PDK4 expression by pioglitazone, and the central role of
PDK4 in inducing the metabolic switch from glucose oxidation to fatty acid oxidation was suggested.
PDK4 knockdown abolished the effect induced by pioglitazone related to RB hypophosphorylation
and ROS levels; simultaneously, the same results were achieved in cell lines and xenograft mice
models by inhibiting FAO with chemical compounds. These results suggested that PDK4 upregulation,
by pioglitazone, compromised glucose utilization and triggered FAO with a subsequent increase of
ROS levels, which in turn induced RB hypophosphorylation. Moreover, the researchers reported
alterations in glutamine metabolism, an impairment of glutaminolysis, and downregulation of reduced
glutathione (GSH) levels; therefore, tumor cells were unable to carry out ROS detoxification processes
(as reported in Figure 2B) [135].

One common feature of several tumors such as non-small cell lung cancer (NSCLC) is resistance
to radiation and chemotherapy, but the specific mechanisms are not entirely understood. However,
it is well-known that hypoxia supports the malignancy and expression of ATP-binding cassette (ABC)
transporters, which drive chemotherapeutic agents outside the cells [147,148]. The hypoxic condition
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is also combined with the downregulation of mitochondrial uncoupling protein 2 (UCP2) in NSCLC
cells, as highlighted in a recent work [149]. UCP2 is a mitochondrial protein that is involved in the
detoxification process by reducing ROS levels, because the cells are more sensible to superoxide anion
released after proton force development by the electron transport chain. Moreover, a double role
was suggested for UCP2: the reduction of ROS levels, and the metabolic regulation of glycolysis,
fatty acid, and glutamine oxidation [150]. Downregulation of UCP2 by hypoxia was associated with
PPARγ repression, the upregulation of the ABC transporter and ATP binding cassette G2 (ABCG2),
and an increase of aerobic glycolysis and chemoresistance. HIF-1 was directly involved in PPARγ and
FAO downregulation; this condition negatively affected the UCP2 transcription. Conversely, glucose
consumption was stimulated and established a progressive increase of ROS in concert with ABCG2
upregulation, as indicated in Figure 2B [149,151].

Several studies show the ability of ATRA (all-trans retinoic acid) to induce the differentiation of
some myelocytic cell lines (HL-60, U937, and NB4) into mature phagocytic cells. ATRA administration
is useful for the therapy of acute promyelocytic leukemia (APL), but the permanent administration of
ATRA causes high resistance at differentiation, because there is overexpression of cytosolic retinoic
acid binding proteins [152,153]. In this regard, the association between ATRA and PPARγ ligands
was demonstrated to be synergistic in the differentiation effect on myelocytic leukemia cell lines [130].
The synergistic effect also concerned the enhancement of lipogenesis, as evidenced in the NB4 cell
line by an accumulation of lipid droplets. Therefore, an induction of differentiation by ATRA and
pioglitazone results in a high activity of triacylglycerol synthesis in human myelocytic leukemia cell
lines [154].

An induction of PPARγ activity and concomitant autophagic cell death in human chronic myeloid
leukemia (CML) cell lines (K562 and KCL-22) was reported by Shinohara et al. [155]. By docking
analysis, they observed that anti-cancer fatty-acid derivative, called AIC-47, was able to bind PPARγ,
making it transcriptionally active, and indirectly reducing c-Myc protein levels, since PPARγ activation
is related to the proteasome degradation of β-catenin, as already mentioned [144]. Other interesting
results also demonstrated the involvement of AIC-47/PPARγ in the deregulation of the glycolytic
pathway. In fact, the upregulation of c-Myc is a cause and a consequence of aerobic glycolysis in
tumor cells. As previously demonstrated, c-Myc can induce the overexpression of three heterogeneous
nuclear ribonucleoproteins (hnRNPs), and, in turn, they can suppress the alternative splicing of
pyruvate kinase isoenzyme M1 (PKM1), which is the less present isoform in cancer cells. Unlike other
isoforms of PK that need allosteric regulation to be active, PKM1 is a tetrameric stable and active
enzyme; for this reason, cancer cells prefer to use PKM2 for their metabolic purposes. PKM2 shows
slow activity in cancer cells, because it also allows the biosynthetic pathways; consequently, in
cancer cells, the PKM1/PKM2 ratio is low and c-Myc-dependent [23,24,156]. PPARγ activation
AIC-47-dependent induced c-Myc downregulation, resulting in β-catenin inactivation with an increase
of the PKM1/PKM2 ratio and the metabolic switch from glycolysis to the TCA cycle; simultaneously,
ROS levels increase, which results in autophagy induction (Figure 2B) [155].

