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Abstract: A newly described β-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic protozoan
Entamoeba histolytica, EhiCA, was recently shown to possess a significant catalytic activity for the
physiologic CO2 hydration reaction (kcat of 6.7 × 105 s−1 and a kcat/Km of 8.9 × 107 M−1 s−1).
A panel of sulfonamides and one sulfamate, some of which are clinically used drugs, were
investigated for their inhibitory properties against EhiCA. The best inhibitors detected in
the study were 4-hydroxymethyl/ethyl-benzenesulfonamide (KIs of 36–89 nM), whereas some
sulfanilyl-sulfonamides showed activities in the range of 285–331 nM. Acetazolamide, methazolamide,
ethoxzolamide, and dichlorophenamide were less effective inhibitors (KIs of 509–845 nM) compared
to other sulfonamides investigated here. As β-CAs are not present in vertebrates, the present study
may be useful for detecting lead compounds for the design of more effective inhibitors with potential
to develop anti-infectives with alternative mechanisms of action.

Keywords: carbonic anhydrase; metalloenzymes; protozoan; Entamoeba histolytica; sulfonamides;
sulfamates; inhibitor

1. Introduction

The pathogenic protozoan Entamoeba histolytica is the leading cause of diarrhea globally, producing
a disease called amebiasis. Endemic in poor communities in developing countries, amebiasis emerged
as an important infection among travelers returning from such countries as well as immigrants
residing in the developed world [1–3]. The invasive forms of the E. histolytica infection may include
liver cyst formation, which can produce complications such as pleural effusion due to the rupture of
the cysts [4–6]. Rarely, the cysts may disseminate to other extra-intestinal organs, such as the brain
or pericardium, with fatal consequences. Amebiasis causes around 70,000 deaths annually and is the
third cause of death due to parasites worldwide [7–9]. The pharmacological treatment relies on the
use of metronidazole and related compounds (e.g., tinidazole), which show multiple adverse side
effects, being rather toxic, mutagenic and carcinogenic, and led to the emergence of resistance [4,9].
Unfortunately, better therapeutic alternatives are lacking, and the nitroimidazoles do not effectively
eradicate the luminal cysts of the parasite life cycle. Therefore, it has become necessary to administer
a luminal agent, such as nitazoxanide or the aminoglycoside paromomycin, which are expensive
new drugs, which is difficult to use in developing countries [4,9]. Ultimately, the gold(I) derivative
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Auranofin, used for the treatment of rheumatoid arthritis, has entered clinical drug development
as an antiparasitic agent targeting amebiasis [4–9]. However, the treatment options are few, their
effectiveness is not very high, and the presently available drugs have many side effects and led to the
development of drug resistance. All these facts make the search for new anti-amoeba targets of great
relevance [4–10].

In recent years, we have investigated the role of the metalloenzymes, carbonic anhydrases
(CAs, EC 4.2.1.1), in various pathogenic organisms belonging to the bacteria, fungal or protozoan
domains [11–13]. These enzymes effectively catalyze the reaction between CO2 and water, with the
formation of bicarbonate (HCO3

−) and protons (H+), being among the very fast catalysts known in
nature [14–20]. CAs are multifunctional enzymes which play central roles in various physiological,
biochemical, and metabolic processes, such as acid-base homeostasis, respiratory gas exchange,
electrolytes secretion, biosynthesis of urea, glucose, fatty acids, and carbamoyl phosphate, and also in
the ionic transport, muscular contraction (in vertebrates), and photosynthesis (in plants and algae).
Seven distinct genetic families. i.e., the α, β, γ, δ, ζ, η, and θ class CAs are known to date, with
a wide distribution in organisms all over the tree of life [21–27]. The CA classes do not share any
significant sequence and structural identity since they are a paradigmatic example of convergent
evolution at the molecular level [11–13]. Recently, we have shown that the inhibition of the α- or
β-CAs from the pathogenic protozoans Trypanosoma cruzi [28] or Leishmania spp. [29] has a potent
anti-protozoan effect, with the possibility to inhibit the growth of the pathogen. Considering that
the genome of E. histolytica has been published [30], we decided to investigate in detail whether the
β-CA present in this pathogenic protozoan may have a similar role to the enzymes investigated earlier
in other pathogenic protozoans [28,29]. Here we report an investigation of the catalytic activity and
the sulfonamide/sulfamate inhibition profile of the recombinant enzyme belonging to the β-class,
identified in the genome of the pathogenic protozoan E. histolytica, denominated EhiCA.

