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Abstract: Hepatic stellate cell (HSC) activation is responsible for hepatic fibrogenesis and is associated
with an overexpression of transcription 3 (STAT3). Luteolin, a common dietary flavonoid with potent
anti-inflammatory properties, has previously demonstrated antifibrogenic properties in HSCs but the
mechanism has not been fully elucidated. Activated human and rat hepatic stellate cell lines LX-2
and HSC-T6 were used to study the effects of luteolin on HSCs. Cellular proteins were determined
by western blot and immunofluorescence. Cell proliferation was assessed with Alamar Blue assay.
Luteolin significantly decreased LX-2 and HSC-T6 cell viability in a time-and-dose-dependent manner,
as well as decreased HSC end-products a-smooth muscle actin (x-SMA), collagen I, and fibronectin.
Luteolin decreased levels of total and phosphorylated STAT3, suppressed STAT3 nuclear translocation
and transcriptional activity, and attenuated expression of STAT3-regulated proteins c-myc and cyclin
D1. STAT3 specific inhibitors stattic and SH-4-54 demonstrated similar effects on HSC viability and
a-SMA production. In LX-2 and HSC-T6 cells, luteolin demonstrates a potent ability to inhibit hepatic
fibrogenesis via suppression of the STAT3 pathway. These results further elucidate the mechanism of
luteolin as well as the effect of the STAT3 pathway on HSC activation.
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1. Introduction

Hepatic fibrosis is a wound-healing response that is the result of hepatic stellate cell (HSC)
activation and subsequent excess extracellular matrix (ECM) deposition. The ECM is a hydrated gel
with several components, including up to 30% collagens, as well as elastins, fibronectins, laminins, and
proteoglycans [1]. In the quiescent state, HSCs participate in ECM homeostasis, vasoregulation, and
metabolic homeostasis [2]. HSC activation leads to cell proliferation and over-expression of x-smooth
muscle actin («-SMA), collagens I and III, and over-expression of multiple cytokines [3-7]. HSCs are
activated by a variety of stimuli, including transforming growth factor 81 (TGF-88), nuclear factor kappa
light-chain enhancer of activated B cells (NF-kB), lipopolysaccharide (LPS), and tissue hypoxia [8].

The signal transducer and activator of transcription 3 (STAT3) is a transcription factor that
is responsible for regulation of cell growth and survival. STAT3 is associated with liver injury,
inflammation, and regeneration [9,10]. Activation of STAT3 in HSCs can help promote HSC survival,
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proliferation, and activation, thus promoting the formation of hepatic fibrosis [11-13]. Multiple studies have
demonstrated that apoptosis of activated HSCs results in accelerated recovery from liver fibrosis [14]
and work from our lab has confirmed that inhibition of STAT3 results in HSC apoptosis [15].

Luteolin is one of the most common flavonoids present in edible plants that have been used in
traditional medicine to treat a wide variety of pathologies [16]. It is present in many vegetables, fruits,
and medicinal herbs, including celery, pepper, cucumber, artichoke, capers, pomegranate, peppermint,
thyme, oregano, and rooibos teas [16]. Typical daily intake of luteolin in the US is 20-22 mg and a
Chinese population demonstrated plasma concentrations of 101 = 99 nmol/L [17,18]. Luteolin has
been shown to have antifibrogenic effects in activated HSCs, though the mechanism has not been
fully elucidated [16,19]. Luteolin is also known to have strong antioxidant, radical scavenging, and
anti-inflammatory properties [16]. Pilot clinical trials have been conducted both with natural medicines
containing luteolin and concentrated luteolin extract and no significant adverse effects have been
noted [20,21]. Luteolin has been shown to alleviate alcohol-induced hepatic steatosis in mice and to
inhibit cytochrome P450 (CYP) enzymes [22,23]. Additionally, multiple studies have demonstrated
that luteolin inhibits the STAT3 pathway in a variety of cell types, including pancreatic cancer cells,
lung adenocarcinoma cells, gastric cancer cells, and breast cancer cells [24-29].

