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Abstract: Oleuropein (Ole) is one of the most plentiful phenolic compounds with antioxidant,
anti-inflammatory, anti-atherogenic, hypoglycemic and hypolipidemic effects. The aim of our study
was to establish whether the positive Ole-related effects on liver steatosis could be associated with
autophagy. Female and male C57BL/6] mice were fed normal diet (ND) or high-fat diet (HFD)
for eight weeks, and Ole was added or not for the following eight weeks. The autophagy-related
proteins Akt, mTOR, AMPK, ULK1, Beclin-1, LC3B and p62/Sqstm1 were analyzed. Interestingly,
Ole induced a different regulation of the Akt/mTOR pathway in female compared to male mice,
but was able to activate the autophagic process in ND and HFD mice through AMPK-dependent
phosphorylation of ULK1 at Ser555, regardless of the gender. Our work reveals the ability of Ole to
induce, in liver of ND and HFD mice, autophagy independently by gender-specific mTOR activation.
We highlight Ole as a novel therapeutic approach to counteract unhealthy diet-related liver steatosis
by targeting autophagy.

Keywords: autophagy; AMPK; mTOR; oleuropein; phenolic compound; nutraceutical; Mediterranean
diet; olive oil; liver steatosis; NAFLD

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is a major form of chronic liver disease and
affects about 25% of the world population. NAFLD is considered the hepatic manifestation of
metabolic syndrome, highly associated with obesity and insulin resistance [1]. NAFLD and obesity
share common clinical aspects and similar physiopathologic mechanisms. NAFLD, as well as
NASH (non-alcoholic steatohepatitis), are highly prevalent in all continents, but epidemiology and
demographic characteristics vary worldwide, with about 32% of prevalence in South America and the
Middle East, 27% in Asia and 23% in the USA and Europe [2].

NAFLD/NASH, in the next future, will emerge as the leading cause of end-stage liver
disease, thus the development of effective therapies warrants special attention. In this context,
plant polyphenols, such as oleuropein (Ole), which are often part of the so-called Mediterranean
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diet and have important healthy protective effects [3,4], might be a remarkable resource to be taken
into account.

It is well known that apoptosis contributes to the pathogenesis of NASH, and apoptosis-related
caspase family molecules play important roles in the progression of liver disease [5], whereas, in
the steatotic liver, autophagy has been described to be less effective [6]. However, it is still unclear
how autophagy is regulated during unhealthy diet and its crosstalk with cell death [7-10]. In fact,
although autophagy surely plays a protective role under a physiologic condition by degrading
damaged mitochondria and protein aggregates, the activation of autophagy for a long time, as happens
under pathologic conditions, can lead to organ dysfunction by degrading essential proteins and
organelles [11].

The word “autophagy” means self-eating and derives from the ancient Greek: to eat (“phagy”)
self (“auto”). Autophagy occurs in multiple different cell types and is activated either under cellular
starvation or under nutrient overload. Autophagy is a safeguard cellular mechanism involved in
intracellular protein degradation and characterized by autophagosome formation [12]. Besides its
important role through bulk degradation in supplying nutrients, including lipid overload, this system
has the capacity to degrade certain proteins and organelles to maintain cellular homeostasis [13].
During the past decade, a great deal of knowledge of autophagy has been gained, showing that
the function of autophagy is complex and involved in a lot of different processes, such as cellular
differentiation, regulation of metabolism, aging and cellular defense [14-19].

Previous studies have highlighted that AMP-activated protein kinase (AMPK) is an autophagy
inducer by Atgl/Unc-51-like-kinasel (ULK1) phosphorylation (Ser 555) [20]. ULK1 is required for
full autophagic induction and activates, in turn, Beclin-1, which has a central role in stimulating
autophagy due to cellular stress. At the early stage of autophagy, Beclin-1 collaborates to form the
autophagosome by creating the isolation membrane, a double-membrane structure that surrounds
cytoplasmic material [21]. Efficient macro-autophagic responses have been associated with the
activity of ATG3 and ATG?7, which together with the ATG12-ATG5: ATG16L1 complex conjugates
phosphatidylethanolamine to microtubule-associated protein 1 light chain 3 beta (LC3B) [22,23].
Protein light chain 3 (LC3) and p62/Sequestosome 1 (p62/Sqgstml) are linked to autophagosomal
membranes and participate in cytoplasmic content degradation [22].

Ole (Olea europaea L.) is a non-toxic secoiridoid phenol present in leaves and fruits of olives.
Ole represents up to 14% of the olive fruit’s dry weight, being one of the most abundant phenols in
olives [24]. Recently, Park et al. [25] highlighted hepato-protective effects of Ole in a mouse model fed
a high-fat diet (HFD) and characterized by the presence of liver steatosis.

Bioavailability and metabolism of Ole are heterogeneous and highly dependent on a number of
factors, including gender. Ole displays important gender-related differences in membrane transport
that have been reported in various organs of the body, including liver, kidney, intestine and brain.
These sex-related differences in transport systems are definitely involved in the inter-individual
variability of pharmacokinetics and pharmacodynamics [26]. Moreover, large inter-individual
variations in absorption and metabolism of phenolic compounds have been reported, as a consequence
of different enzymatic activity of the liver [27]. Indeed, the daily inter-individual variation, due to
circadian rhythm, makes it even more difficult to develop reliable data on molecules such as
Ole [28]. Thus, when studying this kind of compound, it is extremely important to carefully evaluate
sex differences.