2. Results and Discussion

We produced the β-CA of E. histolytica, EhiCA, in the E. coli expression system (see Experimental
for details) and obtained 21/25 kDa doublet polypeptide and additional polypeptides of about 50 and
75 kDa detected by SDS-PAGE. These four polypeptide bands were subjected to mass spectrometric
identification, which showed that they all represent EhiCA. This result suggests that EhiCA, similar to
other β-CAs [31], can exist as dimers and higher oligomerization forms [32–34].

The catalytic activity of the recombinant EhiCA (for the CO2 hydration reaction), has been
measured by using a stopped-flow technique [35], comparing its kinetic parameters with those of other
such enzymes, belonging to the α- (e.g., hCA I and II, where h stays for human isoform) or β-class
CAs (e.g., mtCA 1 and mtCA 2 from the pathogenic bacterium Mycobacterium tuberculosis [31,32]).
Data in Table 1 show that EhiCA has a significant catalytic activity (for the physiologic CO2 hydration
reaction), with a kcat of 6.7 × 105 s−1 and a kcat/Km of 8.9 × 107 M−1 s−1, being, thus, 1.8 times
more effective as a catalyst compared to the slow human isoform hCA I (considering the kcat/Km

values). Furthermore, like most enzymes belonging to the CA superfamily, EhiCA was inhibited
by acetazolamide (AZA, 5-acetamido-1,3,4-thiadiazole-2-sulfonamide), a standard, clinically used
sulfonamide CA inhibitor [1–3]. Thus, EhiCA shows a catalytic activity similar to that of mtCA
2 and hCA I, being a highly effective catalyst for the hydration of CO2, whereas its inhibition by
acetazolamide is similar to the behavior of mtCA 1, which has a low affinity for this inhibitor, with a
KI of 480 nM, comparable to that of EhiCA, of 509 nM (Table 1).

To rationalize the effective catalytic activity of EhiCA, we aligned the amino acid sequence of this
protein with that of other β-CAs, such as those from the pathogenic bacteria Haemophilus influenza [21],
Vibrio cholera [33], Escherichia coli [21], Salmonella typhimurium [36], two isoforms from Mycobacterium
tuberculosis [31,32], and the cyanobacterium Synechocystis sp. PCC 6803 [34] (Figure 1).
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Table 1. Kinetic parameters for the CO2 hydration reaction catalyzed by the human cytosolic isozymes
hCA I and II (α-class CAs) at 20 ◦C and pH 7.5 in 10 mM HEPES buffer and 20 mM Na2SO4, and
the β-CA from M. tuberculosis (mtCA 1 and 2) and form E. histolytica EhiCA, measured at 20 ◦C, pH
8.3 in 20 mM TRIS buffer and 20 mM NaClO4. Inhibition data with the clinically used sulfonamide
acetazolamide (5-acetamido-1,3,4-thiadiazole-2-sulfonamide) are also provided [35].

Enzyme Activity Level Class
kcat kcat/Km

KI
(Acetazolamide) Ref

(s−1) (M−1 s−1) (nM)

hCA I moderate α 2.0 × 105 5.0 × 107 250 [12]
hCA II very high α 1.4 × 106 1.5 × 108 12 [12]
mtCA 1 moderate β 3.9 × 105 3.7 × 107 480 [32]
mtCA 2 high β 9.6 × 105 9.3 × 107 9.8 [32]
EhiCA high β 6.7 × 105 8.9 × 107 509 this work
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Figure 1. Multi-alignment of the amino acid sequences of the β-CAs from M. tuberculosis (isoform
MTCA1_MYCTU), Synechocystis sp. (SYNY3), V. cholerae (VIBCL), H. influenzae (HAEIN), E. coli (ECOLI),
S. typhimurium (SALTY), E. histolytica (ENTHI), and M. tuberculosis (isoform MTCA2_MYCTO) [21,30–36].
Conserved amino acids depicted by an asterisk (*), semiconserved ones by (.) or (:).

As seen from data in Figure 1, similar to all β-CAs investigated to date, EhiCA has the
conserved three zinc(II) ligands, Cys50, His103, and Cys106 (the fourth ligand is presumably a water
molecule/hydroxide ion) as well as the catalytic dyad constituted by the pair Asp52-Arg54 (conserved
in all enzymes belonging to this class) [21,31–34,36], which contributes to the enhancement of the
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nucleophilicity of the water coordinated to the metal ion. The presence of these conserved amino acids
and all the structural elements connected to them may explain the good catalytic activity of EhiCA
reported in this paper (Table 1), although the X-ray crystal structure of this enzyme is not yet resolved.

