

Article

Molecular Modeling Studies on Carbazole Carboxamide Based BTK Inhibitors Using Docking and Structure-Based 3D-QSAR

Rui Li 1, Yongli Du 1,*, Zhipei Gao 1 and Jingkang Shen 2

- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Jinan 250353, China; 18364173762@163.com (R.L.); gaomills@163.com (Z.G.)
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; jkshen@simm.ac.cn
- * Correspondence: ylduyjs@163.com; Tel.: +86-0531-8963-1208; Fax: +86-0531-8963-1207

Received: 19 March 2018; Accepted: 9 April 2018; Published: 19 April 2018

Abstract: Rheumatoid arthritis (RA) is the second common rheumatic immune disease with chronic, invasive inflammatory characteristics. Non-steroidal anti-inflammatory drugs (NSAIDs), slow-acting anti-rheumatic drugs (SAARDs), or glucocorticoid drugs can improve RA patients' symptoms, but fail to cure. Broton's tyrosine kinase (BTK) inhibitors have been proven to be an efficacious target against autoimmune indications and B-cell malignancies. Among the current 11 clinical drugs, only BMS-986142, classified as a carbazole derivative, is used for treating RA. To design novel and highly potent carbazole inhibitors, molecular docking and three dimensional quantitative structure–activity relationship (3D-QSAR) were applied to explore a dataset of 132 new carbazole carboxamide derivatives. The established comparative molecular field analysis (CoMFA) ($q^2 = 0.761$, $r^2 = 0.933$) and comparative molecular similarity indices analysis (CoMSIA) ($q^2 = 0.891$, $r^2 = 0.988$) models obtained high predictive and satisfactory values. CoMFA/CoMSIA contour maps demonstrated that bulky substitutions and hydrogen-bond donors were preferred at R₁ and 1-position, respectively, and introducing hydrophilic substitutions at R₁ and R₄ was important for improving BTK inhibitory activities. These results will contribute to the design of novel and highly potent BTK inhibitors.

Keywords: rheumatoid arthritis (RA); Broton's tyrosine kinase (BTK); carbazole carboxamide derivatives; 3D-QSAR; comparative molecular field analysis (CoMFA); comparative molecular similarity indices analysis (CoMSIA)

1. Introduction

Rheumatoid arthritis (RA) is an autoimmune destructive disease by affecting the joints, causing progressive, symmetric, erosive destruction of cartilage and bone [1]. RA has affected about 24.5 million people as of 2015, and the condition newly develops in approximately 1% of the population each year [2]. Two main classes of traditional medications were used for treatment of RA: first-line drugs (involved non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids) and second-line drugs (also referred to as disease-modifying anti rheumatic drugs or disease-modifying anti rheumatic drugs (DMARDs)) [3]. However, these two classes of medicine possess some serious side effects, such as increased susceptibility to bruising, abdominal pain, and even risk of infections and bleeding [4]. Therefore, it is increasingly crucial to develop novel drugs with improved efficacy and safety in RA treatment.

Broton's tyrosine kinase (BTK) is a member of the Tyrosine-protein kinase (TEC) kinase family and plays a critical role in the B-cell development and activation through mediating the downstream signaling cascade of B-cell receptors (BCRs) [5,6]. The increase in BTK expression can cause the chronic

Int. J. Mol. Sci. 2018, 19, 1244 2 of 24

activation of the BCR signaling pathway, which affects B-cell proliferation and differentiation [7]. As a result, it can cause a lack of antibodies in the body, which finally gives rise to RA and other inflammatory diseases [8]. Therefore, inhibiting BTK activities to keep the normal function of the BCR signaling pathway is an effective way to treat RA. Recently, BTK inhibitors have been of increased interest in the clinical study of B-cell tumors and immune disease. Ibrutinib [8,9], acalabrutinib [10], ONO-4059 [11], spebtutinib [12], HM71224 [13], and BMS-986142 [14] have advanced into clinical trials, and their reported chemical structures are shown in Figure 1. As candidate drugs for treating RA, only BMS-986142 has advanced into Clinical Phase I with improved oral exposure, kinase selectivity, and high BTK potency [15]. Compared with NSAIDs and DMARDs, BMS-986142 has advantages of increased safety and efficacy as well as the less dependence on medication [16]. Therefore, exploring novel and highly potent BTK inhibitors for RA treatment is an important and promising prospect.

Here we report on molecular modeling studies performed by comparative molecular field analysis (CoMFA) [17] and comparative molecular similarity indices analysis (CoMSIA) [18] modules, as well as docking results, to investigate the three-dimensional quantitative structure–activity relationship (3D-QSAR) between carbazole inhibitors (BMS-986142 analogues) and BTK.

Figure 1. The chemical structures of several Broton's tyrosine kinase (BTK) inhibitors that have entered into clinical trials.

2. Results and Discussion

2.1. Molecular Docking

The aim of the molecular docking was to predict the binding affinity and interactions of carbazoles known to modulate the activity of BTK. The accuracy of the docking program was confirmed by comparing the predicted compound (76, green) and ligand (red) extracted from the crystal structure of BTK (Protein Data Bank ID: 5JRS). The result, revealing excellent agreement, is shown in Figure 2A and confirms that the selected experimental parameters and procedures used for molecular docking and alignment were reasonable. As depicted in Figure 2A, the common carbazole rings of 76 and 79 as

Int. J. Mol. Sci. 2018, 19, 1244 3 of 24

well as experimental ligand were in the same position and mainly interacted with residues Glu475, Tyr476, and Met477.

Figure 2. (**A**) The binding pose prediction of **76** (green) compared to ligand (red) found in an X-ray crystal structure; the position of **79** (yellow) in the active site of the protein and the binding pocket of BTK enzyme. (**B**) Docking-based alignment of dataset molecules. Hydrogen bonds are represented as yellow dotted lines, and main protein residues are labeled with ball and stick forms. Section A: hinge region; Sections B and C: hydrophobic pocket; Section D: floor loop.

To explain the binding mode, **79** (IC₅₀ = 0.22 nM) was selected for more detailed analysis, since it was the most representative inhibitor in the active site of the protein. Based on Figure 2A, the carbazole ring of **79** interacted with -C = O and N-H of Met 477 and -C = O of Gly475 by hydrogen bonds in

Int. J. Mol. Sci. 2018, 19, 1244 4 of 24

the hinge region, and interacted with the benzene ring of Tyr 466 by a conjugate effect; among them, Gly475 and Met477 [19] are two significant gatekeeper residues in BTK enzyme. The hydroxyl group at R_4 also had a hydrogen-bond interaction with Ala478. Chlorine atom at R_6 formed a hydrophobic interaction with Glu407 and Asp539. The benzene ring's ortho-groups at R_1 also interacted with Cys527 and Leu528 through a hydrophobic effect. At the bottom of the pocket, a substituent at the meta-position of the benzene ring was well filled in a floor loop formed by Asn484, Leu483, and Arg525. All these action characteristics proved that **79** was the most active molecule in the dataset.

As shown in Figure 2B, the selected 132 molecules demonstrate similar features after they are aligned on the common substructure and interact with Gly475 and Met477 through hydrogen-bond actions. The activities factors are groups at R_4 trending toward different directions and groups at R_6 forming hydrophobic interactions with different residues. Substituents at R_1 occupied in sites of the floor loop area are also different. These diverse elements resulted in the selected 132 molecules used to perform molecular modeling studies possessing multiple IC_{50} values.

2.2. 3D-QSAR Analysis Studies

The aligned dataset was subjected to establish 3D-QSAR modeling using partial least squares (PLS) statistics with different field contribution values. In order to select the best field combination model and avoid the over-fitting problem, the stability statistics including cross-validated correlation coefficient (q^2), non-cross-validated correlation coefficient (r^2), a standard error of estimate (SEE), an optimum number of components (NOC), and F statistical values were taken into consideration. As a rule of thumb, q^2 and r^2 should have higher values, while SEE should have smaller error values. Therefore, reasonable CoMFA ($q^2 = 0.761$, NOC = 6, $r^2 = 0.933$) and CoMSIA ($q^2 = 0.891$, NOC = 9, $r^2 = 0.988$) models were developed for the selected training set and the test set. The detailed statistical summary of the CoMFA and CoMSIA analysis are shown in Table 1.

Table 1. Detailed statistical summary of the comparative molecular field analysis (CoMFA) and	L
comparative molecular similarity indices analysis (CoMSIA) models.	

CoMFA	NOC	NOC q ²	r ²	r ² SEE	F Value	Field Contributions				
COMITA	NOC		r-	SEE		S	Е	Н	D	A
S+E	6	0.761	0.933	0.202	291.45	0.46	0.54	-	-	-
CoMSIA	NOC	q^2	r ²	SEE	F Value		Field	l Contribu	tions	
COMSIA	NOC	Ч	r-	SEE	r value =	S	Е	Н	D	Α
S+E	5	0.851	0.941	0.188	404.01	0.198	0.802	-	-	-
S+E+H	7	0.862	0.972	0.132	606.51	0.110	0.554	0.336	-	-
S+E+D	4	0.863	0.930	0.205	420.26	0.117	0.515	-	0.367	-
S+E+A	7	0.863	0.974	0.127	657.51	0.122	0.535	-	-	0.342
S+E+H+D	9	0.875	0.985	0.095	920.97	0.069	0.424	0.235	0.272	-
S+E+H+A	9	0.880	0.986	0.095	923.65	0.073	0.411	0.254	-	0.262
S+E+D+A	10	0.878	0.985	0.092	1031.44	0.078	0.400	-	0.270	0.253
S+E+H+D+	A 9	0.891	0.988	0.088	1076.36	0.053	0.342	0.193	0.208	0.203

 q^2 : cross-validated correlation coefficient; NOC: optimum number of components; r^2 : non cross-validated correlation coefficient; SEE: standard error of estimation; F value: F-test value. S = steric; E = electrostatic; H = hydrophobic; A = acceptor; D = donor. Final chosen model for CoMSIA analysis is indicated in bold font.

A reasonable CoMFA model was established on the basis of satisfactory statistical values including q^2 , r^2 , and SEE values (0.761, 0.933, and 0.202, respectively). When steric, electrostatic, hydrophobic, and H-bond acceptor and donor fields were all employed in the CoMSIA model, q^2 , r^2 , and SEE values also acquired good results (0.891, 0.988, and 0.088, respectively), which confirmed that the CoMSIA model was reliable and reasonable.