Taking these lines of evidence together, we hypothesized that luteolin would inhibit hepatic
fibrogenesis via STAT3 inhibition.

2. Results

2.1. Lutelin Inhibits LX-2 and HSC-T6 Cell Proliferation

We assessed HSC viability after luteolin administration using Alamar Blue assay. Luteolin inhibits
LX-2 cell viability in a dose-dependent manner with a half-maximal inhibitory concentration (ICsg) of
20.22 uM. LX-2 cell viability was significantly decreased at concentrations greater than 5 uM (p < 0.001)
(Figure 1a). Luteolin inhibits HSC-T6 cell viability in a dose-dependent manner with an ICsy of 15.95
uM. HSC-T6 cell viability was significantly decreased at concentrations greater than 5 uM (p < 0.01)
(Figure 1a). Luteolin also significantly inhibited LX-2 and HSC-T6 cell viability in a time-dependent
manner. Treatment with Luteolin significantly inhibited LX-2 cell viability at 48 and 72 h (p < 0.001).
HSC-T6 cell viability was significantly inhibited by luteolin at 24, 48, and 72 h (p < 0.001) (Figure 1a).

We also examined the effects of luteolin on the cell cycle and found that luteolin induces cell cycle
arrest in LX-2 cells. As indicated in Figure 1b, Luteolin significantly increased the number of cells in the
G1 and S phases compared to control (p < 0.01 and p < 0.05, respectively). Luteolin also down-regulates
cell cycle regulation proteins in a dose-dependent manner. Cell cycle regulators cyclin-dependent
kinase 9 (CDK9) and cyclin Bl, as well as DNA replication licensing factor minichromosome
maintenance protein 2 (MCM?2), are all noticeably reduced in a dose-dependent manner in LX-2
cells after administration of luteolin (Figure 1c). STAT3-regulated cell cycle proteins c-myc and cyclin
D1 were also markedly decreased, as presented in a future figure.
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Figure 1. Luteolin inhibits LX-2 and HSC-T6 cell proliferation. (a) LX-2 and HSC-6 cell viability after
treatment with a series of concentrations of luteolin for 48 h (left panel). LX-2 (middle panel) and
HSC-T6 (right panel) cell viability after treatment with vehicle or 40 uM of luteolin for 24, 48, or
72 h; (b) Percent of cells in G1 and S phase after treatment with vehicle or 40 uM of luteolin for 24 h;
(c) Western blots with LX-2 whole cell lysate after incubation with vehicle or 40 uM of luteolin for 24 h
for cell cycle regulatory proteins cyclin-dependent kinase 9 (CDKD9), cyclin Bl and minichromosome
maintenance protein 2 (MCM2). p-Values shown compared to vehicle. The results are representative of
at least 3 independent experiments. All summary bar and line graphs are presented as mean + SEM,
with significance denoted as follows *: p < 0.05, **: p < 0.01, ***: p < 0.001.

2.2. Luteolin Induces HSC Apoptosis and Attenuates a-SMA Expression

To detect apoptosis in LX-2 and HSC-T6 cells, we used fluorescence staining for early apoptotic

marker Yo-Pro-1 and late apoptotic marker propidium iodide (PI). Treatment with 40 pM of luteolin
demonstrated markedly increased early and late apoptosis in both LX-2 and HSC-T6 cell lines
(Figure 2a). We also studied a-smooth muscle actin (x-SMA) levels, which is a surrogate marker
for HSC activation. Immunofluorescence staining for «-SMA in LX-2 cells demonstrated a marked
attenuation of x-SMA levels after treatment with 40 pM of luteolin (Figure 2b). This result was
confirmed with western blot, which demonstrated a time-and-dose-dependent attenuation of a-SMA
expression in LX-2 cells after treatment with luteolin at varying concentrations and time points