Considering that the sulfonamides are the main class of CA inhibitors (CAIs) [11–13], we
investigated the inhibition of EhiCA with a panel of such derivatives, some of which are clinically
used drugs like diuretics, antiglaucoma, antiepileptics, antiobesity or antitumor agents [37–40]
(Figure 2 and Table 2). The structures of the sulphonamides/sulfamates included in our study are
shown in Figure 2. They include acetazolamide AAZ, methazolamide MZA, ethoxzolamide EZA
and dichlorophenamide DCP (the classical, systemically acting antiglaucoma CA inhibitors) [11,12],
dorzolamide DZA and brinzolamide BRZ, topically-acting antiglaucoma drugs, benzolamide BZA,
topiramate TPM, zonisamide ZNS, and sulthiame SLT [11–13,37–40]. Sulpiride SLP, indisulam IND,
celecoxib CLX, and valdecoxib VLX, as well as saccharin and the diuretic hydrochlorothiazide HCT
were also included in the assay [11–13]. The simpler sulfonamides 1–24 are known to possess CA
inhibitory properties against many mammalian and prokaryotic such enzymes [25] and are also the
building blocks for obtaining more complex CAIs [41–43].
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Figure 2. Sulfonamide (1–24) and sulfonamide/sulfamate derivatives (AAZ–HCT) investigated as
Entamoeba histolytica (EhiCA) inhibitors in the present study.

The following structure-activity relationship (SAR) can be drawn from the data of Table 2:

(i) The most effective EhiCA inhibitors were the two simple compounds 16 and 17,
4-hydroxymethyl/ethyl-benzenesulfonamides, which showed KIs ranging between 36 and 89 nM,
with the longer linker derivative (17) being a more effective CAI compared to the hydroxymethyl
one 16. It should also be noted that 17 is a weaker hCA II inhibitor (KI of 125 nM) and a quite
ineffective hCA I inhibitor (KI of 21 µM), making it a slightly ameba-CA—selective compound.

(ii) Several sulfonamides were slightly less effective as EhiCA inhibitors, with KIs ranging
between 285 and 521 nM. They include 18–24 and acetazolamide AAZ (Table 2). Apart from
18 (4-carboxy-benzenesulfonamide) and 19 (a pyrimidinylamino-benzenesulfonamide), the
remaining derivatives 20–24 belong to the sulfanilyl-sulfonamide class of CAIs, which possess
an elongated molecule, shown to interact favorably with many other CAs belonging to the
β-class [15,20,21] and, thus, leading to effective inhibitors. For the homologous series of 22–24,
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the efficacy as EhiCA inhibitors increases with the increase of the linker between the two aromatic
rings. AAZ and 20 contain the 1,3,4-thiadiazole-2-sulfonamide motif present in many potent
CAIs. In this case, aminobenzolamide 20 is a more effective EhiCA inhibitor compared to AAZ.
It is interesting to note that BZA, lacking the amino moiety present in 20, but with an identical
scaffold, is a very weak CAI, with a KI of 2471 nM (whereas it is a very potent hCA I and II
inhibitor). Thus, minor structural changes in the molecule of the inhibitor lead to drastic effects
on their inhibitory profiles against various CAs, including the one form the parasitic protozoan
investigated here.

Table 2. Inhibition of the human isoforms hCA I and hCA II, and Entamoeba histolytica (EhiCA)
from Entamoeba histolytica with sulfonamides 1–24 and the clinically used drugs AAZ–HCT, by a
stopped-flow, CO2 hydrase assay [35].

Inhibitor/Enzyme Class
KI * (nM)

hCA I a hCA II a EhiCA
α α β

1 28,000 300 2363
2 25,000 240 6011
3 79 8 951
4 78,500 320 833
5 25,000 170 567
6 21,000 160 798
7 8300 60 >10,000
8 9800 110 >10,000
9 6500 40 >10,000

10 7300 54 4656
11 5800 63 742
12 8400 75 1911
13 8600 60 821
14 9300 19 579
15 5500 80 772
16 9500 94 89
17 21,000 125 36
18 164 46 383
19 109 33 521
20 6 2 385
21 69 11 368
22 164 46 331
23 109 33 290
24 95 30 285

AAZ 250 12 509
MZA 50 14 845
EZA 25 8 746
DCP 1200 38 790
DZA 50,000 9 6444
BRZ 45,000 3 3051
BZA 15 9 2471
TPM 250 10 3100
ZNS 56 35 9595
SLP 1200 40 >10,000
IND 31 15 822
VLX 54,000 43 >10,000
CLX 50,000 21 >10,000
SLT 374 9 6727
SAC 18,540 5959 >10,000
HCT 328 290 3402