Int. J. Mol. Sci. 2018, 19, 1244 5 of 24

2.3. Contour Map Analysis

Contour maps for CoMFA and CoMSIA were generated to visualize the information in 3D-QSAR models. The maps of the 3D-QSAR models based on PLS analysis provided a comprehensive understanding of the key structural requirements responsible for the biological activity and are depicted in the following.

2.3.1. CoMFA Contour Map Analysis

CoMFA contour maps are vividly displayed in different color areas and illustrate whether the substituted groups are reasonable. Steric contour maps and electrostatic contour maps are shown in Figure 3A,B compared with 79.

Figure 3. CoMFA StDev*Coeff contour maps. **(A)** Steric contour map (green: favored; yellow: disfavored). **(B)** Electrostatic contour map (blue: favored; red: disfavored). Compound **79** is shown as a capped sticks model.

In the CoMFA steric contour map (Figure 3A), green represents favored bulky groups and yellow represents the opposite. Green contour maps appeared at 9H of carbazole and R_1 , indicating that more bulky groups in these regions could improve activity. This possibly explained that inhibitory activity of 53 (IC₅₀ = 18 nM), 54 (IC₅₀ = 18 nM), and 55 (IC₅₀ = 17 nM) with a methyl at the benzene ring of R_1 was twentyfold more potent compared with 127 (IC₅₀ = 390 nM) with a hydrogen atom at this position. Besides, a yellow contour at R_3 suggests that adding a bulky substitution in this region can decrease inhibitory activity, which may explain why the activities of 101–104 (IC₅₀: 110–461 nM) with an added morpholinone or piperazinone group at R_3 dropped sharply.

In the CoMFA electrostatic contour maps (Figure 3B), blue contours located near 1-position and R_3 imply that positive substitutions in these region can increase the activity of the inhibitors. This may explain why **104** (IC $_{50}$ = 110 nM) with a piperazin substituent at R_3 was more potent than **102** (IC $_{50}$ = 308 nM) with morpholin in the same position. Inversely, the red contour in the ortho- and meta-positions of the benzene ring at R_1 suggested that negative atoms can increase the activity. This was in accordance with the fact that **84** (IC $_{50}$ = 032 nM), **87** (IC $_{50}$ = 0.25 nM), **129** (IC $_{50}$ = 0.4 nM), and **130** (IC $_{50}$ = 0.9 nM) possessing nitrogen (negative) atoms at R_1 demonstrated high BTK inhibition activity.

2.3.2. CoMSIA Contour Map Analysis

CoMSIA StDev*Coeff contour map analysis of steric, electrostatic, hydrophobic, and H-bond donor and H-bond acceptor fields are revealed in the following images, with **79** as the template molecule in the active site of BTK.

Int. J. Mol. Sci. 2018, 19, 1244 6 of 24

In the CoMSIA steric contour map (Figure 4A), the carbazole ring of 79, sheathed by a giant green block, indicates that the bulky groups here can increase the activity. Yellow contours near the extensional area of R_3 suggest the unfavorable influence of bulky groups. In Figure 4B, the electron-donating group and electron-withdrawing group covered by blue and red contours were represented at 1-position and ortho-position of the benzene ring at R_1 , respectively. Compared to the steric/electrostatic contour maps of CoMFA and CoMSIA, they are very similar, except that the largest green field also involved an outstretched space in the carbazole scaffold, which means that adding bulky groups to this region improved activity.

The hydrophobic contour map from CoMSIA is shown in Figure 5. Orange contours near the benzene ring of R_1 and the hydrocarbyl of R_4 , as well as the extension space of R_3 , indicate that the hydrophobic groups in those areas are beneficial for inhibitory activities. This is consistent with the fact that 95–100 (IC $_{50}$: 0.35–2.0 nM), possessing halogen and hydrocarbyl substituents in these areas, have more potent activities than 54 (IC $_{50}$ = 18 nM) and 55 (IC $_{50}$ = 17 nM) with the hydroxyl and amino groups. White contours around R_1 reveal that the hydrophobic groups here do not help to enhance the activity. Hence, 121 (IC $_{50}$ = 16 nM), 122 (IC $_{50}$ = 15 nM), 124 (IC $_{50}$ = 17 nM), and 125 (IC $_{50}$ = 16 nM), possessing aromatic halogen substitutions at this position, held lower activity levels than 129–132 (IC $_{50}$: 0.4–1.0 nM).

Figure 4. CoMSIA StDev*Coeff contour maps. **(A)** Steric contour map (green: favored; yellow: disfavored). **(B)** Electrostatic contour map (blue: favored; red: disfavored). Compound **79** is shown as a capped sticks model.

Figure 5. CoMSIA StDev*Coeff contour maps: Hydrophobic contour map (orange: favored; white: disfavored). Compound **79** is shown as a capped sticks model.

Int. J. Mol. Sci. 2018, 19, 1244 7 of 24

The H-bond donor and acceptor of the CoMSIA contour map are shown in Figure 6A,B, respectively. The remarkable cyan contour on the top of the carbazole ring implies that the presence of hydrogen-bond donor groups might enhance bioactivity. This could be validated if it is found that 1–132 possess hydrogen atoms as hydrogen-bond donor groups in the same positions. The magenta contours around 1-position and meta-position of the benzene ring at R_1 show that H-bond acceptor groups in these places can increase the activity of inhibitors. This might explain why 74 (IC₅₀ = 0.79 nM) and 75 (IC₅₀ = 1.2 nM) with two carbonyl substituents at R_1 displayed better IC₅₀ values than 1 (IC₅₀ = 44 nM).

Figure 6. CoMSIA StDev*Coeff contour maps. **(A)** H-bond donor map (cyan: favored; purple: disfavored). **(B)** H-bond acceptor map (magenta: favored; brown: disfavored). Compound **79** is shown as a capped sticks model.

2.4. Model Validation of CoMFA and CoMSIA Models

20

22

The experimental and predicted activity values of CoMFA and CoMSIA models are depicted in Table 2, and their scatter plots are shown in Figure 7.

Training Set Compounds	pIC ₅₀	Col	MFA	CoM	ISIA
maning Set Compounds	p1C50	Predicted	Residuals	Predicted	Residuals
1	4.3565	4.304	0.0525	4.286	0.0705
3	5.6778	5.554	0.1239	5.730	-0.0526
4	5.8239	5.526	0.2981	5.790	0.0344
5	5.6576	5.649	0.0082	5.673	-0.0157
6	5.7447	5.758	-0.0135	5.753	-0.008
7	5.6576	5.524	0.1337	5.697	-0.0393
8	5.6576	5.751	-0.0938	5.659	-0.0011
9	5.6576	5.735	-0.0776	5.656	0.0015
10	5.6383	5.493	0.1456	5.640	-0.0015
11	5.7959	6.058	-0.2625	5.957	-0.1615
12	6.0969	6.060	0.0366	6.102	-0.0048
13	5.6990	5.631	0.0675	5.653	0.0459
14	6.0000	6.042	-0.0422	5.925	0.0755
15	6.1551	6.234	-0.0789	6.087	0.0681
17	5.8861	5.641	0.2452	5.885	0.0008
18	5.6990	5.583	0.1156	5.704	-0.0049
19	5.7447	5.821	-0.0766	5.761	-0.0162

5.698

5.615

5.465

-0.16

0.2385

0.2565

5.638

5.855

5.751

-0.1001

-0.0012 -0.0294

5.5376

5.8539

5.7213

Table 2. The experimental and predicted activity values for the developed models.

Table 2. Cont.

Training Set Compounds	pIC ₅₀	Col	MFA	CoM	ISIA
Training Set Compounds	p1C ₅₀	Predicted	Residuals	Predicted	Residuals
24	5.7959	5.917	-0.1211	5.731	0.0644
25	5.5229	5.901	-0.3785	5.516	0.0073
26	5.7213	5.876	-0.1547	5.908	-0.1865
28	6.0924	6.208	-0.1156	6.099	0.0066
29	6.2076	6.337	-0.1291	6.36	-0.1519
31	5.5528	5.597	-0.0445	5.654	-0.1009
32	5.0458	5.081	-0.0354	5.010	0.0357
33	5.5850	5.744	-0.1586	5.518	0.0669
34	5.8239	6.272	-0.4485	6.017	-0.1929
36 37	5.7695 6.2007	5.951 6.017	-0.1814 0.1837	5.642 6.080	0.1275
38	6.2840	6.026	0.1837	6.119	0.1203 0.165
39	6.0269	5.864	0.2361	6.068	-0.0413
40	6.0000	6.121	-0.1213	5.939	0.0609
42	5.7695	5.786	-0.1213 -0.0166	5.831	-0.0613
43	5.7959	5.791	0.0051	5.737	0.059
44	5.7959	5.513	0.2828	5.760	0.0358
45	6.0315	6.176	-0.1442	6.172	-0.1406
46	5.6383	6.035	-0.397	5.728	-0.0898
47	5.8239	5.844	-0.02	5.909	-0.0852
48	5.5850	5.787	-0.2015	5.695	-0.1097
49	5.3010	5.244	0.0572	5.325	-0.0241
50	5.3010	5.393	-0.0917	5.275	0.026
52	4.7959	5.112	-0.3163	4.728	0.0682
54	4.7447	4.654	0.0905	4.849	-0.1045
55	4.7695	4.684	0.0851	4.826	-0.0568
56	4.8239	4.779	0.045	4.703	0.1207
57	4.7959	4.792	0.0037	4.902	-0.1061
59	4.7695	4.634	0.1357	4.657	0.1121
60	5.6990	5.694	0.0045	5.628	0.0712
61	5.6990	5.440	0.2595	5.636	0.0632
62	4.7959	4.760	0.0359	4.871	-0.0747
63	4.7695	4.812	-0.0421	4.753	0.0165
64	5.3010	5.582	-0.2807	5.326	-0.0249
65	4.8239	4.686	0.1384	4.849	-0.0248
66	5.7213	5.880	-0.159	5.762	-0.0407
67	5.6990	5.454	0.2446	5.714	-0.0154
68 69	5.6778	5.651	0.0267	5.790 5.792	-0.1123
70	5.8539 5.7605	5.991 5.587	-0.1368	5.792	0.0624
70 71	5.7695 5.7959	5.955	0.183 -0.1589	5.760	0.0424 0.0362
	6.1805	6.234	-0.1569 -0.0532	6.087	0.0931
72 73	6.3872	6.487	-0.0032 -0.1002	6.355	0.0321
76	5.3979	5.391	0.007	5.528	-0.1299
77	6.3468	6.220	0.1271	6.272	0.0749
79	6.6576	6.305	0.3527	6.596	0.0612
80	6.1135	6.136	-0.0222	6.213	-0.0992
81	6.3188	6.131	0.188	6.402	-0.0837
83	6.2291	6.107	0.1225	6.339	-0.1095
85	6.0000	6.025	-0.0254	6.029	-0.0285
86	6.3098	6.404	-0.0941	6.365	-0.0557
89	5.8861	6.291	-0.4053	6.112	-0.2261
90	6.0915	6.111	-0.0196	6.131	-0.0396
92	6.3566	6.171	0.186	6.281	0.0751
93	6.2602	6.274	-0.0138	6.251	-0.0092
94	6.0706	6.208	-0.1374	6.099	-0.0288
95	6.0410	5.983	0.0577	5.981	0.0595
96	6.0000	5.468	0.5325	5.981	0.0187
97	6.0458	6.086	-0.0406	6.038	0.0077

Table 2. Cont.