Ole down-regulates the expression of numerous genes involved in hepatic lipogenesis, oxidative
stress, and pro-inflammatory response, however it has been never investigated if the ability of Ole in
improving liver steatosis might be related to the activation of autophagy.

To achieve this aim, we have examined autophagy response to Ole in NAFLD mice at 16-weeks,
taking into account sex-dependent responses to HFD. The expression levels of autophagy-related
proteins Akt, mTOR, AMPK, ULK1, Beclin-1, LC3B and p62/5qstm1 were contextually studied.
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2. Results

2.1. ND and HFD Liver Histology before and after Ole Treatment

We used C57BL/6] murine models that well mimic human metabolic syndromes, developing
steatosis, metabolic and cardiovascular diseases [29].

First of all, we performed hematoxylin and eosin stain of liver tissues of ND and HFD female
(Figure 1A) and male (Figure 1B) mice treated or not with 3% of Ole, administered by oral gavage.
As expected, Ole was able to improve liver steatosis either in females or males (Figure 1A,B).

However, HFD induced a prevalent aspect of micro-vacuolar liver steatosis in females (about
60% micro-vacuolar and 40% of macro-vacuolar liver steatosis, Figure 1A) and, conversely a prevalent
aspect of macro-vacuolar liver steatosis in males (about 40% micro-vacuolar and 60% of macro-vacuolar
liver steatosis, Figure 1B) [30,31]. The lowest accumulation of fat in the liver of females after HFD was
correlated with a better improvement of liver steatosis after Ole treatment (about 40% micro-vacuolar
and 20% of macro-vacuolar liver steatosis in female vs. about 70% micro-vacuolar and 30% of
macro-vacuolar liver steatosis Figure 1A,B). Biochemical parameters are reported in Table S1.

A B
ND + Ole

ND + Ole

Figure 1. Effects of Ole treatment on liver histology in normal diet (ND) or high-fat diet (HFD) mice.
Hematoxylin and eosin staining in liver sections from representative liver tissues of female (A) and male
(B) mice fed ND or HFD in presence or absence of Ole. Original magnification x 100, scale bar = 80 pum.

2.2. Gender Specific Activation of Akt/mTOR Pathway by Ole in ND and HFD Mice

First of all, we evaluated the expression of Akt and mTOR transcripts and functional proteins.

Surprisingly, in ND and HFD 16 week-mice, treated with Ole, the expression of total Akt protein
was increased, and its activity was higher in females compared to males. After Ole treatment, only ND
and HFD female mice, but not male mice, activated p-mTOR, showing a post-transcriptional regulation
of this protein (Figure 2A,B).

The lack of Akt/mTOR pathway activation in 16-week-HFD mice could be due to the early stage
of metabolic related damage. Thus, to support our hypothesis, the same mouse model was fed a HFD
for 12 months, displaying, in accordance with the literature, a significant activation of Akt/mTOR
pathway, either at transcriptional or at post-transcriptional levels (Figure S1).
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Figure 2. Gender-specific Akt/mTOR pathway in ND and HFD mice before and after Ole treatment.
(A) Akt and mTOR mRNA expression level evaluated by Q-PCR in ND, ND + Ole, HFD and HFD + Ole
male and female mice. Gene expression values are expressed as 2~2Ct values. The results are reported
as mean + SD. (B) Western blot analysis and relative densitometry of total and phosphorylated (p-Akt
(5473), p-mTOR (52481)) proteins in ND and HFD male (M) and female (F) mice, treated or not with
Ole. Values are expressed as fold mean & SD. * p < 0.05, *** p < 0.001 vs. ND; # p < 0.05, ## p < 0.001 vs.

HFD; 8 p < 0.05 vs. ND + Ole.

2.3. Activation of AMPK/ULK1 Pathway by Ole in ND and HFD Mice

AMPK is a metabolic stress-sensing enzyme involved in maintaining cellular energy homeostasis
and interacts with phosphorylates, and activates the ULK1 protein kinase, a main initiator of the
autophagic process. Thus, to understand if the mTOR sex-specific activation was involved in impairing
liver autophagy we decided to look at the effects on AMPK/ULKI1 intracellular pathway related to

Ole treatment.

Ole was able to initiate the autophagic process in ND and HFD 16 week-mice, regardless of the
sex, by the increase of ULK1 phosphorylation at Ser555 (Figure 3A,B).
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Figure 3. Activation of AMPK/ULKI1 pathway by Ole in ND and HFD mice (A) AMPK and ULK1
expression, evaluated by Q-PCR, in ND and HFD in male (M) and female (F) mice in presence or not of
Ole. Gene expression values are expressed as 2~*Ct values. The results are reported as mean + SD.
(B) Western blot analysis and relative densitometry of pAMPK/AMPK and pULK1/ULKI protein
expression in ND and HFD in M and F mice in presence or not of Ole. Values are expressed as fold
mean + SD. * p < 0.05, ** p < 0.01 vs. ND; # p < 0.05, # p < 0.01 vs. HFD; 8 p < 0.01 vs. ND + Ole.