(Figure 2c).
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Figure 2. Luteolin induces hepatic stellate cell (HSC) apoptosis and attenuates x-smooth muscle actin
(x-SMA) expression. (a) Fluorescence staining for Yo-Pro-1 and PI after treatment with vehicle or 40 uM
of luteolin for 24 h in both LX-2 and HSC-T6 cells; (b) Immunofluorescence staining for x-SMA after
treatment with vehicle or 40 uM of luteolin for 24 h in LX-2 cells; (c¢) Western blot with LX-2 whole
cell lysate after incubation for 24 or 48 h with vehicle or varying concentrations of luteolin for a-SMA.
The results are representative of at least 3 independent experiments.

2.3. Luteolin Suppresses the STAT3 Pathway

To examine the role of the STAT3 pathway after luteolin administration, we looked at total and
phosphorylated levels of STAT3. Luteolin markedly decreased phosphorylated STAT3 (Tyr705) levels in
a dose-dependent manner. Luteolin also markedly decreased total STAT3 in a dose-dependent manner
(Figure 3a). Immunofluorescence for phosphorylated STAT3 (Tyr705) confirmed that levels of STAT3
were noticeably reduced after treatment with 40 uM of luteolin (Figure 3b). Nuclear phosphorylated
STATS3 levels significantly decreased after administration of 40 uM of luteolin (p < 0.05) (Figure 3c).

We performed luciferase assay to examine STAT3 transcriptional activity. Significantly lower
STATS3 transcriptional activity was demonstrated after treatment with 40 uM of luteolin (p < 0.05)
(Figure 3d).

Finally, we examined STAT3 activation-regulated proteins cyclin D1 and c-myc. Luteolin markedly
decreased cyclin D1 and c-myc in a dose-dependent manner (Figure 3e).
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Figure 3. Luteolin suppresses the transcription 3 (STAT3) pathway. (a) Western blot with LX-2
(left panel) or HSC-T6 (right panel) whole cell lysate after incubation with varying concentrations of
luteolin for 24 h for phosphorylated STAT3 (Tyr705) or total STAT3; (b) Immunofluorescence staining
for phosphorylated STAT3 (Tyr705) after treatment with vehicle or 40 uM of luteolin for 24 h in LX-2
cells; (c) Western blot with LX-2 nuclear fraction after incubation with vehicle or 40 uM of luteolin for
24 h for phosphorylated STAT3 (Tyr705) or total STAT3; (d) Luciferase assay for LX-2 cells transfected
with STAT3/Cignal Reporter to measure STAT3 transcriptional activity; (e) Western blots with LX-2
whole cell lysate after incubation with varying concentrations of luteolin for 24 h for STAT3 regulated
proteins cyclin D1 and c-myec. p-Values shown compared to vehicle. The results are representative of
at least 3 independent experiments. All summary bar and line graphs are presented as mean + SEM,
with significance denoted as follow *: p < 0.05.

2.4. STAT3 Specific Inhibitors Suppress HSC Activation

We used STATS3 specific inhibitors stattic and SH-4-54 to confirm that inhibition of STAT3 leads
to decreased cell viability, similar to luteolin administration. Stattic inhibited LX-2 cell viability in
a dose-dependent manner with an ICsy of 1.38 uM. LX-2 cell viability was significantly decreased
at stattic concentrations greater than 0.125 uM (p < 0.01). Stattic inhibited HSC-T6 cell viability in a
dose-dependent manner with an ICsy of 0.54 uM. HSC-T6 cell viability was significantly decreased at
stattic concentrations greater than 0.25 uM (p < 0.001) (Figure 4a). A second STAT3 specific inhibitor,
SH-4-54, inhibited LX-2 cell viability in a dose-dependent manner with an ICsy of 0.37 uM. LX-2
cell viability was significantly decreased at SH-4-54 concentrations greater than 0.3 uM (p < 0.001).
SH-4-54 inhibited HSC-T6 cell viability in a dose-dependent manner with an ICsq of 0.46 uM. HSC-T6
cell viability was significantly decreased at SH-4-54 concentrations greater than 0.3 uM (p < 0.01)
(Figure 4b).