98 5.6990 5.934 −0.2348 5.638 0.0600 99 6.3468 6.242 0.1046 6.366 −0.018 100 6.4559 6.074 0.3816 6.496 −0.038 105 4.5528 4.125 0.4278 4.538 0.015 108 4.8239 4.736 0.0878 4.826 −0.000 109 4.4949 4.403 0.0923 4.379 0.115 1110 4.6198 4.870 −0.2505 4.523 0.097 1111 4.1487 3.873 0.2756 4.082 0.066 112 4.2291 4.703 −0.0437 3.984 0.003 117 4.7212 4.481 0.2403 4.758 −0.033 117 4.7212 4.481 0.2403 4.758 −0.033 119 4.7959 4.881 −0.0437 3.984 0.003 1119 4.7959 4.881 −0.0849 4.889 −0.013 121 4.7959 4.881 −0.0849 4.889 −0.012 122 4.8239 4.695 0.1286 4.871 −0.044 123 4.7959 5.019 −0.2491 4.821 −0.051 125 4.7959 5.032 −0.2358 4.751 0.045 113 6.0000 5.468 0.5325 5.981 0.015 130 6.0458 6.086 −0.0406 6.038 0.007 131 6.0000 5.468 0.5325 5.981 0.018 132 6.5850 6.559 0.0255 6.608 −0.025 Test Set Compounds plc 3.506 6.559 0.0256 5.6281 0.013 30 6.5856 6.559 0.0255 5.6281 0.013 30 8 5.585 5.522 0.0629 5.554 0.031 33 5 5.6383 6.035 −0.397 5.728 −0.084 41 * 5.6778 5.631 0.0898 5.618 0.103 30 * 5.585 5.522 0.0629 5.554 0.031 35 * 5.6393 6.035 0.0399 5.728 0.005 51 * 5.6790 5.581 0.1182 5.596 0.103 53 * 5.6690 5.581 0.1182 5.596 0.103 53 * 5.6690 5.581 0.1182 5.596 0.103 53 * 5.6690 5.581 0.1182 5.596 0.103 53 * 5.6690 5.581 0.1182 5.596 0.103 53 * 5.6690 5.581 0.1182 5.596 0.103 53 * 5.6690 5.581 0.1182 5.596 0.103 53 * 5.6690 5.581 0.1182 5.596 0.103 53 * 5.6690 5.581 0.1182 5.596 0.103 54 * 6.4969 6.035 5.591 0.005 5.588 5.618 0.103 55 * 5.6990 5.581 0.1182 5.596 0.103 56 * 6.4960 5.591 0.0182 5.599 0.005 58 * 6.639 5.591 0.0182 5.599 0.005 58 * 6.639 5.591 0.0182 5.599 0.005 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1182 5.596 0.103 51 * 5.6990 5.581 0.1	Training Set Compounds	pIC ₅₀	Col	MFA	CoM	ISIA
99	Training Set Compounds	p1C ₅₀	Predicted	Residuals	Predicted	Residuals
100 6.4559 6.074 0.3816 6.496 −0.03 105 4.5528 4.125 0.4278 4.538 0.015 108 4.8239 4.736 0.0878 4.826 −0.002 110 4.6198 4.870 −0.2505 4.523 0.097 111 4.1487 3.873 0.2756 4.082 0.066 1112 4.2291 4.703 −0.4172 4.182 0.0466 1113 3.9872 4.031 −0.0437 3.984 0.003 117 4.7212 4.481 0.2403 4.758 −0.03 119 4.7959 4.747 0.0485 4.809 −0.013 111 4.7959 4.747 0.0485 4.809 −0.013 112 4.221 4.881 0.2403 4.758 −0.091 112 4.7959 4.881 −0.0849 4.889 −0.092 112 4.8239 4.695 0.1286 4.871 −0.047 112 4.7959 4.888 −0.0918 4.820 −0.092 112 4.7959 5.032 −0.2358 4.751 0.045 112 4.7695 5.019 −0.2491 4.821 −0.051 125 4.7959 5.032 −0.2358 4.751 0.045 129 6.3979 6.202 0.1955 6.281 0.017 130 6.0458 6.086 −0.0406 6.038 0.007 131 6.0000 5.468 0.5325 5.981 0.018 132 6.5850 6.559 0.0255 6.608 −0.025 16* 5.8861 5.526 0.3598 5.871 0.044 12* 5.4948 5.751 −0.2562 5.648 −0.03 13* 5.585 5.522 0.0629 5.554 0.03 13* 5.585 5.522 0.0629 5.554 0.03 13* 5.585 5.522 0.0629 5.554 0.03 13* 5.6383 6.035 −0.397 5.728 0.03 13* 5.6383 6.035 −0.397 5.728 −0.08 14* 5.6778 5.666 −0.0185 5.738 −0.06 15* 5.6990 5.581 0.0182 5.797 0.013 2* 6.4948 6.055 −0.0185 5.738 −0.06 15* 5.6990 5.581 0.0182 5.797 0.013 2* 6.4948 6.036 −0.0185 5.738 −0.06 15* 5.6990 5.581 0.0182 5.797 0.013 13* 6.6000 6.638 0.035 −0.397 5.728 −0.08 1* 5.6837 6.637 0.035 5.996 0.013 2* 5.585 5.522 0.0629 5.554 0.031 35* 5.6383 6.035 −0.397 5.728 −0.08 1* 5.78* 6.637 0.01447 6.025 0.015 1* 5.6990 5.581 0.0185 5.738 0.066 1* 5.797 0.014 1* 5.6778 5.666 0.0185 5.738 0.066 1* 5.866 0.0172 6.059 0.013 2* 6.4948 6.451 0.0443 6.432 0.063 8* 6.4948 6.451 0.0443 6.432 0.063 8* 6.4000 6.316 −0.3157 6.074 −0.079 9* 6.6021 6.472 0.0190 6.337 0.0198 3.684 0.039 102* 3.5114 3.734 −0.2221 3.580 −0.08 104* 3.9386 3.937 0.01218 3.940 0.018 104* 3.9386 3.937 0.01218 3.940 0.018 104* 3.9386 3.937 0.01218 3.940 0.018 116* 3.8986 3.937 0.01218 3.940 0.018 116* 3.9957 4.494 −0.4982 4.286 0.070 116* 3.9957 4.494 −0.4982 4.286 0.070 116* 3.9957 4.494 −0.4982 4.286 0.070 116* 3.9957 4.494 −0.4982 4.286 0.070 116* 4.0555 3.8	98	5.6990	5.934	-0.2348	5.638	0.0608
105	99	6.3468	6.242	0.1046	6.366	-0.0187
108	100	6.4559	6.074	0.3816	6.496	-0.0397
109	105	4.5528	4.125	0.4278	4.538	0.015
110 4.6198 4.870	108	4.8239	4.736	0.0878	4.826	-0.0023
111 4.1487 3.873 0.2756 4.082 0.0666 112 4.2291 4.703 -0.4742 4.182 0.0466 113 3.9872 4.031 -0.0437 3.984 0.003 117 4.7212 4.481 0.2403 4.758 -0.031 119 4.7959 4.481 -0.0485 4.809 -0.012 121 4.7959 4.881 -0.0849 4.889 -0.091 122 4.8239 4.695 0.1286 4.871 -0.042 123 4.7959 4.888 -0.0918 4.820 -0.022 124 4.7695 5.019 -0.2491 4.821 -0.051 125 4.7959 6.302 -0.1955 6.281 0.117 130 6.0458 6.086 -0.0406 6.038 0.007 131 6.0000 5.468 0.5325 5.981 0.018 132 5.8661 5.585 -0.2035 5.296 0.005<	109	4.4949	4.403	0.0923	4.379	0.1156
112 4.2291 4.703 -0.4742 4.182 0.003 117 4.7212 4.481 0.2403 4.758 -0.03 119 4.7959 4.841 0.2403 4.758 -0.09 121 4.7959 4.881 -0.0849 4.889 -0.092 122 4.8239 4.695 0.1286 4.871 -0.041 123 4.7959 5.019 -0.2491 4.821 -0.051 124 4.7695 5.019 -0.2491 4.821 -0.051 129 6.3979 6.202 0.1955 6.281 0.117 130 6.0458 6.086 -0.0406 6.038 -0.002 131 6.0000 5.468 0.5325 5.981 0.018 12* 5.3010 5.505 -0.2025 5.296 0.005 16* 5.8861 5.526 0.3598 5.871 0.014 21* 5.4948 5.751 -0.2562 5.648 -0.152		4.6198	4.870	-0.2505	4.523	0.0971
113 3.9872 4.031 −0.0437 3.984 0.0036 117 4.7212 4.481 0.2403 4.758 −0.038 119 4.7959 4.747 0.0485 4.809 −0.013 121 4.7959 4.881 −0.0849 4.889 −0.093 122 4.8239 4.695 0.1286 4.871 −0.044 123 4.7959 4.888 −0.0918 4.821 −0.052 124 4.7695 5.019 −0.2491 4.821 −0.051 125 4.7959 5.032 −0.2358 4.751 0.045- 129 6.3979 6.020 0.1955 6.281 0.117- 130 6.0458 6.086 −0.0406 6.038 0.007 131 6.0000 5.468 0.5325 5.981 0.0185 132 6.5850 6.559 0.0255 6.608 −0.025 16* 5.8861 5.526 0.3598 5.871 0.044- 2* 5.3010 5.505 −0.2035 5.296 0.0055 16* 5.8861 5.526 0.3598 5.871 0.014- 21* 5.4948 5.751 −0.2562 5.648 −0.152 27* 5.7213 5.631 0.0898 5.618 0.103- 30* 5.585 5.522 0.0629 5.554 0.031- 33* 5.6383 6.035 −0.397 5.728 −0.085 41* 5.6778 5.696 −0.0185 5.738 −0.086 51* 5.6990 5.581 0.1182 5.596 0.103 55* 4.7447 4.732 0.0132 4.745 −0.006 55* 5.920 0.0132 4.745 −0.006 56* 5.5229 5.515 0.0076 5.364 0.158: 74* 6.1024 6.085 0.0172 6.059 0.043 75* 5.9208 5.971 −0.0502 5.797 0.124 78* 6.0372 6.220 0.1176 6.272 0.065- 82* 6.4559 6.312 0.1437 6.417 0.039 88* 6.000 6.316 −0.0129 6.529 0.043 88* 6.000 6.316 −0.0129 6.520 0.063 88* 6.000 6.316 −0.0129 6.530 0.003 88* 6.6021 6.472 0.1298 6.533 0.079 91* 6.02076 6.337 −0.0129 6.364 0.039 102* 3.5114 3.734 −0.0221 3.580 −0.086 11* 3.7235 3.525 0.1989 3.684 0.039 102* 3.5114 3.734 −0.0221 3.580 −0.086 116* 3.9586 3.937 0.0218 3.940 0.018 106* 4.0555 3.886 0.1694 4.104 −0.07 116* 3.3958 3.3937 0.0218 3.940 0.018 106* 4.0555 3.886 0.1694 4.104 −0.008 116* 3.3958 4.110 0.2468 4.286 0.079 116* 3.3958 4.975 0.0769 4.488 0.079 116* 3.3958 4.975 0.0083 4.831 0.089 116* 3.3958 4.975 0.0083 4.831 0.089 116* 4.9555 4.995 4.816 −0.0044 6.685 0.113	111					0.0663