2.4. Ole is Able to Induce Early Autophagic Machinery

Afterwards, we examined the induction of autophagosome by Ole in ND and HFD mice.
Q-PCR and Western blot analyses were performed on Beclin-1, LC3B and p62/Sqstm1.

As shown in Figure 4, only in ND + Ole female mice, was Ole able to induce a significant increase
of Beclin-1 and LC3B at transcriptional and post-transcriptional levels (Figure 4A,B). Accordingly,
p62/5qstm1 protein levels were down-regulated only in ND + Ole female mice (Figure 4B).

Interestingly, Ole treatment in 16-week-HFD mice was able to induce a significant up-regulation
of Beclin-1 protein levels in both sexes (Figure 4B). In keeping with the increase of Beclin-1 protein,
HFD + Ole mice displayed a significant up-regulation of LC3B-II/I protein level compared to ND
+ Ole mice (Figure 4B). Finally, a significant down-regulation of p62/Sqstm1 by Ole was observed
(Figure 4A,B).
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Figure 4. Ole induces early autophagic machinery (A) Beclin-1, LC3B and p62/Sqstm1 expression,
evaluated by Q-PCR, in ND and HFD in male (M) and female (F) mice in presence or not of Ole.

Gene expression values are expressed as 27ACt

values. The results are reported as mean £ SD.
(B) Western blot analysis and relative densitometry of Beclin-1, LC3B-II/I and p62/Sqstm1 protein
expression in ND and HFD in M and F mice in presence or not of Ole. Values are expressed as fold
mean + SD. *p < 0.05, ** p < 0.01, *** p < 0.001 vs. ND; # p < 0.05, # p < 0.01, ## p < 0.001 vs. HFD;

$p<0.05,5 p<0.01, 55 p < 0.001 vs. ND + Ole.

2.5. Ole Does Not Affect the Expression of Caspase 3 and Bcl-2 Apoptotic Proteins in HFD Mice

We asked ourselves if the Akt protein activation, observed in female and male HFD-fed mice (see
Figure 2), could be associated with the activation of apoptotic processes. To this aim, we looked at the
Caspase 3 and Bcl2 transcriptional and post-transcriptional regulation.

Interestingly, 16 weeks of HFD intake was not able to increase Caspase 3 and Bcl2 expression,
whereas Ole treatment induced a significant up-regulation of Caspase 3 mRNA expression level in ND
+ Ole female mice and in both sexes of HFD mice (Figure 5A).

Here, we would like to highlight that the increase of Caspase3 in ND + Ole and in HFD + Ole mice
follows the behaviour already appreciated for Beclin 1 after Ole administration.

Bcl2 mRNA expression level was significantly decreased only in HFD + Ole male mice compared
to the HFD group (Figure 5A).

Caspase 3 protein expression, investigated in liver tissues by immunohistochemistry (IHC)
(Figure 5B), did not display any significant difference, whereas a weak increase of Bcl2 expression was
noticed after Ole treatment (Figure 5B). However, the increase of Bcl2 protein expression did not reach
statistical significance.
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Figure 5. Caspase 3 and Bcl2 transcriptional expression. (A) Caspase 3 (top) and Bcl2 (bottom) expression,
evaluated by Q-PCR, in ND and HFD mice, treated or not with Ole. Gene expression values are
expressed as 27ACt values. The results are reported as mean + SD. ** p < 0.01 vs. ND; # p < 0.05,
## p < 0.01 vs. HFD. (B) Caspase 3 and Bcl2 expression in ND and HFD mice in presence or absence
of Ole treatment. Immunohistochemistry in liver sections from representative female (left) and male
(right) mice fed ND or HFD with or without Ole treatment. Original magnification x 400.

3. Discussion

Even if the knowledge on the autophagy process has been tremendously expanded over the past
decades, the complex mechanisms involved are still far from understood. Moreover, the different
sex-related behavior in inducing this safeguard cellular mechanism makes it even more difficult to
understand the pathophysiological grounds [32]. Indeed, even if the effectiveness of controlling
autophagy of several molecules, including phenol compounds [33] such as Ole, has been increasingly
indicated, the bioavailability and metabolism of these compounds are variable and often dependent on
a number of factors, including gender [26]. Thus, up to date, there are no available commercial drugs,
able to activate or inhibit autophagy, approved by the US Food and Drug Administration (FDA) or
equivalent regulatory agency [34].

Given these assumptions, we asked ourselves if the positive effects of Ole treatment, in the
presence of liver steatosis [25], could be associated with the activation or inhibition of autophagy and
if the biological effects were differently modulated in both sexes.

Ole treatment, in the presence of HFD intake, is able to induce autophagy response through the
activation of AMPK/ULK1 pathway in both sexes.