STATS3 specific inhibitors stattic and SH-4-54 also significantly attenuated a surrogate marker of
activation a-SMA, similar to luteolin. Treatment with 1.5 uM of stattic or treatment with 0.5 uM of
SH-4-54 resulted in significantly reduced levels of «-SMA (p < 0.01 for both) (Figure 4c).
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Figure 4. STAT3 specific inhibitors suppress HSC activation. (a) LX-2 and HSC-T6 cell viability after
treatment with varying concentrations of STAT3 specific inhibitor stattic for 48 h; (b) LX-2 and HSC-T6
cell viability after treatment with varying concentrations of STAT3 specific inhibitor SH-4-54 for 48 h;
(c) Western blot with LX-2 whole cell lysate after incubation with vehicle, 1.5 uM of stattic, or 0.5 uM of
SH-4-54 for 72 h for x-SMA. Densitometric analyses of bands were quantified and data expressed as
fold of control normalized to Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). P-values shown
compared to vehicle. The results are representative of at least 3 independent experiments. All summary
bar and line graphs are presented as mean + SEM, with significance denoted as follows **: p < 0.01,
#**: p < 0.001.

2.5. Luteolin Inhibits Endogenous and TGF-f§ Induced ECM Proteins

Finally, we examined the effects of luteolin on endogenous and TGF-f3 induced levels of key ECM
components collagen I and fibronectin. Luteolin attenuated endogenous collagen I and fibronectin
in a dose-and-time-dependent fashion (Figure 5a). Immunofluorescence staining for collagen I
demonstrated marked attenuation after administration of 40 pM of luteolin (Figure 5b). We examined
the effects of luteolin after administration of TGF-3, one of the most potent and well-described
activators of HSCs. Luteolin administration significantly decreased TGF-5 induced levels of fibronectin
(p < 0.01) and markedly reduced TGF-8 induced levels of collagen I (Figure 5c).
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Figure 5. Luteolin inhibits endogenous and transforming growth factor 81(TGF-8) induced excess
extracellular matrix (ECM) proteins. (a) Western blot with LX-2 (top panel) whole cell lysate after
incubation with vehicle or 40 uM of luteolin for fibronectin and collagen I. HSC-T6 (bottom panels)
whole cell lysate after incubation for the indicated number of hours with varying concentrations of
luteolin for fibronectin and collagen I; (b) Inmunofluorescence staining for collagen I after treatment
with vehicle or 40 uM of luteolin for 24 h in LX-2 cells; (c) Western blot with LX-2 whole cell lysate
after incubation with vehicle, 2 ng/mL of TGF-8, or both 2 ng/mL of TGF-88 and 40 uM of luteolin for
fibronectin and collagen I. Densitometric analyses of bands were quantified and data expressed as fold
of control normalized to GAPDH. P-values shown compared to vehicle. The results are representative
of at least 3 independent experiments. All summary bar and line graphs are presented as mean + SEM,
with significance denoted as follow ***: p < 0.001.

3. Discussion

Our results demonstrate that luteolin is an effective potential antifibrogenic agent in LX-2 and
HSC-T6 cells and its effects are mediated via suppression of the STAT3 pathway. Luteolin significantly
decreases cell viability and induces apoptosis and cell cycle arrest in these cell lines. Luteolin also
decreases ECM components collagen I, x-SMA, and fibronectin. In addition, we demonstrated that
the STAT3 pathway is impaired by luteolin, suggesting a possible mechanism for its antifibrogenic
properties. Use of a selective STAT3 inhibitor confirms that STAT3 pathway inhibition results in the
same antifibrogenic effects in HSC as those seen with luteolin.