Survival in hepatocellular carcinoma (HCC) patients is related to the expression patterns of some
genes, including ODC1 (ornithine decarboxylase 1). Its overexpression is associated with reduced
patients survival [157]. The OCD1 enzyme catalyzes the first reaction in the biosynthesis pathway
of polyamine; its mRNA and protein levels are increased together with c-Myc activity in HCC tissue
compared with normal tissue [158]. An impairment of OCD1 expression by gene silencing was related
to cell cycle interruption and apoptotic cell death; besides, phenotypic alterations occurred through
a characteristic deregulation of 119 genes. Among them, it was interesting that the downregulation
of PPARγ gene and lipogenesis were both linked to the upregulation of KLF2 (krüppel-like factor 2)
oncogene. It was reported that the siRNA of ODC1 gene induced the upregulation of the KLF2
gene, which, in turn, negatively affected PPARγ expression, thus causing a downregulation of
lipogenic enzymes, such as FAS and ACC2 (acetyl-CoA carboxylase 2), as already highlighted; see also
Figure 1B [159,160].
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Regarding de novo fatty acid synthesis, in ERBB2 (erythroblastic oncogene B)-positive breast
cancer cells, a remarkable amount of lipid droplets was observed. ERBB2 cells assumed this metabolic
behavior under the transcriptional control of PPARγ, and the inhibition of PPARγ decreased tumor cell
viability. By RNA interference screening, some genes that are required for fatty acid metabolism and
tumor cell survival were identified [161]. Within this group of genes, two were associated with PPARγ
activity: PBP (PPARγ-binding protein) and NR1D1 (nuclear receptor subfamily 1, group D, number 1).
Both were identified as activators of PPARγ expression; it is likely that PBP was a co-activator, and
NR1D1 was the target gene [162]. The gene sequence of PBP and NR1D1 are located in the ERBB2
amplicon, and in breast cancer, mutations in this gene locus are linked to high lipid synthesis and PBD,
NR1D1 overexpression. PBD and NR1D1 activity is aimed at the regulation of FAS (fatty acid synthase),
ACLY (ATP citrate lyase), and ACACA (acetyl-coenzyme A carboxylase α) gene expression [162,163].
In this regard, palmitate, the last metabolic product of the fatty acid synthesis pathway, was described
as lipotoxic agent, likely by ROS induction [164]. Some researchers identified a protective role of
PPARγ against palmitate-induced lipotoxicity in ERBB2-positive breast cancer cell lines (BT474 and
MDA-MB-361), but not in other types of breast cancer (MCF-7) and normal cells. The PPARγ activity
allowed the induction of triacylglycerol synthesis, in order to remove the excess of fatty acid and enclose
them in specific stores (LDs) to relieve lipotoxicity. Moreover, PPARγ played a central role in keeping
the FAS active by confinement of palmitate in specific stores. The inhibition of PPARγ by antagonist
abolished the protective mechanism, and ERBB2 cells were more sensible to palmitate-dependent
toxicity (Figure 1B) [165]. A pertinent work showed the suppressive effects of PPARγ antagonism
in populations of cancer stem cells (CSCs) derived from ERBB2-positive breast cancer cell lines
(BT474 and SKRB3). These cell lines expressed high levels of ALDH (aldehyde dehydrogenase) activity
with greater lipid storage than ERBB2-negative cells. Also in this case, the tumor suppressive effects
were related to increased ROS levels and a damaged lipogenesis pathway. The researchers’ assumption
was that the epigenetic pattern of ACLY (ATP citrate lyase) could be altered by PPARγ inactivation,
considering the ACLY gene a PPARγ target gene. In fact, acetylation levels of H3 and H4 histone were
found to be different between ERBB2-positive cells and control cells [166].

Recently, an interesting approach, called sleeping beauty (SB), was used to mainly find genes
leading to prostate cancer metastatic events. Briefly, this approach is based on transposons, which can
induce somatic mutations, and the expression of transposase enzymes could be tissue-specific or
ubiquitous [167]. Most of the analyses were conducted on PTEN-null mice, because patients with poor
prognosis presented low PTEN levels and conversely high PPARγ and FAS levels. Noteworthy,
the insertion of mutations within the PPARγ gene established greater tumor aggressiveness in
PTEN-deleted mice than in mice without insertion. Also in this study, the PPARγ overexpression
determined the upregulation of enzymes involved in de novo fatty acid synthesis, and conversely,
this effect was abolished by PPARγ knockout and downregulation [168].