117 4.7212 4.481 0.2403 4.758 -0.036 119 4.7959 4.747 0.0485 4.809 -0.013 121 4.7959 4.881 -0.0849 4.889 -0.091 122 4.8239 4.695 0.1286 4.871 -0.047 123 4.7959 5.032 -0.2358 4.751 0.045 124 4.7695 5.019 -0.2491 4.821 -0.051 125 4.7959 5.032 -0.2358 4.751 0.045 129 6.3079 6.202 0.1955 6.281 0.117 130 6.0458 6.086 -0.0466 6.038 0.007 131 6.0000 5.468 0.5325 5.981 0.018 152 5.53010 5.505 0.0255 6.608 -0.025 16* 5.8861 5.526 0.3598 5.871 0.014 21* 5.4948 5.751 -0.2562 5.648 -0.152 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0468</td>						0.0468
119 4.7959 4.747 0.0485 4.889 -0.012 121 4.7959 4.881 -0.0849 4.889 -0.042 122 4.8239 4.695 0.1286 4.871 -0.042 123 4.7959 5.019 -0.2491 4.821 -0.052 124 4.7695 5.019 -0.2491 4.821 -0.051 125 4.7959 6.3979 6.202 0.1955 6.281 0.117 130 6.0458 6.086 -0.0406 6.038 0.0072 131 6.0000 5.468 0.5325 5.981 0.018 132 6.5850 6.559 0.0255 6.608 -0.022 Test Set Compounds PICs Tedicted Residuals Predicted Residuals Predicted Residuals 2* 5.3010 5.505 -0.2035 5.296 0.0052 16* 5.8681 5.526 0.3598 5.871 0.0142 21*						0.0036
121 4.7959 4.881 -0.0849 4.889 -0.093 122 4.8239 4.695 0.1286 4.871 -0.042 123 4.7959 4.888 -0.0918 4.820 -0.022 124 4.7695 5.019 -0.2491 4.821 -0.051 125 4.7959 5.032 -0.2358 4.751 0.045 130 6.0458 6.086 -0.0406 6.038 0.007 131 6.0000 5.468 0.5325 5.981 0.018 132 6.5850 6.5859 0.0255 6.608 -0.023 16* 5.3010 5.505 -0.2035 5.296 0.005 16* 5.8861 5.505 -0.2035 5.296 0.005 2* 5.3010 5.505 -0.2035 5.296 0.005 16* 5.8861 5.502 0.3598 5.871 0.014 21* 5.4948 5.751 -0.2562 5.648 -0.152 <td></td> <td></td> <td></td> <td>0.2403</td> <td></td> <td>-0.0366</td>				0.2403		-0.0366
122 4.8239 4.695 0.1286 4.871 -0.047 123 4.7959 4.888 -0.0918 4.820 -0.0251 124 4.7695 5.019 -0.2491 4.821 -0.0451 129 6.3979 6.202 0.1955 6.281 0.117 130 6.0458 6.086 -0.0406 6.038 0.007 131 6.0000 5.468 0.5325 5.981 0.018 132 6.5850 6.559 0.0255 6.608 -0.022 PICs0 Colspan="4">Col						-0.0131
123 4.7959 4.888 -0.0918 4.820 -0.024 124 4.7695 5.019 -0.2491 4.821 -0.045 129 6.3979 6.202 0.1955 6.281 0.117 130 6.0458 6.086 -0.0406 6.038 0.007 131 6.0000 5.468 0.5325 5.981 0.018 132 6.5850 6.559 0.0255 5.608 -0.022 Test Set Compounds PIC ₅₀ Collected Residuals Predicted Residuals Predicted Residuals 2* 5.3010 5.505 -0.2035 5.296 0.0053 16* 5.8861 5.526 0.3598 5.871 0.014 21* 5.4948 5.751 -0.2562 5.648 -0.15 27* 5.7213 5.631 0.0898 5.671 0.013 35* 5.6383 6.035 -0.397 5.728 -0.06 51* 5.6778						-0.0936
124 4.7695 5.019 -0.2491 4.821 -0.051 129 6.3979 6.022 -0.2358 4.751 0.045 129 6.3979 6.020 0.1955 6.281 0.117 130 6.0458 6.086 -0.0406 6.038 0.007 131 6.0000 5.468 0.5325 5.981 0.018 132 6.5850 6.559 0.0255 6.608 -0.022 Test Set Compounds PIC ₅₀ CoWFA CoMSIA Test Set Compounds Predicted Residuals Predicted Residuals 2* 5.3010 5.505 -0.2035 5.296 0.0014 16* 5.8861 5.505 -0.2035 5.297 0.0014 21* 5.4948 5.751 -0.2562 5.648 -0.152 27* 5.7213 5.631 0.0888 5.618 0.013 35* 5.6383 <th< td=""><td></td><td></td><td></td><td></td><td>4.871</td><td>-0.0473</td></th<>					4.871	-0.0473
125 4.7959 5.032 -0.2358 4.751 0.045s 129 6.3979 6.202 0.1955 6.281 0.117s 130 6.0458 6.086 -0.0406 6.038 0.007s 131 6.0000 5.468 0.5325 5.981 0.001s 132 6.5850 6.559 0.0255 6.608 -0.022 Test Set Compounds PIC ₅₀ CoMFA CoMFA Colspan="4">Colspan						-0.0243
129 6.3979 6.202 0.1955 6.281 0.117-130 130 6.0458 6.086 −0.0406 6.038 0.007-131 132 6.5850 6.559 0.0255 5.981 0.018-1 Test Set Compounds PIC ₅₀ CoMFA CoMFA CoMBA 2* 5.3010 5.505 −0.2035 5.296 0.005 16* 5.8861 5.526 0.3598 5.871 0.014 21* 5.4948 5.751 −0.2562 5.648 −0.152 27* 5.7213 5.631 0.0898 5.618 0.0132 30* 5.585 5.522 0.0629 5.554 0.031 35* 5.6383 6.035 −0.397 5.728 −0.08 41* 5.6690 5.581 0.1182 5.596 0.016 51* 5.6990 5.581 0.1182 5.596 0.065 5** 5.229 5.515 0.0076						-0.0511
130 6.0458 6.086 -0.0406 6.038 0.0077 131 6.0000 5.468 0.5325 5.981 0.018 132 6.5850 6.559 0.0255 6.608 -0.022 Test Set Compounds PIC ₅₀ CoMFA CoMFA CoMSI 2 * 5.3010 5.505 -0.2035 5.296 0.0053 16 * 5.8861 5.526 0.3598 5.871 0.014 21 * 5.4948 5.751 -0.2562 5.648 -0.152 27 * 5.7213 5.631 0.0898 5.618 0.103 30 * 5.585 5.522 0.0629 5.554 0.031 35 * 5.6383 6.035 -0.397 5.728 -0.088 41 * 5.6798 5.696 -0.0185 5.738 -0.066 51 * 5.6990 5.581 0.1182 5.596 0.103 58 * 5.5229 5.515 0						0.0454
131 6.0000 5.468 0.5325 5.981 0.018 Test Set Compounds PIC ₅₀ CoMFA CoMSIA Predicted Residuals Predicted Residuals 2 * 5.3010 5.505 −0.2035 5.296 0.0053 16 * 5.8861 5.526 0.3598 5.871 0.014 21 * 5.4948 5.751 −0.2562 5.648 −0.152 27 * 5.7213 5.631 0.0898 5.618 0.103 30 * 5.585 5.522 0.0629 5.554 0.031 35 * 5.6383 6.035 −0.397 5.728 −0.08 41 * 5.6678 5.696 −0.0185 5.738 −0.06 51 * 5.6990 5.581 0.1132 4.745 −0.00 58 * 5.5229 5.515 0.0076 5.364 0.158 74 * 6.1024 6.085 0.0172 6.059 0.043 75 * 5.9208		6.3979				0.1174
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						0.0077
Test Set Compounds PIC50 CoMFA Residuals Predicted Residuals 2* 5.3010 5.505 −0.2035 5.296 0.0055 16* 5.8861 5.526 0.3598 5.871 0.014 21* 5.4948 5.751 −0.2562 5.648 −0.152 27* 5.7213 5.631 0.0898 5.618 0.103 30* 5.585 5.522 0.0629 5.554 0.031 35* 5.6383 6.035 −0.397 5.728 −0.089 41* 5.6778 5.696 −0.0185 5.738 −0.086 51* 5.6990 5.581 0.1182 5.596 0.103 58* 5.5229 5.515 0.0076 5.364 0.158 74* 6.1024 6.085 0.0172 6.059 0.043 75* 5.9208 5.971 −0.0502 5.797 0.124 78* 6.4959						
Test Set Compounds PIC50 Predicted Residuals Predicted Residuals 2* 5.3010 5.505 -0.2035 5.296 0.0055 16* 5.8861 5.526 0.3598 5.871 0.014 21* 5.4948 5.751 -0.2562 5.648 -0.152 27* 5.7213 5.631 0.0898 5.618 0.103 30* 5.585 5.522 0.0629 5.554 0.031 35* 5.6383 6.035 -0.397 5.728 -0.08 41* 5.6778 5.696 -0.0185 5.738 -0.06 51* 5.6990 5.581 0.1182 5.596 0.103 5* 4.7447 4.732 0.0132 4.745 -0.006 58* 5.5229 5.515 0.0076 5.364 0.158 74* 6.1024 6.085 0.0172 6.059 0.043 75* 5.9208 5.971 -0.0502 5.797	132	6.5850	6.559	0.0255	6.608	-0.0229
2* 5.3010 5.505 -0.2035 5.296 0.0053 16* 5.8861 5.526 0.3598 5.871 0.0144 21* 5.4948 5.751 -0.2562 5.648 -0.152 27* 5.7213 5.631 0.0898 5.618 0.1033 30* 5.585 5.522 0.0629 5.554 0.031 35* 5.6383 6.035 -0.397 5.728 -0.089 41* 5.6778 5.696 -0.0185 5.738 -0.066 51* 5.6990 5.581 0.1182 5.596 0.103 53* 4.7447 4.732 0.0132 4.745 -0.006 58* 5.5229 5.515 0.0076 5.364 0.1588 74* 6.1024 6.085 0.0172 6.059 0.043 75* 5.9208 5.971 -0.0502 5.797 0.124 78* 6.3372 6.220 0.1176 6.272 0.065	Tast Sat Compounds	et Compounds nIC-o	Col	MFA	CoM	ISIA
16* 5.8861 5.526 0.3598 5.871 0.0142 21* 5.4948 5.751 -0.2562 5.648 -0.152 27* 5.7213 5.631 0.0898 5.618 0.1034 30* 5.585 5.522 0.0629 5.554 0.0312 35* 5.6383 6.035 -0.397 5.728 -0.088 41* 5.6778 5.696 -0.0185 5.738 -0.066 51* 5.6990 5.581 0.1182 5.596 0.103 53* 4.7447 4.732 0.0132 4.745 -0.00 58* 5.5229 5.515 0.0076 5.364 0.1585 74* 6.1024 6.085 0.0172 6.059 0.043 75* 5.9208 5.971 -0.0502 5.797 0.124 78* 6.3372 6.220 0.1176 6.272 0.065 82* 6.4559 6.312 0.1437 6.417 0.039 84* 6.4948 6.451 0.0443 6.432 0.063 <	rest Set Compounds	p1C50	Predicted	Residuals	Predicted	Residuals
21* 5.4948 5.751 -0.2562 5.648 -0.152 27* 5.7213 5.631 0.0898 5.618 0.1034 30* 5.585 5.522 0.06629 5.554 0.0312 35* 5.6383 6.035 -0.397 5.728 -0.066 41* 5.6778 5.696 -0.0185 5.738 -0.060 51* 5.6990 5.581 0.1182 5.596 0.103 53* 4.7447 4.732 0.0132 4.745 -0.000 58* 5.5229 5.515 0.0076 5.364 0.1585 74* 6.1024 6.085 0.0172 6.059 0.043 75* 5.9208 5.971 -0.0502 5.797 0.124 78* 6.3372 6.220 0.1176 6.272 0.065 82* 6.4559 6.312 0.1437 6.417 0.0393 84* 6.4948 6.451 0.0443 6.432 0.063 87* 6.6021 6.472 0.1298 6.523 0.079	2 *	5.3010	5.505	-0.2035		0.0055