Luteolin significantly decreased HSC cell viability in a dose-and-time dependent manner.
In addition, Yo-Pro-1 and PI staining demonstrated a marked increase in early and late apoptosis in
luteolin-treated HSCs. Multiple studies have demonstrated that apoptosis of HSCs has resulted in
accelerated recovery from liver fibrosis [14]. Hepatic fibrosis is a slow, chronic process that typically
evolves over decades and can ultimately lead to hepatic cirrhosis [30]. While traditional treatments
have focused on reducing exposure to the etiological agents, more recent research has been focused
on identifying agents which can prevent progression or induce regression of hepatic fibrosis [31].
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Luteolin’s potent antifibrogenic properties indicate that it could be an effective potential antifibrogenic
agent after further study.

Luteolin also induces cell cycle arrest in HSCs. Administration of luteolin significantly increases
the percentage of cells in G1 or S phase, as well as downregulates cell cycle regulatory proteins CDKY,
cyclin B1, MCM2, cyclin D1, and c-myc. The mechanism of this cell cycle arrest could be related to
STAT3 pathway inhibition. When STAT3 is phosphorylated, it forms dimers and moves from the
cytoplasm to the nucleus and stimulates transcription of STAT3 target genes, including cyclin D1 and
c-myc [32]. The cell cycle has 5 distinct phases: GO (quiescence), G1 (growth), S (synthesis), G2 (gap),
and M (mitosis). The G1 checkpoint is vital to ensure that everything is ready for DNA synthesis and
once it is crossed, the cell cycle will continue until completed. This checkpoint is regulated by the
coordinated action of cell cycle regulatory proteins (CDKs) in association with their specific regulatory
cyclin proteins [33]. Synthesis of cyclin D1 is stimulated in the early G1 phase and activates and binds
G1 specific CDK proteins [33]. Downregulation of cyclin D1 is associated with G1 phase arrest [33].
Similarly, downregulation of c-myc, a regulator gene which codes for a DNA transcription factor via
suppression of the STAT3 pathway, could be contributing both to the luteolin-induced apoptosis seen
in HSCs as well as the cell cycle arrest.

Treatment with luteolin results in a dose-and-time dependent attenuation of x-SMA, collagen I,
and fibronectin, which are all key ECM proteins expressed by activated HSCs [3-7]. «-SMA in
particular is a surrogate marker of HSC activation. Attenuation of these key proteins confirms the
antifibrogenic properties of luteolin in an in vitro model. Our results also demonstrate that luteolin
inhibits both endogenous and TGF-£ induced expression of ECM proteins. It is well known that TGF-f3
is the most potent fibrogenic factor responsible for HSC activation. Luteolin inhibits both endogenous
and TGF-£8 induced expression of ECM proteins, providing stronger evidence of the antifibrogenic
properties of luteolin.

Our results demonstrate that STAT3 inhibition in LX-2 and HSC-T6 cells results in antifibrogenic
effects. This is consistent with other studies that have demonstrated that the STAT3 pathway is
an important player in HSC activation and that STAT3 represents a potential therapeutic target for
antifibrogenic therapy [13,34,35]. We demonstrated that luteolin resulted in downregulation of the
STAT3 pathway. In addition to the originally described activation by phosphorylation of the tyrosine
705 residue of STATS3, it has also been demonstrated that dimers of non-phosphorylated STAT3 can
exist and be active and phosphorylation of STAT3 (Tyr705), STAT3 (Ser727), or both can produce
transcriptional activity [36-38]. We have demonstrated that luteolin inhibits STAT3 phosphorylation,
prevents STAT3 nuclear translocation, decreases STAT3 transcriptional activity, and downregulates
STAT3-regulated genes. This evidence chain supports the conclusion that activation of the STAT3
pathway promotes fibrogenic behavior in HSCs.