Tumor-associated macrophages (TAMs) have a close relationship with the tumor
microenvironment and encourage tumor progression. Several evidences support the idea that
stromal cells play a key role in tumor maintenance, since tumor cells exploit them by using their
energy resource, in the form of metabolic intermediates or end products (lactate, ketones, glutamine,
and fatty acids). Concerning this scenario, the ability of caspase-1 to cut PPARγ in a 41-kDa
fragment was reported. Afterwards, this fragment translocates into mitochondria to dampen MCDA
activity. Medium-chain acyl-CoA dehydrogenase (MCDA) contributes to fatty acid β-oxidation [169];
its inactivation was demonstrated to be linked to lipid synthesis, and LDs increase with concomitant
TAMs differentiation. Considering the caspase-1/PPARγ/MCDA axis as an important mechanism
to improve TAMs differentiation and tumor aggressiveness, when this axis was damaged with
a caspase-1 inhibitor, TAMs cells suffered a specific commitment that negatively affected tumor
progression (Figure 1B) [170].
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2.3. PPARβ/δ and Cancer Metabolism

PPARβ/δ, similar to other PPAR isotypes, regulates the transcription of genes that are required for
the main metabolic processes, such as glucose and fatty acid catabolism, although its regulatory role is
also implicated in cell proliferation, cell differentiation, wound healing, and inflammation [55,171,172].
Several scientific evidences reported the pro-tumorigenic role of PPARβ/δ, but to date, there has
been conflicting information on the exact role of PPARβ/δ in carcinogenesis [75,173]. This aspect was
especially investigated in breast cancer with conflicting results, showing that the estrogen receptor was
involved in the effects induced by PPARβ/δ activity modulation. In fact, proliferation in the MCF-7
cell line (estrogen receptor positive, ER+) was increased by PPARβ/δ overexpression; conversely,
the MDA-MB-231 cell line (estrogen receptor negative, ER−) showed no effect on the cell proliferation
rate. Unfortunately, these results are not consistent with other evidences, showing that in MCF-7 cells,
the overexpression of PPARβ/δ induced differentiation and cell cycle interruption [174–176]. On the
other hand, the negative effect of PPARβ/δ activation on tumor survival in MCF-7 and MDA-MB-231
cell lines has also been reported [177].

Tumor progression in non-small cell lung cancer (NSCLC) was associated with PPARβ/δ
upregulation, an increase in VEGF (vascular endothelial growth factor) levels and activation of the
PI3K/Akt pathway [178]. PPARβ/δ could be considered an upstream regulator of PI3K/Akt activity.
PI3K/Akt signaling is able to reduce PTEN levels and increase PDPK1 (3-phosphoinositide-dependent
protein kinase-1) expression [179]. Since the PDPK1 gene presents PPRE specific for PPARβ/δ,
as already demonstrated [180], an interesting analysis was conducted on mammary tumorigenesis in
an in vivo model. In this regard, transgenic mice carrying the PDPK1 gene under the transcriptional
control of mouse mammary tumor virus (MMTV-mice) were used. Nevertheless, the expression was
limited to the mammary gland [181]. Transgenic mice showed higher PPARβ/δ expression levels than
control mice; the expression was further increased in MMTV-mice fed a diet containing PPARβ/δ
agonist. Mammary carcinogenesis was promoted in both wild-type and transgenic mice under feeding
treatment, especially in transgenic mice. The researchers emphasized the differences between wild-type
and MMTV mice regarding the treatment response, because mice bearing the PDPK1 transgene and
treated with PPARβ/δ agonist were more prone to tumor initiation, which might have been due to
differences in the involved metabolic pathway. Regarding that, the PI3K/Akt pathway is able to
phosphorylate and activate ATP citrate lyase; simultaneously, PDPK1 slows down the pyruvate flow
into oxidative phosphorylation and the Acss2 (Acyl-coenzyme A synthetase short-chain family member
2) supports the conversion of lactate to pyruvate. These three proteins work in concert to raise the
acetyl-CoA amount in order to promote glycolysis and fatty acid synthesis, and the PPARβ/δ agonist
increases their efficiency. Although PDPK1 expression alone was not able to induce carcinogenesis,
its association with the active PPARβ/δ triggered a malignancy molecular pathway that was more
aggressive in transgenic mice than in wild-type mice treated with PPARβ/δ agonist. Therefore,
two different metabolic mechanisms can be activated, whereby PDPK1 induces the expression of
PPARβ/δ and vice versa; this loop in turn supports the transcription and the activity of genes
related to glycolysis and lipid synthesis. Fatty acid synthesis could be useful for supplying PPARβ/δ
endogenous ligands and continuing to feed PDK1-PPARβ/δ loop activity (see also Figure 1C) [181].