27* 5.7213 5.631 0.0898 5.618 0.1034 30* 5.585 5.522 0.0629 5.554 0.0312 35* 5.6383 6.035 -0.397 5.728 -0.086 41* 5.6778 5.696 -0.0185 5.738 -0.066 51* 5.6990 5.581 0.1182 5.596 0.103 53* 4.7447 4.732 0.0132 4.745 -0.00 58* 5.5229 5.515 0.0076 5.364 0.1588 74* 6.1024 6.085 0.0172 6.059 0.043 75* 5.9208 5.971 -0.0502 5.797 0.124 78* 6.3372 6.220 0.1176 6.272 0.0652 82* 6.4559 6.312 0.1437 6.417 0.0393 84* 6.4948 6.451 0.0443 6.432 0.063 87* 6.6021 6.472 0.1298 6.523 0.079 88* 6.0000 6.316 -0.3157 6.074 -0.073		5.8861				0.0147
30 * 5.585 5.522 0.0629 5.554 0.0312 35 * 5.6383 6.035 -0.397 5.728 -0.089 41 * 5.6778 5.696 -0.0185 5.738 -0.060 51 * 5.6990 5.581 0.1182 5.596 0.103 53 * 4.7447 4.732 0.0132 4.745 -0.000 58 * 5.5229 5.515 0.0076 5.364 0.1588 74 * 6.1024 6.085 0.0172 6.059 0.043 75 * 5.9208 5.971 -0.0502 5.797 0.124 78 * 6.3372 6.220 0.1176 6.272 0.065 82 * 6.4559 6.312 0.1437 6.417 0.039 84 * 6.4948 6.451 0.0443 6.432 0.063 87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0						-0.1528
35 * 5.6383 6.035 -0.397 5.728 -0.085 41 * 5.6778 5.696 -0.0185 5.738 -0.060 51 * 5.6990 5.581 0.1182 5.596 0.103 53 * 4.7447 4.732 0.0132 4.745 -0.000 58 * 5.5229 5.515 0.0076 5.364 0.1583 74 * 6.1024 6.085 0.0172 6.059 0.043 75 * 5.9208 5.971 -0.0502 5.797 0.124 78 * 6.3372 6.220 0.1176 6.272 0.0654 82 * 6.4559 6.312 0.1437 6.417 0.0393 84 * 6.4948 6.451 0.0443 6.432 0.063 87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>0.1034</td></t<>						0.1034
41 * 5.6778 5.696 -0.0185 5.738 -0.066 51 * 5.6990 5.581 0.1182 5.596 0.103 53 * 4.7447 4.732 0.0132 4.745 -0.006 58 * 5.5229 5.515 0.0076 5.364 0.158 74 * 6.1024 6.085 0.0172 6.059 0.043 75 * 5.9208 5.971 -0.0502 5.797 0.124 78 * 6.3372 6.220 0.1176 6.272 0.065 82 * 6.4559 6.312 0.1437 6.417 0.039 84 * 6.4948 6.451 0.0443 6.432 0.063 87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.039 102 * 3.5114 3.734 -0.2221 3.580						0.0312
51 * 5.6990 5.581 0.1182 5.596 0.103 53 * 4.7447 4.732 0.0132 4.745 -0.000 58 * 5.5229 5.515 0.0076 5.364 0.1588 74 * 6.1024 6.085 0.0172 6.059 0.043 75 * 5.9208 5.971 -0.0502 5.797 0.124 78 * 6.3372 6.220 0.1176 6.272 0.0654 82 * 6.4559 6.312 0.1437 6.417 0.039 84 * 6.4948 6.451 0.0443 6.432 0.063 87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.039 102 * 3.5114 3.734 -0.2221 3.580 -0.086 103 * 3.3363 3.648 -0.3118 3.523 <						-0.0898
53 * 4.7447 4.732 0.0132 4.745 -0.000 58 * 5.5229 5.515 0.0076 5.364 0.1588 74 * 6.1024 6.085 0.0172 6.059 0.043 75 * 5.9208 5.971 -0.0502 5.797 0.124 78 * 6.3372 6.220 0.1176 6.272 0.0654 82 * 6.4559 6.312 0.1437 6.417 0.0393 84 * 6.4948 6.451 0.0443 6.432 0.063 87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.0392 102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940						-0.0601
58* 5.5229 5.515 0.0076 5.364 0.1588 74* 6.1024 6.085 0.0172 6.059 0.043 75* 5.9208 5.971 -0.0502 5.797 0.124 78* 6.3372 6.220 0.1176 6.272 0.0654 82* 6.4559 6.312 0.1437 6.417 0.0393 84* 6.4948 6.451 0.0443 6.432 0.0633 87* 6.6021 6.472 0.1298 6.523 0.079 88* 6.0000 6.316 -0.3157 6.074 -0.073 91* 6.2076 6.337 -0.1291 6.360 -0.151 101* 3.7235 3.525 0.1989 3.684 0.0392 102* 3.5114 3.734 -0.2221 3.580 -0.068 103* 3.3363 3.648 -0.3118 3.523 -0.186 104* 3.9586 3.937 0.0218 3.940 0.0186 106* 4.0555 3.886 0.1694 4.104 -0.04						0.103
74 * 6.1024 6.085 0.0172 6.059 0.043 75 * 5.9208 5.971 -0.0502 5.797 0.124 78 * 6.3372 6.220 0.1176 6.272 0.0654 82 * 6.4559 6.312 0.1437 6.417 0.0393 84 * 6.4948 6.451 0.0443 6.432 0.0633 87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.0392 102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506						-0.0001
75 * 5.9208 5.971 -0.0502 5.797 0.124 78 * 6.3372 6.220 0.1176 6.272 0.0654 82 * 6.4559 6.312 0.1437 6.417 0.0393 84 * 6.4948 6.451 0.0443 6.432 0.0633 87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.0392 102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
78 * 6.3372 6.220 0.1176 6.272 0.0654 82 * 6.4559 6.312 0.1437 6.417 0.0393 84 * 6.4948 6.451 0.0443 6.432 0.0633 87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.0392 102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
82 * 6.4559 6.312 0.1437 6.417 0.0393 84 * 6.4948 6.451 0.0443 6.432 0.0633 87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.0392 102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254<						
84 * 6.4948 6.451 0.0443 6.432 0.0633 87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.0392 102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488						
87 * 6.6021 6.472 0.1298 6.523 0.079 88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.0392 102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.83						
88 * 6.0000 6.316 -0.3157 6.074 -0.073 91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.0392 102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.831 0.0892 126 * 4.7959 4.816 -0.0204 4						
91 * 6.2076 6.337 -0.1291 6.360 -0.151 101 * 3.7235 3.525 0.1989 3.684 0.0392 102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.831 0.0892 126 * 4.7959 4.816 -0.0204 4.685 0.1113						
101 * 3.7235 3.525 0.1989 3.684 0.0392 102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.831 0.0892 126 * 4.7959 4.816 -0.0204 4.685 0.1113						
102 * 3.5114 3.734 -0.2221 3.580 -0.068 103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.831 0.0897 126 * 4.7959 4.816 -0.0204 4.685 0.1113						-0.1519
103 * 3.3363 3.648 -0.3118 3.523 -0.186 104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.831 0.0892 126 * 4.7959 4.816 -0.0204 4.685 0.1113						
104 * 3.9586 3.937 0.0218 3.940 0.0186 106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.831 0.0892 126 * 4.7959 4.816 -0.0204 4.685 0.1113						-0.0684
106 * 4.0555 3.886 0.1694 4.104 -0.04 107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.831 0.0892 126 * 4.7959 4.816 -0.0204 4.685 0.1113						-0.1868
107 * 3.4214 3.776 -0.3549 3.506 -0.085 114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.831 0.0892 126 * 4.7959 4.816 -0.0204 4.685 0.1113						
114 * 4.3565 4.110 0.2468 4.286 0.0708 115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.831 0.0892 126 * 4.7959 4.816 -0.0204 4.685 0.1113						
115 * 3.8962 3.795 0.1014 3.799 0.0972 116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1702 120 * 4.9208 4.915 0.0063 4.831 0.0892 126 * 4.7959 4.816 -0.0204 4.685 0.1113						-0.0851
116 * 3.9957 4.494 -0.4982 4.254 -0.258 118 * 4.6576 4.579 0.0789 4.488 0.1707 120 * 4.9208 4.915 0.0063 4.831 0.0897 126 * 4.7959 4.816 -0.0204 4.685 0.1113						
118 * 4.6576 4.579 0.0789 4.488 0.1703 120 * 4.9208 4.915 0.0063 4.831 0.0897 126 * 4.7959 4.816 -0.0204 4.685 0.1113						0.0972
120 * 4.9208 4.915 0.0063 4.831 0.0897 126 * 4.7959 4.816 -0.0204 4.685 0.1113						-0.2585
126 * 4.7959 4.816 -0.0204 4.685 0.1113						
						0.0897
127 * 3.4089 3.904 -0.4953 3.483 -0.074						
						-0.0741 0.0663