* Errors in the range of 5–10% of the reported data, from 3 different assays (data not shown). a Human recombinant
isozymes, stopped flow CO2 hydrase assay method, from References [11–15].
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(iii) The following compounds showed modest EhiCA inhibitory properties: 3–6, 11, 13–15, MZA,
EZA, DCP, and IND, with KIs ranging between 567 and 951 nM. They belong to heterogeneous
classes of sulfonamides, most of them being benzenesulfonamides (apart 13 and 14 which
are the deacetylated precursors of AAZ and MZA, thus, heterocyclic derivatives). A special
mention regards 15, which is structurally related to the most effective EhiCA inhibitors detected
here, compounds 16 and 17. Indeed, 15 is 9–20 times a weaker EhiCA inhibitor compared to
16 and 17, although they differ only by one or two CH2 functionalities. From these data, it
is again obvious that SAR is very sensitive to small changes in the molecule of the inhibitor
and that the 4-hydroxyalkyl-substituted-benzenesulfonamides may lead to highly effective and
isoform-selective CAIs targeting the enzyme from this parasite.

(iv) Weak, micromolar inhibition against EhiCA was observed with 1, 2, 10, 12, DZA, BRZ, BZA,
TPM, ZNZ, SLT, and HCT (KIs ranging between 1.91–9.59 µM) as discussed earlier. In addition,
these derivatives belong to heterogeneous classes of derivatives, but overall one may observe
that they possess a bulkier scaffold and more substituents on the aromatic/heterocyclic ring
compared to the effective EhiCA inhibitors described above.

(v) The ineffective compounds as EhiCA inhibitors (KI > 10 µM) detected here were 7–9 (halogenated
sulfanilamide derivatives), sulpiride SLP, the COX-2 inhibitors CLX and VLX (possessing a bulky,
Y-shaped molecule), and saccharin SAC, the only acylated, secondary sulfonamide included in
the study.

(vi) The inhibition profile of EhiCA with sulfonamides/sulfamates is very different from those of the
human isoforms hCA I and II, but only two compounds, 16 and 17 showed selectivity for the
protozoan over the human isoforms (Table 2).

3. Experimental

3.1. Vector Construction

We produced the EhiCA as a recombinant protein in E. coli. The DNA sequence was retrieved
from UniProt and modified for recombinant protein production and purification to include N-terminal
polyhistidine tag. We provided the sequence of the insert, and the actual construction of the plasmid
vector was performed by GeneArt (Invitrogen, Regensburg, Germany). The structure of the insert was
specifically modified for production in E. coli. The insert was ligated into a modified plasmid vector,
pBVboost [44].

3.2. Production of the Protein

The freeze-dried plasmid was prepared according to the manufacturer’s manual. Deep-frozen
BL21 StarTM (DE3) cells (Invitrogen, Carlsbad, CA, USA) were slowly melted on ice. 25 µL of the
melted cell suspension and 1 µL of the plasmid solution were combined. The suspension was kept on
ice for 30 min. Then the heat shock was performed by submerging the suspension containing tube into
+42 ◦C water for 30 s and after that, incubated on ice for 2 min. 125 µL of S.O.C. Medium (Invitrogen,
Carlsbad, CA, USA) was added to the tube, and the tube was incubated for 1 h with constant shaking
(200 rpm) at +37 ◦C. Growth plates (gentamycin-LB medium ratio 1:1000) were prewarmed at +37
◦C for 40 min. Twenty microliters and 50 µL of the suspension were spread on two plates, which
were incubated overnight at +37 ◦C. A volume of 5 mL preculture was prepared by inoculating single
colonies from growth plates to LB medium with gentamycin (ratio 1:1000). It was then incubated
overnight at +37 ◦C with constant shaking of 200 rpm. Then the production was executed according
to pO-stat fed bacth protocol, which is essentially as described in Määttä et al. [45]. There were some
alterations to the previously described protocol: The fermentation medium did not contain glycerol as
the cell line used did not require it. The induction of the culture was performed with 1 mM IPTG 12 h
after starting the fermentation. The temperature was decreased to 25 ◦C at the time of the induction.
Culturing was stopped after 12 h of the induction with the OD 34 (A600). The cells were collected
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by centrifugation, and the wet weight of cell pellet was 303 g. The fermentation was performed by
Tampere facility of Protein Services (PS). The cell pellet (approximately 35 g) was suspended in 150 mL
of binding buffer containing 50 mM Na2HPO4, 0.5 M NaCl, 50 mM imidazole, and 10% glycerol
(pH 8.0) and the suspension was homogenized with EmulsiFlex-C3 (AVESTIN, Ottawa, ON, Canada)
homogenizer. The lysate was centrifuged at 13,000× g for 15 min at 4 ◦C, and the clear supernatant
was mixed with HisPur™ Ni-NTA Resin (Thermo Fisher Scientific, Waltham, MA, USA) and incubated
for 2 h at room temperature on a magnetic stirrer. Then, the resin was washed with the binding
buffer and collected onto an empty column with EMD Millipore™ vacuum filtering flask (Merck,
Kenilworth, NJ, USA) and a filter paper. The protein was eluted from the resin with 50 mM Na2HPO4,
0.5 M NaCl, 350 mM imidazole and 10% glycerol (pH 7.0). The protein was re-purified with TALON®