Our results also demonstrate that the administration of STAT3 specific inhibitors, stattic and
SH-4-54, significantly decrease HSC viability and significantly attenuate expression of a-SMA. Stattic
is a nonpeptidic small molecule that has been shown to selectively inhibit the function of the STAT3
SH2 domain, thereby selectively inhibiting activation, dimerization and nuclear translocation of
STAT3 [39]. SH-4-54 is a small molecule which also binds to the SH2 domain of STAT3, and inhibits
STAT3 phosphorylation [40]. These results further confirm that the inhibition of the STAT3 pathway
has a potent antifibrogenic effect.

The overexpression of STAT3 in hepatic fibrosis may have model-dependent and cell-specific
functions [41,42]. Murine models involving carbon tetrachloride induced fibrosis have demonstrated
that STAT3 activation prevents hepatic fibrosis, while activation of STAT3 in the dimethylnitrosamine
induced fibrosis model promotes fibrosis [42-45]. It is likely that the role of STAT3 in HSCs depends on
the inflammatory context. IL-22, an anti-inflammatory cytokine, induces cellular senescence in HSCs
via activation of the STAT3 pathway [46]. However, pro-inflammatory cytokines, such as IL-6 and
leptin activate STAT3 in HSCs and can result in fibrogenic behavior [9,13,34,35]. Hepatic injury, by a
variety of etiologies, is the typical inciting factor for the development of hepatic fibrosis and cirrhosis.
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After injury, HSCs are exposed to a pro-inflammatory microenvironment [47—49]. This indicates that
inhibition of the STAT3 pathway under these pro-inflammatory conditions will combat hepatic fibrosis,
which is consistent with our results.

4. Materials and Methods

4.1. Reagents

Cell culture mediums and trypsin were purchased from Life Technology Corp. (Carlsbad, CA,
USA). Luteolin was purchased from Sigma-Aldrich (Cat#L92835t. Louis, MO, USA). TGF-£81 was
purchased from R&D Systems (Cat#240-B, Minneapolis, MN, USA). Stattic was purchased from
Sigma-Aldrich (Cat#57947). SH-4-54 was purchased from Millipore Sigma (Cat#509105, Burlington,
MA, USA).

4.2. Cell Culture

The human immortalized HSC line LX-2 and rat immortalized HSC line HSC-T6 were a gift
from Dr. Scott Friedman (Mount Sinai Medical Center, NY, USA) and cultured at 37 °C with 5%
CO; in Dulbecco’s modified Eagle’s medium (DMEM) with a high glucose concentration (4.5 g/L)
supplemented with 5% fetal bovine serum (FBS) and 1% penicillin/streptomycin. All experiments
were performed on cells within 6 weeks of culture from liquid nitrogen. Human and rat cell lines were
used to ensure that these effects were not limited to a single cell line.

4.3. Cell Viability Assay

Cell viability was assessed using Alamar Blue Cell Viability Reagent (Cat#DAL1025) purchased
from Life Technologies (Grand Island, NY, USA) and by following the manufacturer’s instructions.
Fluorescence intensity was monitored using a SpectraMax M5 microplate reader from Molecular
Devices, LLC (Sunnyvale, CA, USA) with excitation and emission wavelengths set at 544 and 590 nm,
respectively. Assay was performed in triplicate and repeated at least 3 times.

4.4. Detection of Apoptosis

For the detection of apoptosis by Yo-Pro-1 (Cat#Y3603, Molecular Probes, Eugene, OR, USA) and
propidium iodide (PI) (Cat#P3566, Life Technologies Corporation), cells were seeded in 24-well plates
with 0.25 x 10° cells/well. The next day, cells were treated with 40 uM of luteolin for 24 h. After being
washed with phosphate buffered saline (PBS), cells were incubated with 1 uM of Yo-Pro-1 or PIfor 1 h.
Yo-Pro-1 and PI uptake were determined by confocal microscope (Nikon Instruments Inc., Melville,
NY, USA)

4.5. Immunofluorescence Staining

Immunofluorescence staining was performed as previously described [15] with o-SMA (Cat#A5228,
Sigma-Aldrich), phosphorylated STAT3 (Tyr705) (Cat#9145, Cell Signaling, Danvers, MA, USA)
antibodies. After the indicated treatments and staining, the cells were visualized by Nikon Eclipse Ti
confocal microscope at 20 x magnification (Nikon Instruments Inc.).