Accordingly, it has been demonstrated that AMP-activated protein kinase (AMPK) induces
autophagy by the phosphorylation of Atgl/ Unc-51-like-kinasel (ULK1) at Ser555 [20]. On the other
hand, recent studies have shown that insulin resistance can be regulated by Akt/mTOR pathway
activation through a negative-feedback loop, but the mechanisms regulating this signaling through
cellular energy are not as well defined as those for growth factors and nutrients [35].
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Effectively, we highlighted that a mouse model fed HFD for 12 months exhibited a significant
activation of the Akt/mTOR pathway (Figure S1) and was not more able to activate the autophagy
proteins, such as Beclin-1 and LC3B. The results shown in Figure 2A,B indicate that the high calorie
intake, at least at this initial phase of liver steatosis (16 weeks), as reported by Kimball et al. [36],
induces an increased expression of Akt in both sexes not followed by mTOR activation. However,
this phenomenon does not impair the ability of Ole to induce autophagy through the activation of
AMPK/ULK1 intracellular pathway (Figure 3A,B).

In our opinion, all these results lend credence to a possible use of Ole in NAFLD patients, in
keeping with previous data reported by Lim et al. that demonstrated the induction of autophagic
process by an autophagy small-molecule enhancer (MSL) in a mTORC1-independent manner [37].

Finally, regarding the observed transcriptional activation of Caspase 3 (Figure 5), several
studies [11,38,39] demonstrated that Caspases-1, -3, and -7 seem to have a key role, not only in
regulating apoptosis, but also the autophagic activity. Accordingly, it has been reported that autophagy
dependent cell death, defined as a form of “non-protective autophagy”, seems to be slowed down by
some pharmacological stimuli [40].

Concerning our study, we hope that it may start to shed light on the complex and still unclear
autophagic biological world related to HFD in the presence or absence of drugs (such as Ole)
demonstrating the ability to activate the autophagic process.

4. Materials and Methods

4.1. Mice Experimental Protocol

C57BL/6] mice, purchased from Charles River Laboratories International, Inc. (Wilmington, MA,
USA) were housed in wire mesh cages maintained at controlled (21 £ 1 °C) temperature room with a
12 h light-dark cycle. Mice had ad libitum access to food and water.

After 1 week of acclimation, 24 mice were randomly divided into 4 groups (6 mice for each group,
3 male and 3 female) and fed with one of the following types of diet: 16 weeks of normal diet (TD.2018,
Harlan; ND group), 8 weeks of normal diet + 8 weeks of normal diet and 3% of Ole dissolved in
drinking water and daily administered by oral gavage (ND + Ole group), 16 weeks of high fat diet
(TD.88137, Harlan; HFD group), 8 weeks of high fat diet + 8 weeks of high fat diet and 3% of Ole
dissolved in drinking water and daily administered by oral gavage (HFD + Ole group). After 16 weeks,
mice were sacrificed and each organ was dissected and samples were formalin-fixed for immune
histological analysis or immediately frozen and stored at —80 °C until use for subsequent analysis.

All animal protocols were in accordance with the Guide for the Care and Use of Laboratory
Animals and approved by the Institutional Animal Care and Use Committee at the University of
Florence, Italy (178/2013 B, on 16 July 2013).

4.2. Histological Analysis

Specimens were formalin-fixed, paraffin-embedded and sectioned in order to assess the
histological features by hematoxylin and eosin (H&E) staining analysis, using a standard protocol.

4.3. Immunohistochemistry for Caspase 3 and Bcl2

Formalin-fixed, paraffin-embedded sections (4 um thick) were mounted on positively charged
glass slides. The slides were cooled and endogenous peroxidase was blocked with peroxidase block
buffer (citric acid 0.04 M, Na,HPO4-2H,O 0.12 M, NaNj3; 0.03 M and H,O, at 1.5% v/v) for 10 min
at room temperature. Then, the sections were incubated for 1 h at room temperature with rabbit
polyclonal antibody anti-Caspase 3 (Active) (1:20 dilution, 3015 Biovision, Milpitas, CA, USA) or with
rabbit polyclonal antibody anti-Bcl2 (1:100 dilution, C21, sc-783, Santa Cruz Biotechnology, Dallas,
TX, USA).



Int. ]. Mol. Sci. 2018, 19, 3948 9of12

The primary antibodies were visualized using the avidin-biotin-peroxidase complex method
(UltraTek HRP Anti-polyvalent, ScyTek, Logan, UT, USA) according to the instruction manual.
3,3’ diaminobenzidine was used as the enzyme substrate to observe the specific antibody localization,
and Mayer hematoxylin was used as a nuclear counterstain. Negative controls were tissue sections
stained in the absence of the primary antibody. Positive controls were A20 lymphoma cells injected
subcutaneously in BALB/c mice. All samples were stained more than once and the results were
highly reproducible. To assess differences in staining intensity, an immunoreactivity scoring system
was applied. Intensity of staining was classified by both the percentages of the cells stained and the
intensity of the staining [41]. In this way, the final scores of 0 to 3 were obtained (0, negative; 1, weak;
2, moderate; 3, strong.

4.4. RNA Extraction and cDNA Synthesis

Total RNA was extracted from liver tissues using Trizol reagent (Invitrogen, Carlsbad, CA, USA),
according to the manufacturer’s instructions. One pug of total RNA was reverse transcribed using the
High-Capacity cDNA Reverse transcription Kit (Applied Biosystems, Foster City, CA, USA), according
to the manufacturer’s procedures.

