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Abstract: Eukaryotic proteins consist of structural domains (SDs) and intrinsically disordered regions
(IDRs), i.e., regions that by themselves do not assume unique three-dimensional structures. IDRs
are generally subject to less constraint and evolve more rapidly than SDs. Proteins with a lower
number of protein-to-protein interactions (PPIs) are also less constrained and tend to evolve fast.
Extracellular proteins of mammals, especially immune-related extracellular proteins, on average have
relatively high evolution rates. This article aims to examine if a high evolution rate in IDRs or that in
SDs accounts for the rapid evolution of extracellular proteins. To this end, we classified eukaryotic
proteins based on their cellular localizations and analyzed them. Moreover, we divided proteins
into SDs and IDRs and calculated the respective evolution rate. Fractional IDR content is positively
correlated with evolution rate. For their fractional IDR content, immune-related extracellular proteins
show an aberrantly high evolution rate. IDRs evolve more rapidly than SDs in most subcellular
localizations. In extracellular proteins, however, the difference is diminished. For immune-related
proteins in mammals in particular, the evolution rates in SDs come close to those in IDRs. Thus high
evolution rates in both IDRs and SDs account for the rapid evolution of immune-related proteins.

Keywords: secretion; immune; extracellular; protein-protein interaction; intrinsically disordered
region; structural domain; evolution

1. Introduction

Mature eukaryotic proteins consist not only of structural domains (SDs), but also of intrinsically
disordered regions (IDRs), i.e., regions that by themselves do not fold into unique three-dimensional
structures [1]. Although some IDRs interact with proteins or other macromolecules, they are generally
under less constraint than SDs and thus have higher evolution rates [2]. A positive correlation between
fractional IDR contents of proteins and evolution rates is thus expected.

Proteins with more protein-to-protein interactions (PPIs) tend to be more evolutionarily
constrained and have lower evolution rates [3,4]. Highly expressed proteins are also more constrained
and evolve slowly [4–6]. These two factors partially account for the evolution rate of proteins.

Eukaryotic proteins have specific subcellular localizations in general, with different average
fractional IDR contents in different cellular localizations [7]. For instance, IDR contents are generally
high in nuclear proteins [7,8], while they tend to be low in mitochondrial proteins [9,10]. It is
plausible that different fractional IDR contents in different subcellular localizations result in varied
evolution rates.
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Interestingly, extracellular proteins (synonymously called secreted proteins) in mammalian species
were often found to evolve faster than intracellular proteins [11,12]. This finding is partly explainable
by rapid evolution of immune-related extracellular proteins as many of the coding genes are subject to
positive selection [13,14]. That is, the evolution rate,ω, defined by the nonsynonymous to synonymous
substitution rate ratio, exceeds unity at sites under positive selection and the existence of many such
sites result in high evolution rates of many immune-related genes. For instance, antimicrobial peptides,
α- and β-defensins and cathelicidins, are reportedly subject to positive selection and evolve rapidly
in mammals [15–17]. We consider it worthwhile to carry out research on evolutionary characteristics
of immune-related secreted proteins, as they are involved in host defences [18], pathogen–host
interactions [19,20], production of antibodies [21], colony-stimulating factors [22], haematopoiesis [23],
and triggering proteolytic cascades [24,25], as well as enzyme replacement therapies [26]. The generally
high evolution of immune-related proteins evinces their importance in evolution of mammalian
species [27]. Further research may reveal how immune-related proteins function and may lead to
pharmaceutical applications.

However, the difference in evolution rate with intracellular proteins remained significant even if
analyses were limited to non-immune-related extracellular proteins. The generally low expression
levels in secreted proteins partially explain the rapid evolution. Whether the substitution frequency in
IDRs or SDs or both contributes to the increased evolution rate of extracellular proteins, however, has
not been explored.

We examined the correlation of fractional IDR content and evolution rate and found it positive.
We then analyzed the evolution rates of SDs and IDRs of proteins in different localizations. In most
localizations, IDRs were found to evolve faster than SDs, as expected. Immune-related secreted
proteins in mammals, however, exhibited extremely high evolution rates in SDs that approach those in
IDRs. This surprising finding indicates that positive selection that is said to function on a number of
immune-related genes operates strongly both on IDRs and SDs of the coded proteins.

2. Results and Discussion

2.1. Classification of Eukaryotic Proteins by Subcellular Localizations

For accurate analyses of evolution rates in different subcellular localizations, reliable localization
annotations of most proteins are necessary. At present, only four species satisfy this criterion in UniProt:
Homo sapiens, Mus musculus (mouse), Arabidopsis thaliana (thale cress), and Saccharomyces cerevisiae
(budding yeast). We thus selected the human, mouse, thale cress, and budding yeast proteins with
orthologs and classified the selected proteins by subcellular localization (Table 1). Proteins that are
localized to both the nucleus and the cytosol were specifically grouped (abbreviated as NC), as the
group reportedly contains many proteins with multiple PPIs [28]. We combined proteins residing in
the endoplasmic reticulum and the Golgi apparatus (termed EG), since many proteins cycle between
the two organells. Secreted proteins were divided into immune-related (SI) and non-immune-related
(SN), because immune-related proteins generally evolve rapidly [11]. Thale cress had a limited number
of immune-related proteins, while unsurprisingly budding yeast had none. Multiply localized proteins
except for the aforementioned NC proteins were classified as one group (ML). Note that many proteins
with orthologs were not classifiable due to the unavailability of pertinent information.
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Table 1. Number of proteins in each subcellular localization.