Despite the maintenance of hematopoietic stem cells (HSCs) and endurance of muscle cells
establishing an unfavorable metabolic condition, they are safeguarded through PPARβ/δ activity.
It is likely that PPARβ/δ triggers specific molecular mechanisms related to the metabolic switch
to allow the cell life cycle [182,183]. As already demonstrated by Tung and collaborators [117],
PPARβ/δ transcription was promoted when leukemic cells were stressed by glycolysis inhibitors.
The same results were obtained in a recent paper, but in breast cancer cell lines. When the cells grow in
standard culture conditions for 10 days without medium replacement, the overexpressing-PPARβ/δ
cells continued to proliferate much better than control cells. Conversely, cells with the PPARβ/δ
knockdown, through CRISP/Cas9, showed a proliferation rate comparable to the control levels.
However, the low glucose culture conditions induced a more pronounced PPARβ/δ upregulation in
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transfected cells compared to standard culture conditions, confirming the central role of PPARβ/δ
in tumor metabolic modulation. Furthermore, these events were associated with increased levels of
catalase and Akt protein, as well as an upregulation of the antioxidant defenses (Figure 1C) [184].

As mentioned above, PPARβ/δ plays, in concert with FAO, a key role in the preservation
of HSCs, also in the presence of harsh environmental conditions. Regarding that, PPARβ/δ-FAO
pathway undergoes an upstream regulation by the PML (promyelocytic leukemia) protein; which is
codified by a tumor-suppressor gene. For example, Ito and colleagues [183] demonstrated that HSCs
with Pml gene deletion were less inclined to asymmetric division with significant variation of the
asymmetric/symmetric division ratio, and there are similar results also in breast cancer cells that
sustain this observation [185]. These evidences provide further support regarding PPARβ/δ-FAO
pathway regulation by PML upstream control. Therefore, abolishing the oxidative metabolism of
fatty acids could damage cancer stem cells and more differentiated scaffold cells [183]. In this regard,
a similar effect was observed in chronic lymphocytic leukemia (CLL) cells (Daudi cell line and primary
culture), where the stressful environmental conditions stimulated PPARβ/δ expression by triggering
a protective mechanism in cancer cells. Various kinds of harsh conditions were tested: low glucose,
hypoxia, exposure to glucocorticoids, and cytotoxic agents. In any case, the response of tumor cells
was to improve antioxidant activity and make better use of energy supplies through a proper metabolic
pathway [186]. More recently, the involvement of PPARβ/δ signaling in the survival of CLL cell lines
was reported. This event was associated with increased cholesterol and plasma membrane biosynthesis.
Exposure to PPARβ/δ agonists was found to induce high cholesterol levels and interferon-dependent
STAT phosphorylation. Cytokines stimulated the specific pathway related to cholesterol synthesis,
while the inability of cytokines to upregulate PPARβ/δ was also demonstrated. On the other hand,
PPARβ/δ could stimulate the cytokines expression in order to maintain the tumor microenvironment
(as reported in Figure 1C) [187].

Consistent with these results, the direct role of PPARβ/δ in the IL-8 gene transcription was
also observed in colon cancer cells, mainly in a hypoxic environment [188]. Unlike PPARα and γ,
which present both pro-tumor and anti-tumor effects in colorectal cancer, different experimental
evidences showed the pro-tumorigenic role of PPARβ/δ, mainly through its involvement in the
APC/β-catenin/K-Ras oncogenic pathway [189,190]. The upregulation of PPARβ/δ was observed in
human HCT116 colon cancer cells in a hypoxic environment. Whereas p300/PPARβ/δ interaction
was triggered by HIF-1. p300 is an all-purpose co-activator for the nuclear receptor that contributes to
the formation of transcriptional complex. The authors reported high levels of tumor angiogenesis by
IL-8 and VEGF overexpression linked to hypoxic conditions that in turn induce the p300/PPARβ/δ
complex. This complex strongly affected the expression of inflammatory cytokines. At the same time,
PPARβ/δ is upstream regulated by PI3K/Akt, but PPARβ/δ itself is able to regulate PI3K and Akt
expression; thus, a permanently active closed loop could be generated, as indicated in Figure 1C [188].