4.5. Real-Time Quantitative Polymerase Chain Reaction PCR (Q-PCR) Analysis

Q-PCR analysis was performed by 7500 Fast Real-Time PCR System (7500 Software v2.0.5, Applied
Biosystems) using Power SYBR™ Green PCR Master Mix (ThermoFisher Scientific, Waltham, MA,
USA). For each sample, B-Actin Ct values was used for normalization purposes. For each gene, relative
expression levels were computed as the difference (2~2Ct) between the target gene Ct and B-Actin Ct.

Primers were designed using the PrimerQuest software (IDT Integrated DNA Technologies,
Coralville, IA, USA) and purchased from BIO-FAB research (Rome, Italy). The following primers were
used: 5 B-Actin, 5-GGGTCAGAAGGACTCCTATG-3/, 3' B-Actin, 5'-GTAACAATGCCATGTTCA3/;
5’ Beclin-1, 5-CAGGAGGAAGCTCAGTACCA-3/, 3’ Beclin-1, 5'-CTCCACACTCTTGAGTTCGT-3';
5" LC3B, 5'-CCCAGTGATTATAGAGCGATACA-3', 3' LC3B, 5'-GCAAGCGCCGTCTGATTAT-3'; 5’
p62/Sqstm1, 5'-CCACCAGAAGATCCCAATGT-5'; 3/ p62/Sqstm1, 5'-TCTCTTCCCTCCATGTTCCA-3';
5 Akt, 5’-GTAGCCATTGTGAAGGAGGG-3', 3’ Akt, 5'-GCCGTTCCTTGTAGCCAATA-3'; 5 mTOR,
5-TTCTGGGGTGTTGGAATACG-3'; 3" mTOR, 5'-CCACTCATGCAGCTTCTCAT-3/; 5 AMPXK,
5'-TCAGCACTCCGACAGACTTT -3/, 3" AMPK, 5'-ACAGTAATCCACGGCAGACA-3’; 5 ULKI1,
5'-AGCACACGGAAACCCTACAC-3'; 3' ULK1, 5'-AGCTCGAATCTGGTCAATGG-3'; 5" Caspase 3,
5-AGAGCACTGGAATGTCATCTC-3/, 3' Caspase 3, 5’-CTTGGTATTTCAGGCCCATGA-3'; 5 Bcl2,
5'-TTCAGGGATGGGGTGAACTG-3/, 3’ Bcl2, 5'-ATCCACAGGGCGATGTTGT-3'.

4.6. Western Blot Analysis

Total protein extraction was performed by homogenizing cells in Ripa lysis buffer containing
1X protease and phosphatase inhibitors cocktail (ThermoFisher Scientific, Waltham, MA, USA).
The homogenates, after 30 min of incubation on ice, were then centrifuged at 13,000 rpm for
30 min at 4 °C. Protein concentrations were determined using the Bradford Protein Assay (Bio-Rad,
Hercules, CA, USA). Lysates obtained from liver tissue were analyzed in denaturing condition through
SDS-PAGE and transferred onto nitrocellulose membranes (Amersham Bioscience, Little Chalfont, UK).
Membranes were incubated with primary antibodies followed by horseradish peroxidase-conjugate
secondary antibody (Jackson Laboratories, Ann Arbor, MI, USA) and visualized with ECL (Western
nova 2.0, Cyanagen, Italy). Densitometric analysis of immunoblots was performed by Image]64 image
processing software for electrophoresis gel analysis.

Primary antibodies, diluted according to the manufacturer’s instruction, were as follows: 3-Actin
(sc-47778, C4) and Beclin-1 (sc-48341, E-8) purchased from Santa Cruz Biotechnology Inc. (Dallas, TX,
USA), p-mTOR (Ser2481) (2974) and p-Akt (Ser 473) (9271) p-AMPK T172 (40H9), p-ULK1 (Ser555)
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(D1H4) and ULK1 (D8H5) from Cell Signaling (Danvers, MA, USA), LC3B (ab51520) and AMPK
(ab3759) from Abcam (Cambridge, UK), and p62/Sqstm1 (PB9444) from Boster (Pleasanton, CA, USA).

4.7. Statistical Analysis

Data were analyzed according to their distribution using different tools, i.e., parametric and
non-parametric tests. To give major strength to our data we chose to express results as
mean = standard deviation (SD). The two-tailed Mann-Whitney test was applied to compare animal
groups. Statistical significance was assessed by p-value thresholds: * p < 0.05; ** p < 0.01; *** p < 0.001.
All statistical analyses were performed with Prism software version 6 (GraphPad Software, San Diego,
CA, USA).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/12/
3948/s1.

Author Contributions: Conceptualization, C.P. and C.B.; Methodology, C.P,, S.S.,, M.M. and A.C.; Formal Analysis,
C.P,S.S. and C.B.; Data Curation, C.P,, S.S. Writing-Original Draft Preparation, C.B.; Writing-Review & Editing,
A.G. and G.T; Supervision, C.B.; Project Administration, C.B.

Funding: This research was supported by the Francesco Balsano Foundation.