4.6. Luciferase Assay

STATS3 transcriptional activity was determined by luciferase assay using STAT3/Cignal Reporter
assay kit (Cat#CCS-9028L) purchased from Qiagen (Hilden, Germany) by following the manufacturer’s
instructions. Assay was repeated three times.
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4.7. Western Immunoblotting

Whole cell extracts were prepared using radioimmunoprecipitation assay buffer (RIPA buffer)
(Thermo Fischer Scientific, Inc., Waltham, MA, USA) with 1% Halt protease inhibitor cocktail and
1% Halt phosphatase inhibitor cocktails (Thermo Fischer Scientific, Inc.). Nuclear protein was
isolated as previously described [50]. The protein concentration was measured and quantified by the
Bradford method. 10-30 g of protein were fractionated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) (Life technologies Corporation) under denaturing conditions and then
electro-transferred to a polyvinylidene fluoride (PVDF) membrane. After being blocked with blocking
buffer (LI-COR, Inc., Lincoln, NE, USA) the membrane was probed with the indicated primary antibody
diluted with blocking buffer. Membranes were washed 3 times with phosphate buffered saline with
0.1% Tween 20 (PBST), and incubated 1 h with infrared fluorescent dye (IRDye) 680-conjugated
anti-mouse or IRDye 800-conjugated anti-rabbit Ab (LI-COR, Inc.). Finally, the membranes were
washed three times with PBST, and signals were scanned and visualized by Odyssey Infrared Imaging
System (LI-COR, Inc.). Antibodies used included cyclin dependent kinase 9 (CDK9) (Cat#2316), cyclin
B1 (Cat#4138), phosphorylated STAT3 Tyr705 (Cat#9145), and STAT3 (Cat#4904) purchased from Cell
Signaling. Antibodies for Minichromosome maintenance protein 2 (MCM2) (Cat#9839) and fibronectin
(Cat#6952) were purchased from Santa Cruz Inc. (Santa Cruz, CA, USA). Antibodies for cyclin D1
(Cat#2261-1) and c-myc (Cat#1472-1) were purchased from Epitomics (Burlingame, CA, USA). x-SMA
(Cat#A5228) antibodies were purchased from Sigma-Aldrich (St. Louis, MO, USA) and collagen I
(Cat #600-401-103) antibodies were purchased from Rockland (Pottstown, PA, USA). All blots were
repeated at least 3 times.

4.8. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 7.0 from GraphPad Software Inc.
(La Jolla, CA, USA). Where indicated, one-way ANOVA with Sidak’s multiple comparisons test or
t-test were used. All summary bar and line graphs are presented as mean 4 SEM, with significance
denoted as follows *: p < 0.05, **: p < 0.01, ***: p < 0.001.

5. Conclusions

In activated human and rat HSCs, luteolin has demonstrated a significant ability to potentially
inhibit hepatic fibrosis. These effects are mediated by suppression of the STAT3 pathway, further
elucidating the mechanism of luteolin, as well the effect of the STAT3 pathway on HSC activation.
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HSC Hepatic stellate cell

ECM Extracellular matrix

TGF-8 Transforming growth factor £1

STAT3 Signal transducer and activator of transcription 3
(@) Half maximal inhibitory concentration

CDK9 Cyclin dependent kinase 9

MCM2 Minichromosome maintenance protein 2

PI Propidium iodide
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