As mentioned above, PPARγ is directly involved in the differentiation of TAMs [170]; it is also
worth mentioning that macrophages can assume two specific phenotypes: M1 (inflammatory) and M2
(anti-inflammatory). However, TAMs present a mix of both phenotypes [191]. PPARγ and PPARβ/δ
are able to regulate the final fate of macrophages in a tumor environment. The transcriptional control
of PPARβ/δ on genes linked to TAMs was observed in ovarian cancer cells. CD14+ monocytes cells
from ovarian carcinoma ascites were used as TAMs in vitro model [192]. This study evaluated which
genes related to TAMs were under PPARβ/δ transcriptional control. The overall results confirmed the
regulation of metabolic pathway genes and inflammatory/migration pathway genes. The upregulation
of these genes was also found in the presence of PUFA (poly-unsaturated fatty acid) ligands. Therefore,
transcriptional regulation by PPARβ/δ could be associated not only with the maintenance of TAMs,
but also with tumor progression. The upregulation of genes encoding for soluble mediators of cancer
progression, such as ANGPTL4 (angiopoietin-like 4), could be under the transcriptional control of the
PPARβ/δ. ANGPTL4 is a lipoprotein lipase regulator; it is essential for tumor-metastatic progression.
In fact, angiopoietin-like 4 prevents the cell death by anoikis [193,194]. However, the preservation of
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TAMs was dependent of PPARβ/δ activation, which in turn induced the transcription of downstream
elements, such as ANGPTL4 and PDK4, in order to allow a metabolic switch to aerobic glycolysis
(Figure 1C). In fact, high lactate levels were detected, and cells from ascites resulted in having high
fatty acid ligands for PPARβ/δ; thus, the nuclear receptor activity in TAMs maintenance was greatly
facilitated by the tumor microenvironment [192].

Since the metabolic fate undertaken by cancer cells is a response depending on the cell phenotypic/
genotypic characteristics, and on the specific microenvironment around the neoplastic bulk. PPARβ/δ
behavior also undergoes this specific tumor conditioning. However, the microenvironment affects
the ability of cancer cells to acquire nutrients from extracellular compartments to cytoplasm by
transmembrane transporter proteins. In this regard, Zhang et al. [77] reported the direct binding of
PPARβ/δ on the PPRE of Glut1 and Slc1-a5 genes, and highlighted their upregulation by PPARβ/δ
activation, in order to ensure glucose and amino acids for tumor growth. Transfected SW480 cells
(cell line from colon adenocarcinoma) with PPARβ/δ transgenes showed high mRNA and protein
levels of GLUT1 and SLC1-A5 (solute carrier family 1 member 5), and as a consequence, lactate
increases, and there is also high glucose and glutamine consumption. All of these results were
abolished by PPARβ/δ knockdown or through the use of an antagonist. Moreover, the overexpression
of GLUT1 and SLC1-A5, with contemporary PPARβ/δ silencing, caused an increase in the proliferation
rate, which was abolished in cells with a specific deletion of the transporter protein genes and
overexpression of PPARβ/δ. Considering these results, it is conceivable to hypothesize that there is
a PPARβ/δ-dependent molecular pathway leading to GLUT1 and SLC1-A5 upregulation, resulting in
the modulation of metabolic patterns suitable for tumor growth (Figure 1C) [77].

Unlike the evidence reported so far, the oncosuppressive activity of PPARβ/δ in prostate cancer
was recently demonstrated [195]. In a tumor tissue biopsy of prostate cancer, low mRNA levels of
PPARβ/δ were observed compared with benign tissue. The same results were obtained in prostate
cancer cell lines (DU145, PC3, LNCAP, VCAP, C4-2, and 22RV); thus, the downregulation of PPARβ/δ
was associated with high aggressiveness. In the absence of ligands, the PPARβ/δ could exist as
a transcriptional repressor [172]; in fact, the inhibition of FAO was demonstrated when PPARβ/δ was
overexpressed, but only in PC3 and LNCaP cell lines. The repressive effect on FAO was abolished by
PPARβ/δ agonist, without affecting PPARβ/δ transcription levels. The results obtained confirm the
suppressive role of PPARβ/δ in its unliganded form; see also Figure 2C [195].