Acknowledgments: We are thankful to Barbara Barbaro for the technical assistance for the managements of
mice and the collection of blood and tissue samples. We thank Simona Tavolaro for her methodology support of
Q-PCR analysis.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ND Normal diet
HFD High-fat diet
Ole Oleuropein

NAFLD Non-alcoholic fatty liver disease

References

1. Tarantino, G.; Saldalamacchia, G.; Conca, P.; Arena, A. Non-alcoholic fatty liver disease: Further expression
of the metabolic syndrome. J. Gastroenterol. Hepatol. 2007, 22, 293-303. [CrossRef] [PubMed]

2. Aratjo, AR; Rosso, N. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic
steatohepatitis: What we need in the future. Liver Int. 2018, 38, 47-51. [CrossRef] [PubMed]

3. Visioli, F; Bernardini, E. Extra virgin olive o0il’s polyphenols: Biological activities. Curr. Pharm. Des. 2011,
17,786-804. [CrossRef] [PubMed]

4. Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C. Effects of the olive-derived
polyphenol oleuropein on human health. Int. ]. Mol. Sci. 2014, 15, 18508-18524. [CrossRef]

5. Lavallard, V.J.; Gual, P. Autophagy and non-alcoholic fatty liver disease. Biomed. Res. Int. 2014, 2014, 120179.
[CrossRef] [PubMed]

6. Mao, Y.; Yu, E; Wang, J.; Guo, C.; Fan, X. Autophagy: A new target for nonalcoholic fatty liver disease
therapy. Hepat. Med. 2016, 8, 27-37. [CrossRef]

7.  Buytaert, E.; Dewaele, M.; Agostinis, P. Molecular effectors of multiple cell death pathways initiated by
photodynamic therapy. Biochim. Biopys. Acta 2007, 1776, 86-107. [CrossRef]

8.  Lefranc, F; Facchini, V.; Kiss, R. Proautophagic drugs: A novel means to combat apoptosis-resistant cancer,
with a special emphasis on glioblastomas. Oncologist 2007, 12, 1395-1403. [CrossRef]

9.  Fazi, B.; Bursch, W.; Fimia, G.M.; Nardacci, R.; Piacentini, M.; Di Sano, F.; Piredda, L. Fenretinide induces
autophagic cell death in caspase-defective breast cancer cells. Autophagy 2008, 4, 435-441. [CrossRef]

10. Hu, X,; Xuan, Y. Bypassing cancer drug resistance by activating multiple death pathways-a proposal from the
study of circumventing cancer drug resistance by induction of necroptosis. Cancer Lett. 2008, 259, 127-137.
[CrossRef]


http://www.mdpi.com/1422-0067/19/12/3948/s1
http://www.mdpi.com/1422-0067/19/12/3948/s1
http://dx.doi.org/10.1111/j.1440-1746.2007.04824.x
http://www.ncbi.nlm.nih.gov/pubmed/17295757
http://dx.doi.org/10.1111/liv.13643
http://www.ncbi.nlm.nih.gov/pubmed/29427488
http://dx.doi.org/10.2174/138161211795428885
http://www.ncbi.nlm.nih.gov/pubmed/21443485
http://dx.doi.org/10.3390/ijms151018508
http://dx.doi.org/10.1155/2014/120179
http://www.ncbi.nlm.nih.gov/pubmed/25295245
http://dx.doi.org/10.2147/HMER.S98120
http://dx.doi.org/10.1016/j.bbcan.2007.07.001
http://dx.doi.org/10.1634/theoncologist.12-12-1395
http://dx.doi.org/10.4161/auto.5669
http://dx.doi.org/10.1016/j.canlet.2007.11.007

Int. ]. Mol. Sci. 2018, 19, 3948 11 0f12

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

Shen, S.; Kepp, O.; Michaud, M.; Martins, I.; Minoux, H.; Métivier, D.; Maiuri, M.C.; Kroemer, R.T,;
Kroemer, G. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study.
Oncogene 2011, 30, 4544-4556. [CrossRef] [PubMed]

Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, ].M.; Cecconi, F.; Choi, A.M.; Chu, C.T,;
Codogno, P; Colombo, M.I; et al. Molecular definitions of autophagy and related processes. EMBO ]. 2017,
36, 1811-1836. [CrossRef] [PubMed]

Kaur, J.; Debnath, J. Autophagyat the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 2015,
16,461-472. [CrossRef] [PubMed]

Bursch, W.; Karwan, A.; Mayer, M.; Dornetshuber, J.; Frohwein, U.; Schulte-hermann, R.; Fazi, B.; Di Sano, F.;
Piredda, L.; Piacentini, M.; et al. Cell death and autophagy: Cytokines, drugs, nutritional factors. Toxicology
2008, 254, 147-157. [CrossRef] [PubMed]

Maiuri, M.C.; Zalckvar, E.; Kimchi, A.; Kroemer, G. Self-eating and self-killing: Crosstalk between autophagy
and apoptosis. Nat. Rev. Mol. Cell Biol. 2007, 8, 741-752. [CrossRef] [PubMed]

Scherz-Shouval, R.; Elazar, Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 2007,
17,422-427. [CrossRef] [PubMed]

Rubinsztein, D.C.; Gestwicki, J.E.; Murphy, L.O.; Klionsky, D.J. Potential therapeutic applications of
autophagy. Nat. Rev. Drug Discov. 2007, 6, 304-312. [CrossRef]