^{*} Test set.

Figure 7. Correlation between the predicted and experimental activities of the training and test set compounds. **(A)** The scatter plot of CoMFA. **(B)** The scatter plot of CoMSIA. Black squares represent the training set; red triangles represent the test set.

Based on the above data, the correlation coefficient between the predicted and experimental activities generated by the CoMFA models were 0.94073 and its analytical error was 0.32893, which confirmed that the established CoMFA models are reliable and reasonable. Similarly, the correlation coefficient and analytical error of the CoMSIA model were 0.99181 and 0.04793, respectively, and these two values verify that the CoMSIA models are accurate and reliable. Both CoMFA and CoMSIA models can be further used to predict activities of newly designed inhibitors.

3. Materials and Methods

3.1. Collection of the Dataset

A series of carbazole-carboxamide-based BTK inhibitors (BMS-986142 analogues) were used for the study. The 132 selected molecules [14,20–23] had a basic tricyclic skeleton and a similar binding mode with the BTK enzyme, which could be well superimposed in the alignment module. These BMS-986142 analogues were evenly distributed in an inhibitory activity range from 0.1 to 1000 nM. These compounds were optimized by energy minimization with a tripos force field in Sybyl-X 2.0 [24] and generated three-dimensional conformations after docking into the BTK-enzyme-binding site. The biological data expressed as IC_{50} values were converted into pIC_{50} ($-log\ IC_{50}$) values, which were used as dependent variables in the following QSAR analyses [25]. The selected 132 BTK inhibitors were divided into a test set consisting of 32 molecules for model validation and a training set including 100 compounds for model generation. Thirty-two compounds in the test set were selected randomly and included compounds with a uniformly distributed range of pIC_{50} values from 3.336 to 6.658, covering more than 3 log units, which is fit for 3D QSAR studies [26]. The conformation of the most active compound, 79, was selected as a template structure to sketch the rest of the molecules [27]. The complete dataset (1–132) taken for study is shown in Table 3.

Table 3. Chemical structures of 1–132 with their pIC $_{50}$.

	R_4 R_3 R_2	ONH ₂	R ₄ R ₃ R ₂	NH ₂ $R_6 R_4$	H	NH ₂ R ₆	
	1–1:		129		130–132	IC (»M)	IC
Mol.	R ₁	R ₂	Н	R ₄	R ₆	IC ₅₀ (nM)	pIC ₅₀ 4.357
2 *	H N O	Н	Н	O N N	Н	5.0	5.301
3	$\int_{\rho}^{\rho} \int_{\rho}^{\rho} \int_{0}^{\rho} \int_{0$	Н	Н	H NH2 N O	Н	2.1	5.678
4	production of the second of th	Н	Н	H N O N	Н	15	5.824
5	$\bigcup_{p \in \mathcal{P}} d^p = \bigcup_{i=1}^{p} \prod_{j=1}^{p} \prod_{i=1}^{p} \prod_{j=1}^{p} \prod_{j=1}^{$	Н	Н	The H N O	Н	2.2	5.658
6	$\bigcup_{i=1}^{H}\bigcup_{i=1}^{H}\bigcup_{j=1}^{H}$	Н	Н	The NH ₂	Н	1.8	5.745
7	production of the second of th	Н	Н	H N N	Н	2.2	5.658
8	de de la companya de	Н	Н	H OH OH	Н	2.2	5.658
9	$\bigcup_{0}^{H}\bigcup_{0}^{F}$	Н	Н	OH OH	Н	2.2	5.658
10	p de de la companya d	Н	Н	OH OH	Н	2.3	5.638
11	g de de la companya d	Н	Н	OH OH	Н	1.6	5.796
12	p of the second	Н	Н	OH OH	Н	0.8	6.097
13	O F N N N	Н	Н	OH Patron	Н	2.0	5.699

 Table 3. Cont.

Mol.	R ₁	R ₂	R ₃	R ₄	R ₆	IC ₅₀ (nM)	pIC ₅₀
14	CI O N N N	Н	Н	OH '9, port	Н	1.0	6.000
15	O N N	Н	Н	OH ''Androg OH	Н	0.7	6.155
16 *	get N	Н	Н	O OH	Н	1.3	5.886
17	O N N	Н	Н	OH	Н	1.3	5.886
18	O F	Н	Н	OH	Н	2.0	5.699
19	and the second s	Н	Н	OH	Н	1.8	5.745
20	O N N	Н	Н	OH	Н	2.9	5.538
21 *	production of the second of th	Н	Н	OH	Н	3.2	5.495
22	of the second se	Н	Н	NO O	Н	1.4	5.854
23	of order H N S	Н	Н	N N	Н	1.9	5.721
24	p de H N N	Н	Н	OH Vo _{Vo} OH	Н	1.6	5.796
25	O N N	Н	Н	CH ₂ OH	Н	3.0	5.523
26	O N N	Н	Н	variation NH	Н	1.9	5.721

 Table 3. Cont.

Mol.	R_1	R ₂	R ₃	R ₄	R ₆	IC ₅₀ (nM)	pIC ₅₀
27 *	O N	Н	Н	OH	Н	1.9	5.721
28		Н	Н	OH ************************************	Н	0.81	6.092
29	$\bigcup_{0}^{V}\bigvee_{N=1}^{F}$	Н	Н	OH Ta _{ta}	Н	0.62	6.208
30 *		Н	Н	OH	Н	2.6	5.585
31	O N NH F	Н	Н	OH	Н	2.8	5.553
32	p of the second	Н	Н	O N N	Н	9.0	5.046
33	O N N	Н	Н	OH ************************************	Н	2.6	5.585
34	O N NH F	Н	Н	OH Total	Н	1.5	5.824
35 *		Н	Н	OH	Н	2.3	5.638
36		Н	Н	OH Ta _{ta}	Н	1.7	5.770
37		Н	Н	OH Ta _{tory}	Н	0.63	6.201
38		Н	Н	OH Ta _{ta}	Н	0.52	6.284
39	O N CI	Н	Н	OH ************************************	Н	0.94	6.027

Table 3. Cont.

Mol.	R ₁	R ₂	R ₃	R ₄	R ₆	IC ₅₀ (nM)	pIC ₅₀
40	O N	Н	Н	OH ************************************	Н	1.0	6.000
41 *	O N CI	Н	Н	The House of the Control of the Cont	Н	2.1	5.678
42	O N CI	Н	Н	31.34.0	Н	1.7	5.770
43	ONN N N F	Н	Н	OH Tanana	Н	1.6	5.796
44	O N S	Н	Н	OH Ta _{landa}	Н	1.6	5.796
45	O N F	Н	Н	OH Total	Н	0.93	6.032
46	O N F	Н	Н	² 626 ₆₀	Н	2.3	5.638
47	O N F	Н	Н	Mary N	Н	1.5	5.824
48		Н	Н	Polycy N.	Н	2.6	5.585
49	o N	Н	Н	O N N	Н	5.0	5.301
50	and the second s	Н	Н	OH	Н	5.0	5.301
51 *	P N N	Н	Н	OH Volume	Н	2.0	5.699
52	O NH	Н	Н	O N N	Н	16	4.796

Table 3. Cont.

Mol.	R ₁	R ₂	R ₃	R_4	R ₆	IC ₅₀ (nM)	pIC ₅₀
53 *	NH	Н	Н	O N N	Н	18	4.745
54	H ₂ N-O S	Н	Н	O N N	Н	18	4.745
55	NH OH	Н	Н	O N N	Н	17	4.770
56	O O F	Н	Н	O N N	Н	15	4.824
57	production of the contract of	Н	Н	O N N	Н	16	4.796
58 *		Н	Н	OH	Н	3.0	5.523
59	photo H	Н	Н	OH	Н	17	4.770
60	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Н	Н	O N N	Н	2.0	5.699
61	de de la companya de	Н	Н	O N N	Н	18	5.699
62	H H N	Н	Н	O N N	Н	16	4.796
63	P N S CI	Н	Н	O N N	Н	17	4.770
64		Н	Н	OH	Н	5.0	5.301
65	production of the second of th	Н	Н	° N N N OH	Н	15	4.824
66	o O	Н	Н	"The NH ₂	Н	1.9	5.721

 Table 3. Cont.