3. Conclusions

Although there is no clear view on the exact role of PPARs in carcinogenesis, and considering
that most of the experimental proofs are mutually conflicting, the key role of PPARs in the metabolic
modulation faced by cancer cells to ensure their own survival has been accepted. Each cancer cell
exhibits a specific metabolic signature that is related to its tissue-specific genotypic and phenotypic
features. Nevertheless, the specific cell phenotype has a close relationship with the microenvironment
around the tumor bulk; thus, tumor phenotypic manifestations are the result of the effects induced
by the tumor microenvironment on cellular transcription events. Regarding that, the transcriptional
activity of PPARs on specific target genes is deeply correlated to the tissue type from which the
tumor arises and to the tumor microenvironment. For this reason, each PPAR isotype establishes
different effects in various tumor cell types. Overall, all of these factors determine whether PPARs
promote tumorigenesis and tumor progression or counteract cancer survival. Moreover, the tumor
microenvironment provides PPAR ligands; consequently, the extracellular environment can directly
modulate the activities of PPARs.

The most recent evidences reported in this review demonstrate the involvement of PPARs in
a metabolic switch that occurs in different cancer types. The oncogenic metabolic pathway of PPARα
is characterized by high glycolysis in concert with c-Myc and cyclin D1 upregulation, as well as
high levels of lipid and glycogen synthesis. In addition, an increase of LDs is observed that is
associated with the upregulation of the MVA pathway, while, less frequently, PPARα oncogenic
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activity can be connected to the induction of OXPHOS and FAO. Moreover, an increase in fatty acid
oxidation was reported to confer chemoresistance, i.e., against glucocorticoids [116]. Hypoxia exerts
its oncogenic role through a stimulation of PPARα transcriptional activity (Figure 1A). Oncogenic
metabolic behavior related to PPARγ activity mainly triggers an increase in lipid synthesis and
reduces FAO. Meanwhile, lipotoxicity related to a high amount of palmitate is arrested by PPARγ,
which drives palmitate confinement into LDs. The positive role of PPARγ in the differentiation of
TAMs is intriguing; the behavior of tumor stromal cells is affected by the PPARγ-mediated inhibition
of FAO and induction of lipid synthesis (Figure 1B). Unlike other two PPAR isotypes, most of the
evidence regarding PPARβ/δ activity highlights its oncogenic role. Environmental stress, such as
hypoxia and low glucose, triggers the tumor metabolic pathway under PPARβ/δ transcriptional
control; thus, aerobic glycolysis, lipid synthesis, anaplerosis, and FAO are stimulated. It is noteworthy
in leukemia cells that the upstream regulation of cytokines by PPARβ/δ is related to high cholesterol
levels and malignancy (Figure 1C).

Under certain circumstances, the transcriptional activity of PPARs is aimed at suppressing specific
tumor metabolic pathways. PPARα can inhibit lipid and cholesterol synthesis in concert with FAO
induction. Glycolysis is obstructed by the PPARα-dependent destruction of the hexokinase II/VDAC
complex, leading to metabolic switch and high OXPHOS levels, as demonstrated in oral cancer cells
(Figure 2A) [127,128]. Unlike PPARα, in some tissues, the hypoxia inducible factor downregulates
PPARγ, leading to the loss of its tumor suppression activity. In normoxic conditions, PPARγ represses
the expression of the gene related to glycolysis (Wnt/β-catenin, c-Myc), glutamine anaplerosis,
chemoresistance, and antioxidant defenses. Conversely, PPARγ transcriptional activity encourages
the expression of genes involved in tumor differentiation, TCA cycle, and FAO, which are all in
agreement with the PKM1/PKM2 ratio increase (Figure 2B). Among the scant evidence supporting
the oncosuppressive role of PPARβ/δ, its ability to decrease FAO and disrupt tumor proliferation in
prostate cancer cells is accepted, but only in absence of its ligands (Figure 2C).

Overall, this review highlights the central role of PPARs in tumor metabolic decisions, which are
in turn affected by the genetic signature of tumor cells and the specific tumor microenvironment. In this
regard, epigenetic events could play a key role in the regulation of PPAR activities in tumor metabolic
response, while the possible relationship between the three PPARs isotypes in tumor metabolism
should be taken in consideration, as already described in the pathogenesis of neurodegenerative
diseases [196]. However, in order to fully understand the exact role of PPARs in cancer metabolism,
studying the epigenetic effects related to PPARs and the relationship between the three isotypes could
be interesting, in order to efficiently target the complex machinery that achieves the energy demands
of cancer cells.
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