Superflow™ cobalt resin (GE Healthcare, Chicago, IL, USA). The eluted protein fractions were diluted
to binding buffer (50 mM Na2HPO4, 0.5 M NaCl, and 10% glycerol pH 8.0) so that the imidazole
concentration was under 10 mM. The protein binding and elution were performed as described above.
The purity of the protein was determined with gel electrophoresis (SDS-PAGE) and visualized with
PageBlue Protein staining solution (Thermo Fisher Scientific, Waltham, MA, USA). Mass spectrometric
identification of the obtained polypeptide bands was performed in the Tampere University Facility
of Protein Services. Protein fractions were pooled and concentrated with 10 kDa Vivaspin® Turbo
15 centrifugal concentrators (Sartorius™, Göttingen, Germany) at 4000× g at 4 ◦C. Buffer exchange in
50 mM TRIS (pH 7.5) was done with the same centrifugal concentrators. His-tag was cleaved from the
purified protein by Thrombin CleanCleave Kit (Sigma-Aldrich, Saint Louis, MO, USA) according to
manufacturer’s manual.

3.3. CA Activity and Inhibition Measurements

An Sx.18Mv-R Applied Photophysics (Oxford, UK) stopped-flow instrument has been used
to assay the catalytic activity of various CA isozymes for CO2 hydration reaction [35]. Phenol red
(at a concentration of 0.2 mM) was used as indicator, working at the absorbance maximum of 557 nm,
with 10 mM HEPES (pH 7.5, for α-CAs) or TRIS (pH 8.3, for β-CAs) as buffers, 0.1 M NaClO4

(for maintaining constant ionic strength), following the CA-catalyzed CO2 hydration reaction for a
period of 10 s at 25 ◦C. The CO2 concentrations ranged from 1.7 to 17 mM for the determination of the
kinetic parameters and inhibition constants. For each inhibitor at least six traces of the initial 5–10% of
the reaction have been used for determining the initial velocity. The uncatalyzed rates were determined
in the same manner and subtracted from the total observed rates. Stock solutions of inhibitors (0.1 mM)
were prepared in distilled-deionized water, and dilutions up to 1 nM were done thereafter with the
assay buffer. Enzyme and inhibitor solutions were pre-incubated together for 15 min before assay,
to allow for the formation of the enzyme–inhibitor complex. The inhibition constants were obtained
by non-linear least-squares methods using PRISM 3 and the Cheng–Prusoff equation, as reported
earlier [46–48].

4. Conclusions

In the search for alternative drug targets for anti-protozoan agents, we report the
first sulphonamide/sulfamate inhibition study of EhiCA, a β-class CA from the parasitic
protozoan Entamoeba histolytica. The strong enzyme inhibitors identified in the study were
4-hydroxymethyl/ethyl-benzenesulfonamide (KIs of 36–89 nM), which were also selective for
inhibiting the protozoan over the human CA isoforms. Some sulfanilyl-sulfonamides also
showed good activities, with inhibition constants in the range of 285–331 nM. Acetazolamide,
methazolamide, ethoxzolamide and dichlorophenamide, clinically used agents, were less effective
EhiCA inhibitors (KIs of 509–845 nM) compared to other sulfonamides investigated here. As β-CAs
are not present in vertebrates, the present study may be useful for detecting lead compounds
for the design of more effective inhibitors with the potential to develop anti-infectives with
alternative mechanisms of action. Compounds, such as the strong enzyme inhibitors detected
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here, 4-hydroxymethyl/ethyl-benzenesulfonamide, may also be used as pharmacologic tools for
understanding the role played by this enzyme in the life cycle of the protozoan.
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