Kopelovich, L.; Fay, ].R.; Sigmann, C.C.; Crowell, J].A. The mammalian target of rapamycin pathway as
a potential target of cancer chemoprevention. Cancer Epidemiol. Biomarkers Prev. 2007, 1687, 1330-1340.
[CrossRef]

Levine, B.; Kroemer, G. Autophagy in the pathogenesis of disease. Cell. 2008, 132, 27-42. [CrossRef]

Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct
phosphorylation of Ulkl. Nat. Cell Biol. 2011, 13, 132-141. [CrossRef]

Kang, R.; Zeh, HJ.; Lotze, M.T.; Tang, D. The Beclin 1 network regulates autophagy and apoptosis.
Cell Death Differ. 2011, 18, 571-580. [CrossRef] [PubMed]

Schlafli, A.M.; Adams, O.; Galvan, J.A.; Gugger, M.; Savic, S.; Bubendorf, L.; Schmid, R.A.; Becker, K.F;
Tschan, M.P; Langer, R.; et al. Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in
early-stage non-small cell lung cancer. Oncotarget 2016, 7, 39544-39555. [CrossRef]

Marino, M.L,; Fais, S.; Djavaheri-Mergny, M.; Villa, A.; Meschini, S.; Lozupone, F.; Venturi, G.; Della Mina, P;
Pattingre, S.; Rivoltini, L.; et al. Proton pump inhibition induces autophagy as a survival mechanism
following oxidative stress in human melanoma cells. Cell Death Dis. 2010, 1e87. [CrossRef]

Omar, S.H. Oleuropein in olive and its pharmacological effects. Sci. Pharm. 2010, 78, 133-154. [CrossRef]
[PubMed]

Park, S.; Choi, Y.; Um, S.J.; Yoon, S.K,; Park, T. Oleuropein attenuates hepatic steatosis induced by high-fat
diet in mice. J. Hepatol. 2011, 54, 984-993. [CrossRef] [PubMed]

Kim, Y.; Choi, Y.; Park, T. Hepatoprotective effect of oleuropein in mice: Mechanisms uncovered by gene
expression profiling. Biotechnol. ]. 2010, 5, 950-960. [CrossRef]

Chen, C.P; Lai, T.C.; Chern, S.R.; Li, S.H.; Chou, H.C.; Chen, Y.W,; Lin, S.T; Lu, Y.C.; Wu, C.L.; Li, ].M.; et al.
Proteome differences between male and female fetal cells in amniotic fluid. OMICS. 2013, 17, 16-26.
[CrossRef] [PubMed]

De Bock, M.; Thorstensen, E.B.; Derraik, J.G.; Henderson, H.V.; Hofman, P.L.; Cutfield, W.S. Human
absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf
extract. Mol. Nutr. Food. Res. 2013, 57, 2079-2085. [CrossRef]

Surwit, R.S.; Kuhn, C.M.; Cochrane, C.; McCubbin, J.A.; Feinglos, M.N. Diet-induced type II diabetes in
C57BL/6] mice. Diabetes 1988, 37, 1163-1167. [CrossRef]

Wang, L.; Yu, S.; Chan, A.W.H. Pathology of Non-Alcoholic Fatty Liver Disease. Int. J. Dig. Dis. 2016,
2,71-83. [CrossRef]

Tandra, S.; Yeh, M.M.; Brunt, EM.; Vuppalanchi, R.; Cummings, O.W,; Unalp-Arida, A.; Wilson, L.A.;
Chalasani, N. Presence and significance of microvesicular steatosis in nonalcoholic fatty liver disease.
J. Hepatol. 2011, 55, 654-659. [CrossRef] [PubMed]

Noda, N.N.; Inagaki, F. Mechanisms of Autophagy. Annu Rev Biophys. 2015, 44, 101-122. [CrossRef]

Lee, S.; Kim, J.S. Mitophagy: Therapeutic potentials for liver disease and beyond. Toxicol Res. 2014,
30, 243-250. [CrossRef]


http://dx.doi.org/10.1038/onc.2011.168
http://www.ncbi.nlm.nih.gov/pubmed/21577201
http://dx.doi.org/10.15252/embj.201796697
http://www.ncbi.nlm.nih.gov/pubmed/28596378
http://dx.doi.org/10.1038/nrm4024
http://www.ncbi.nlm.nih.gov/pubmed/26177004
http://dx.doi.org/10.1016/j.tox.2008.07.048
http://www.ncbi.nlm.nih.gov/pubmed/18694801
http://dx.doi.org/10.1038/nrm2239
http://www.ncbi.nlm.nih.gov/pubmed/17717517
http://dx.doi.org/10.1016/j.tcb.2007.07.009
http://www.ncbi.nlm.nih.gov/pubmed/17804237
http://dx.doi.org/10.1038/nrd2272
http://dx.doi.org/10.1158/1055-9965.EPI-07-0045
http://dx.doi.org/10.1016/j.cell.2007.12.018
http://dx.doi.org/10.1038/ncb2152
http://dx.doi.org/10.1038/cdd.2010.191
http://www.ncbi.nlm.nih.gov/pubmed/21311563
http://dx.doi.org/10.18632/oncotarget.9647
http://dx.doi.org/10.1038/cddis.2010.67
http://dx.doi.org/10.3797/scipharm.0912-18
http://www.ncbi.nlm.nih.gov/pubmed/21179340
http://dx.doi.org/10.1016/j.jhep.2010.08.019
http://www.ncbi.nlm.nih.gov/pubmed/21145829
http://dx.doi.org/10.1002/biot.201000068
http://dx.doi.org/10.1089/omi.2010.0145
http://www.ncbi.nlm.nih.gov/pubmed/22404150
http://dx.doi.org/10.1002/mnfr.201200795
http://dx.doi.org/10.2337/diab.37.9.1163
http://dx.doi.org/10.4172/2472-1891.100014
http://dx.doi.org/10.1016/j.jhep.2010.11.021
http://www.ncbi.nlm.nih.gov/pubmed/21172393
http://dx.doi.org/10.1146/annurev-biophys-060414-034248
http://dx.doi.org/10.5487/TR.2014.30.4.243