Mol.	R ₁	R ₂	R ₃	R_4	R ₆	IC ₅₀ (nM)	pIC ₅₀
67	p de de la companya d	Н	Н	O OH	Н	2.0	5.699
68	p N N O	Н	Н	O N N H	Н	2.1	5.678
69	P N NH	Н	Н	N H	Н	1.4	5.854
70	$\bigcap_{p \neq 1} \prod_{i \neq j} \prod_{i \neq j} \prod_{i \neq j} \prod_{i \neq j} \prod_{j \neq j} \prod_{j \neq j} \prod_{i \neq j} \prod_{j \neq j} \prod_{j \neq j} \prod_{i \neq j} \prod_{j \neq j} \prod_{i \neq j} \prod_{j \neq j} \prod_{i \neq j} \prod_{j \neq j} \prod_{j \neq j} \prod_{i \neq j} \prod_{j \neq j} \prod_{j$	Н	Н	grand N O	Н	1.7	5.770
71	and the second s	Н	Н	ОН	Н	1.6	5.796
72	O N NH F	Н	Н	OH	СН3	0.66	6.180
73	O N CI	Н	Н	OH	СН3	0.41	6.387
74 *	O H F	CH ₃	Н	OH	Н	0.79	6.102
75 *	O F N N CD3	CH ₃	Н	OH	Н	1.2	5.921
76	CI N_N	Н	Н	OH ************************************	Н	4.0	5.398
77	O F N N N	Н	Н	OH	F	0.45	6.347
78 *	O N NH	Н	Н	OH	F	0.46	6.337

 Table 3. Cont.

Mol.	R ₁	R ₂	R ₃	R ₄	R ₆	IC ₅₀ (nM)	pIC ₅₀
79	O N CI	Н	Н	OH	F	0.22	6.658
80	O N NH F	Н	Н	OH ************************************	F	0.77	6.114
81	$ \begin{array}{c c} O & F \\ N & N & CD_3 \\ O & O \end{array} $	Н	Н	OH	F	0.48	6.319
82 *	O CI N NH O	Н	Н	OH	F	0.35	6.456
83	O N F	Н	Н	^v u _{venu} OН	F	0.59	6.229
84 *	O F N N N	Н	Н	OH "too _{to}	F	0.32	6.495
85	$0 \longrightarrow F$	Н	Н	OH	CN	1.0	6.000
86	O N CI	Н	Н	OH	CN	0.49	6.310
87 *	O N CI	Н	Н	OH	Cl	0.25	6.602
88 *	O N N N	Н	Н	OH	Cl	1.0	6.000
89		Н	Н	OH	Cl	1.3	5.886
90	O N N	Н	Н	OH Valenda	Cl	0.81	6.092

Table 3. Cont.

Mol.	R ₁	R ₂	R ₃	R ₄	R ₆	IC ₅₀ (nM)	pIC ₅₀
91 *	O F N N N	Н	Н	OH	Cl	0.62	6.208
92		Н	Н	OH	Cl	0.44	6.357
93	O N CI	Н	Н	OH	Cl	0.55	6.260
94	O N F	Н	Н	OH	Cl	0.85	6.071
95	O N O	Н	Н	OH	Cl	0.91	6.041
96	O F N N N	Н	Н	OH	Cl	1.0	6.000
97	$Cl^0 \bigvee_{K \in \mathcal{K}} F$	Н	Н	OH	Н	0.9	6.046
98	CION N	Н	Н	OH	Cl	2.0	5.699
99	CION F	Н	Н	OH	Cl	0.45	6.347
100	Cl ^O F	Н	Н	OH	F	0.35	6.456
101 *	Н	Н	O N O	Н	Cl	189	3.724
102 *	Н	Н	N O	Н	Cl	308	3.511
103 *	Н	Н	O Vinding N O	Н	Cl	461	3.336

Table 3. Cont.

Mol.	R ₁	R ₂	R ₃	R_4	R ₆	IC ₅₀ (nM)	pIC ₅₀
104 *	Н	Н	O N N	Н	Programme Cl	110	3.959
105	Н	Н	O N N	Н	72/20/20	28	4.553
106 *	Н	Н	O N N	Н	HNO	88	4.056
107 *	Н	Н	Н	O North N N	HNO	379	3.421
108	Н	Н	Н	O N N	F	15	4.824
109	Н	Н	Н	O N N	200	32	4.495
110	Н	Н	Н	O N N	100 Marie Control	24	4.620
111	Н	Н	Н	O NAME NO N	ONH	71	4.149
112	Н	Н	Н	O N N	Thomas Cl	59	4.229
113	Н	Н	Н	O N N	T. T	103	3.987
114 *	Н	Н	Н	O N N	O N H	44	4.357
115 *	Н	Н	Н	O N N		127	3.896
116 *	Н	Н	Н	O N N	Cl	101	3.996
117	Н	Н	Н	O N N	NH ₂	19	4.721
118 *	Н	Н	Н	O N N	F	22	4.658

Int. J. Mol. Sci. 2018, 19, 1244 20 of 24

 Table 3. Cont.

Mol.	R ₁	R ₂	R ₃	R ₄	R ₆	IC ₅₀ (nM)	pIC ₅₀
119	Н	Н	Н	O N N	F The state of the	16	4.796
120 *	Н	Н	Н	O N N	F Toward F	12	4.921
121	F	Н	Н	O NOTANA N N	Н	16	4.796
122	por F CI	Н	Н	O N N	Н	15	4.824
123	ООН	Н	Н	O NOO	Н	16	4.796
124	age of the second of the secon	Н	Н	O N O	Н	17	4.770
125	F	Н	Н	O N N N	Н	16	4.796
126 *	and the second s	Н	Н	O N N	Н	16	4.796
127 *	p ^d O	Н	Н	O N N	Н	390	3.409
128 *	age of the CI	Н	Н	O N N	Н	15	4.824
129	$0 \longrightarrow F$ $0 \longrightarrow F$ $0 \longrightarrow F$	Н	Н	OH	Н	0.4	6.398
130	O N NH F	Н	Н	OH	Cl	0.90	6.046
131	O F N N N	Н	Н	OH	Cl	1.0	6.000
132	O N CI	Н	Н	OH	F	0.34	6.585

^{*} Test set.

Int. J. Mol. Sci. 2018, 19, 1244 21 of 24

3.2. Preparation of Protein

The crystal structure of BTK with high resolution was retrieved from the protein data bank (PDB ID: 5JRS) [20]. This crystal structure was prepared using a protein preparation module in Sybyl-X 2.0. Ligand and water molecules were removed. Furthermore, polar hydrogen atoms were added for investigating interactions between inhibitors and BTK.

3.3. Molecular Docking and Alignment

The molecular dockings of 1–132 were performed using Surflex-Dock (SFXC) module with default parameters, except that the maximum number of per molecular conformation was defined as 40 to ensure that the docked conformations in the BTKBTK-binding site were reasonable. The rational docked conformations of the compound in the protein-binding site were picked up from the clustered docking poses according to the principle of low energy and rational conformation [28]. The most potent compound, 79, with the rational conformation possessing the lowest energy, was chosen as the reference molecule. Rational conformations of the remaining inhibitors in the dataset based on the interactions with the BTK-enzyme-binding site were aligned on the common substructure of the reference compound (Figure 8). After the conformations were aligned in the BTKBTK-binding site, all selected conformations were conserved as a database file, which was used for 3D-QSAR study.

$$R_5$$
 R_4
 R_3
 R_2
 R_1

Figure 8. The common scaffold of the dataset.

3.4. 3D-QSAR Analysis Studies

3D-QSAR analyses performed by the QSAR command bar of SYBYL X-2.0 (Tripos (DE), Inc., St. Louis, MO, USA) were carried out in the form of molecular spreadsheets to create CoMFA and CoMSIA fields from the database file acquired after molecular docking. The CoMFA [17] fields, including steric (S) and electrostatic (E) fields, were calculated under default settings with energy cutoff values of 30 kcal/mol. With the exception of the same fields in CoMFA, the CoMSIA [18] fields also containing hydrophobic (H) and hydrogen-bond donor (D) and acceptor (A) fields were derived using the same method as that of the CoMFA calculations. Both CoMFA and CoMSIA analyses were calculated in the standard settings with an attenuation factor α of 0.3. After 3D-QSAR analyses, the standard contour maps for both CoMFA and CoMSIA to visualize the results were developed using the field type StDev*Coeff.

3.5. Model Validation

All the developed CoMFA and CoMSIA models were checked for stability and robustness using the internal and external test set validations. Internal validation was carried out using a PLS [29] approach of cross-validation method to inspect the predictability of the dataset. The external test set containing 32 molecules not included in the model building was applied to verify the accuracy of the predictive abilities of the derived 3D-QSAR models. In the PLS approach, leave-one-out (LOO) method analysis generated the cross-validated q^2 and the optimum number of components. The final CoMFA and CoMSIA models were developed using the obtained optimal number of components without cross-validation analysis. When the values of the coefficients fall between 1.0 and 0.5 [30], an accurate model is accepted. Furthermore, for better evaluation of the accuracy and robustness of the

Int. J. Mol. Sci. 2018, 19, 1244 22 of 24

developed models, non-cross-validation analysis was employed to yield the conventional correlation coefficient r^2 and the F-test value (F).

4. Conclusions

A 3D-QSAR study on carbazole inhibitors based on a common scaffold was conducted with the generation of rational docking conformations and CoMFA/CoMSIA models. The reasonable CoMFA ($q^2 = 0.761$, $r^2 = 0.933$) and CoMSIA ($q^2 = 0.891$, $r^2 = 0.988$) models displayed satisfactory correlations and predictive abilities. CoMFA and CoMSIA contour maps provided information (shown in Figure 9) indicating that structural optimization for improving activities can be predominantly considered by adding bulky negative electrostatic groups and hydrophilic groups at R₁, by increasing hydrophilic groups at R₄, and by raising H-bond donor and acceptor substituents at 1-position. Moreover, the predicted ability of 3D-QSAR models was validated for application in predicting the activities of newly designed compounds and further provided a valuable clue in the design of novel carbazole inhibitors for RA treatment.

Figure 9. The structure–activity relationship (SAR) summarized based on our work.

Acknowledgments: This work was supported by a grant from the National Natural Science Foundation of China (81202389).

Author Contributions: Rui Li and Yongli Du conceived and designed the experiments; Rui Li performed the experiments; Rui Li and Zhipei Gao analyzed the data; Jingkang Shen contributed materials tools; Rui Li wrote the paper.

Conflicts of Interest: There are no conflicts of interest to declare.