Int. ]. Mol. Sci. 2018, 19, 3948 12 0of 12

34.

35.

36.

37.

38.

39.

40.

41.

Vakifahmetoglu-Norberg, H.; Xia, H.G.; Yuan, J. Pharmacologic agents targeting autophagy. J. Clin. Invest.
2015, 125, 5-13. [CrossRef] [PubMed]

Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 169, 361-371.
[CrossRef] [PubMed]

Kimball, S.R.; Ravi, S.; Gordon, B.S.; Dennis, M.D.; Jefferson, L.S. Amino Acid-Induced Activation of mMTORC1
in Rat Liver Is Attenuated by Short-Term Consumption of a High-Fat Diet. J. Nutr. 2015, 145, 2496-2502.
[CrossRef]

Lim, H.; Lim, YM.; Kim, K.H.; Jeon, Y.E.; Park, K.; Kim, J.; Hwang, H.Y,; Lee, D.].; Pagire, H.; Kwon, H].; et al.
A novel autophagy enhancer as therapeutic agent against metabolic syndrome and diabetes. Nat. Commun
2018, 9, 1438. [CrossRef] [PubMed]

Wirawan, E.; Vande-Walle, L.; Kersse, K.; Cornelis, S.; Claerhout, S.; Vanoverberghe, I.; Roelandt, R.;
de-Rycke, R.; Verspurten, J.; Declercq, W.; et al. Caspase-mediated cleavage of Beclin-1 inactivates
Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors
from mitochondria. Cell Death Dis. 2010, 1, e18. [CrossRef] [PubMed]

Li, M.; Gao, P.; Zhang, J. Crosstalk between Autophagy and Apoptosis: Potential and Emerging Therapeutic
Targets for Cardiac Diseases. Int. J. Mol. Sci. 2016, 3, 332. [CrossRef]

Galluzzi, L.; Bravo-San Pedro, ].M.; Levine, B.; Green, D.R.; Kroemer, G. Pharmacological modulation
of autophagy: Therapeutic potential and persisting obstacles. Nat. Rev. Drug Discov. 2017, 16, 487-511.
[CrossRef]

Martini, M.; Cenci, T.; D’Alessandris, G.Q.; Cesarini, V.; Cocomazzi, A.; Ricci-Vitiani, L.; De Maria, R.;
Pallini, R.; Larocca, L.M. Epigenetic silencing of Id4 identifies a glioblastoma subgroup with a better
prognosis as a consequence of an inhibition of angiogenesis. Cancer 2013, 119, 1004-1012. [CrossRef]
[PubMed]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1172/JCI73937
http://www.ncbi.nlm.nih.gov/pubmed/25654545
http://dx.doi.org/10.1016/j.cell.2017.03.035
http://www.ncbi.nlm.nih.gov/pubmed/28388417
http://dx.doi.org/10.3945/jn.115.215491
http://dx.doi.org/10.1038/s41467-018-03939-w
http://www.ncbi.nlm.nih.gov/pubmed/29650965
http://dx.doi.org/10.1038/cddis.2009.16
http://www.ncbi.nlm.nih.gov/pubmed/21364619
http://dx.doi.org/10.3390/ijms17030332
http://dx.doi.org/10.1038/nrd.2017.22
http://dx.doi.org/10.1002/cncr.27821
http://www.ncbi.nlm.nih.gov/pubmed/23132729
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	ND and HFD Liver Histology before and after Ole Treatment 
	Gender Specific Activation of Akt/mTOR Pathway by Ole in ND and HFD Mice 
	Activation of AMPK/ULK1 Pathway by Ole in ND and HFD Mice 
	Ole is Able to Induce Early Autophagic Machinery 
	Ole Does Not Affect the Expression of Caspase 3 and Bcl-2 Apoptotic Proteins in HFD Mice 

	Discussion 
	Materials and Methods 
	Mice Experimental Protocol 
	Histological Analysis 
	Immunohistochemistry for Caspase 3 and Bcl2 
	RNA Extraction and cDNA Synthesis 
	Real-Time Quantitative Polymerase Chain Reaction PCR (Q-PCR) Analysis 
	Western Blot Analysis 
	Statistical Analysis 

	References