Abbreviations

BTK	Broton's tyrosine kinase
RA	Rheumatoid Arthritis
BCR	B-cell receptor

NSAIDs non-steroidal anti-inflammatory drug SAARDs slow acting anti-rheumatic drugs DMARDs disease-modifying anti rheumatic drugs

3D-QSAR three-dimensional quantitative structure–activity relationship

CoMFA comparative molecular field analysis

CoMSIA comparative molecular similarity indices analysis

PLS partial least square

XLA X-linked agammaglobulinemia
ALL acute lymphoblastic leukemia
CML chronic myeloid leukemia
CLL chronic lymphocytic leukemia

References

- 1. Shaw, M.; Collins, B.F.; Ho, L.A.; Raghu, G. Rheumatoid arthritis-associated lung disease. *Eur. Respir. Rev.* **2015**, 24, 1–16. [CrossRef] [PubMed]
- 2. Brito, Y.; Glassberg, M.K.; Ascherman, D.P. Rheumatoid Arthritis-Associated Interstitial Lung Disease: Current Concepts. *Curr. Rheumatol. Rep.* **2017**, *19*, 79. [CrossRef] [PubMed]
- 3. Smolen, J.S.; Landewe, R.; Breedveld, F.C.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gorter, S.; Knevel, R.; Nam, J.; Schoels, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. *Ann Rheum. Dis.* **2010**, *69*, 964–975. [CrossRef] [PubMed]
- 4. Ma, M.H.; Cope, A.P.; Scott, D.L. Safety of combination therapies in early rheumatoid arthritis: A systematic comparison between antirheumatic drugs and TNF inhibitors with methotrexate. *Int. J. Clin. Rheumatol.* **2010**, *5*, 547–554. [CrossRef]
- 5. Takata, M.; Kurosaki, T. A Role for Bruton's Tyrosine Kinase in B Cell Antigen Receptor-mediated Activation of Phospholipase C-gamma 2. *J. Exp. Med.* **1996**, *184*, 31–40. [CrossRef] [PubMed]
- 6. Mohamed, A.J.; Nore, B.F.; Christensson, B.; Smith, C.I. Signalling of Bruton's Tyrosine Kinase, Btk. *Scand. J. Immunol.* **1999**, 49, 113–118. [CrossRef] [PubMed]
- 7. Whang, J.A.; Chang, B.Y. Bruton's tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. *Drug Discov. Today* **2014**, *19*, 1200–1204. [CrossRef] [PubMed]
- 8. Pan, Z.; Scheerens, H.; Li, S.J.; Schultz, B.E.; Sprengeler, P.A.; Burrill, L.C.; Mendonca, R.V.; Sweeney, M.D.; Scott, K.C.; Grothaus, P.G.; et al. Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. *ChemMedChem* **2007**, *2*, 58–61. [CrossRef] [PubMed]
- 9. Honigberg, L.A.; Smith, A.M.; Sirisawad, M.; Verner, E.; Loury, D.; Chang, B.; Li, S.; Pan, Z.; Thamm, D.H.; Miller, R.A.; et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. *Proc. Natl. Acad. Sci. USA* **2010**, *107*, 13075–13080. [CrossRef] [PubMed]
- 10. Wu, J.; Zhang, M.; Liu, D. Acalabrutinib (ACP-196): A selective second-generation BTK inhibitor. *J. Hematol. Oncol.* **2016**, *9*, 21. [CrossRef] [PubMed]
- 11. Yoshizawa, T.; Birkett, J.T.; Kawabata, K. ONO-4059, A Novel Bruton's Tyrosine Kinase (Btk) Inhibitor: Synergistic Activity in Combination with Chemotherapy in a ABC-DLBCL Cell Line. *Blood* **2013**, *122*, 5151.
- 12. Evans, E.K.; Tester, R.; Aslanian, S.; Karp, R.; Sheets, M.; Labenski, M.T.; Witowski, S.R.; Lounsbury, H.; Chaturvedi, P.; Mazdiyasni, H.; et al. Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans. *J. Pharmacol. Exp. Ther.* **2013**, 346, 219–228. [CrossRef] [PubMed]
- 13. Park, J.K.; Byun, J.Y.; Park, J.A.; Kim, Y.Y.; Lee, Y.J.; Oh, J.I.; Jang, S.Y.; Kim, Y.H.; Song, Y.W.; Son, J.; et al. HM71224, a novel Bruton's tyrosine kinase inhibitor, suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model: A potential drug for rheumatoid arthritis. *Arthritis Res. Ther.* **2016**, *18*, 91. [CrossRef] [PubMed]
- 14. Watterson, S.H.; De Lucca, G.V.; Shi, Q.; Langevine, C.M.; Liu, Q.; Batt, D.G.; Beaudoin Bertrand, M.; Gong, H.; Dai, J.; Yip, S.; et al. Discovery of 6-Fluoro-5-(R)-(3-(S)-(8-fluoro-1-methyl-2,4-dioxo-1,2-dihydroquinazolin-3(4H)-yl)-2-methylphenyl)-2-(S)-(2-hydroxypropan-2-yl)-2,3,4,9-tetrahydro-1H-carbazole-8-carboxamide (BMS-986142): A Reversible Inhibitor of Bruton's Tyrosine Kinase (BTK) Conformationally Constrained by Two Locked Atropisomers. *J. Med. Chem.* 2016, 59, 9173–9200. [CrossRef] [PubMed]
- 15. Lee, S.K.; Xing, J.; Catlett, I.M.; Adamczyk, R.; Griffies, A.; Liu, A.; Murthy, B.; Nowak, M. Safety, pharmacokinetics, and pharmacodynamics of BMS-986142, a novel reversible BTK inhibitor, in healthy participants. *Eur. J. Clin. Pharmacol.* **2017**, *73*, 689–698. [CrossRef] [PubMed]
- 16. Gillooly, K.M.; Pulicicchio, C.; Pattoli, M.A.; Cheng, L.; Skala, S.; Heimrich, E.M.; McIntyre, K.W.; Taylor, T.L.; Kukral, D.W.; Dudhgaonkar, S.; et al. Bruton's tyrosine kinase inhibitor BMS-986142 in experimental models of rheumatoid arthritis enhances efficacy of agents representing clinical standard-of-care. *PLoS ONE* **2017**, 12, e0181782. [CrossRef] [PubMed]
- 17. Cramer, R.D.; Patterson, D.E.; Bunce, J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. *J. Am. Chem. Soc.* **1988**, *110*, 5959–5967. [CrossRef] [PubMed]

Int. J. Mol. Sci. 2018, 19, 1244 24 of 24

18. Klebe, G.; Abraham, U.; Mietzner, T. Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Biological Activity. *J. Med. Chem.* **1994**, 37, 4130–4146. [CrossRef] [PubMed]

- 19. Li, X.; Zuo, Y.; Tang, G.; Wang, Y.; Zhou, Y.; Wang, X.; Guo, T.; Xia, M.; Ding, N.; Pan, Z. Discovery of a series of 2,5-diaminopyrimidine covalent irreversible inhibitors of Bruton's tyrosine kinase with in vivo antitumor activity. *J. Med. Chem.* **2014**, *57*, 5112–5128. [CrossRef] [PubMed]
- De Lucca, G.V.; Shi, Q.; Liu, Q.; Batt, D.G.; Beaudoin Bertrand, M.; Rampulla, R.; Mathur, A.; Discenza, L.; D'Arienzo, C.; Dai, J.; et al. Small Molecule Reversible Inhibitors of Bruton's Tyrosine Kinase (BTK): Structure-Activity Relationships Leading to the Identification of 7-(2-Hydroxypropan-2-yl)-4-[2-methyl-3-(4-oxo-3,4-dihydroquinazolin-3-yl)phenyl]-9H-carbazole-1-carboxamide (BMS-935177). *J. Med. Chem.* 2016, 59, 7915–7935. [CrossRef] [PubMed]
- 21. Liu, Q.; Batt, D.G.; Lippy, J.S.; Surti, N.; Tebben, A.J.; Muckelbauer, J.K.; Chen, L.; An, Y.; Chang, C.; Pokross, M.; et al. Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton's tyrosine kinase (BTK) and Janus kinase 2 (JAK2). *Bioorg. Med. Chem. Lett.* **2015**, 25, 4265–4269. [CrossRef] [PubMed]
- 22. Liu, Q.; Batt, D.G.; DeLucca, G.V.; Shi, Q.; Tebben, A.J. Carbazole Carboxamide Compounds Useful as Kinase Inhibitors. U.S. Patent 8,362,065, 9 January 2013.
- 23. Batt, D.G.; Bertrand, M.B.; DeLucca, G.; Galella, M.A.; Ko, S.S.; Langevine, C.M.; Liu, Q.; Shi, Q.; Srivastava, A.S.; Tino, J.A.; et al. Substituted Tetrahydrocarbazole and Carbazole Carboxamide Compounds. U.S. Patent 9,334,290, 10 May 2016.
- 24. Clark, M.; Cramer, R.D.; Van Opdenbosch, N. Validation of the General Purpose Tripos 5.2 Force Field. *J. Comput. Chem.* **1989**, *10*, 982–1012. [CrossRef]
- 25. Cramer, R.D., III; Patterson, D.E.; Bunce, J.D. Recent advances in comparative molecular field analysis (CoMFA). *Prog. Clin. Biol. Res.* **1989**, 291, 161–165. [PubMed]
- 26. Balasubramanian, P.K.; Balupuri, A.; Gadhe, C.G.; Cho, S.J. 3D QSAR modeling study on 7-aminofuro [2,3-c] pyridine derivatives as TAK1 inhibitors using CoMFA and COMSIA. *Med. Chem. Res.* **2014**, *24*, 2347–2365. [CrossRef]
- 27. Cai, B.Q.; Jin, H.X.; Yan, X.J.; Zhu, P.; Hu, G.X. 3D-QSAR and 3D-QSSR studies of thieno[2,3-d]pyrimidin-4-yl hydrazone analogues as CDK4 inhibitors by CoMFA analysis. *Acta Pharmacol. Sin.* **2014**, *35*, 151–160. [CrossRef] [PubMed]
- 28. Aalizadeh, R.; Pourbasheer, E.; Ganjali, M.R. Analysis of B-Raf V600E inhibitors using 2D and 3D-QSAR, molecular docking and pharmacophore studies. *Mol. Divers.* **2015**, *19*, 915–930. [CrossRef] [PubMed]
- 29. Wold, S.; Ruhe, A.; Wold, H.; Dunn, W.J. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. *SIAM J. Sci. Stat. Comput.* **1984**, *5*, 735–743. [CrossRef]
- 30. Wehrens, R.; Putter, H.; Buydens, L.M. The bootstrap: A tutorial. *Chemometr. Intell. Lab. Syst.* **2000**, *54*, 35–52. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).