Species All NU NC CY MT EG PM SN SI ML

H. sapiens 10,348 1639 632 455 377 400 1116 584 139 3023
M. musculus 10,068 1719 546 224 426 514 998 796 125 2787
A. thaliana 8910 1032 163 331 356 348 534 431 6 594
S. cerevisiae 5304 1532 232 241 639 458 281 69 0 416

NU: Nucleus; NC: Nucleus and cytosol; CY: Cytosol; MT: Mitochondria; EG: Endoplasmic reticulum or Golgi
apparatus; PM: Plasma membrane; SN: Secreted, non-immune-related; SI: Secreted, immune-related; ML: Multiple
localizations except NC (ML).

2.2. Evolution Rates and Other Properties of Proteins in Different Subcellular Localizations

For each pair of orthologs, we determined the evolution rate, ω, defined by the ratio of
nonsynonymous to synonymous substitution rate, i.e., dN/dS. The medianω at each localization is
shown (Figures 1 and 2). Note that for this and other data presented in the figure, different scales were
used in different species. As the number of immune-related proteins (SI) in A. thaliana is small, no
corresponding data were plotted in this species. Proteins of the four species showed similar patterns.
For instance proteins in the cytosol (CY) and those that reside both in the nucleus and the cytosol (NC)
had the median evolution rates lower than the overall median in all four species. In general the median
evolution rates in intracellular proteins (NU, NC, CY, MT, and EG; shown in blue) were lower than
those of secreted proteins (SN and SI; shown in red). Among the secreted proteins, immune-related
proteins (SI) exhibited particularly high evolution rates, in agreement with the literature [13,14].

The fractional IDR content of each protein was predicted by DISOPRED [29], DICHOT [30],
and POODLE-L [31] and the median in each localization was calculated (Figures 1 and 2). Although
the medians of most localizations (Figures 1 and 2) were nearly always the lowest by DISOPRED,
higher by DICHOT, and the highest by POODLE, we note that the overall averages by the three
methods generally do not differ much. For instance, the fractions of IDRs in human proteins by
DISOPRED, DICHOT, POODLE are 30.2%, 26.4%, and 30.1%, respectively. The differences in the
medians are thus mostly attributable to differences in the distributions of fractional IDRs. Nevertheless
the corresponding medians by the three prediction methods showed similar patterns. For instance,
by all three methods in the four species, we got high fractional IDR contents in the nuclear proteins
(NU) and low values in the mitochondrial proteins (MT), consistent with previous reports [7–10].
Intriguingly, the secreted non-immune proteins (SN) in budding yeast were revealed to have a high
median IDR content, unlike the counterparts of the three multicellular eukaryotes. The difference
may reflect the difference between unicellular and multicellular organisms. This issue needs to be
addressed later with analyses of more eukaryotes.

We also calculated and graphed the median numbers of PPIs of proteins in the localizations
(Figures 1 and 2). PPIs have been less studied in mouse and thale cress proteins than in human and
budding yeast counterparts, as evidenced by the reduced numbers of PPIs in mouse and thale cress
(Figures 1 and 2). The mouse and thale cress PPI data are therefore less reliable as those of the other two
species. As reported [28], multiply localized proteins (NC and ML) generally showed more interactions
with other proteins. Immune-related secreted proteins (SI), however, had fewer interacting partners
on average.

Additionally, the median expression level in ppm of the proteins at each localization was
determined and graphed as logarithms to the base of ten (Figures 1 and 2). Yeast proteins were generally
expressed much more than mammalian proteins. The expression levels of the human immune-related
proteins (SI) were generally high, but those of the mouse counterparts were indistinguishable from
the average.
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Figure 1. Medians and ranges of four quantities in different localizations in two mammals. (A) H. 
sapiens; (B) M. musculus; Rectangles in each panel from the bottom to the top represent the medians in 
evolution rate, fractional IDR content by DISOPRED (left), DICHOT (middle) and POODLE (right), 
the number of PPIs, and expression level. Grey vertical bars represent interquartile ranges, with their 
bottom and top corresponding to the 25th to the 75th percentile, respectively. The abbreviations for 
localizations are as in Table 1. 

Figure 1. Medians and ranges of four quantities in different localizations in two mammals.
(A) H. sapiens; (B) M. musculus; Rectangles in each panel from the bottom to the top represent the
medians in evolution rate, fractional IDR content by DISOPRED (left), DICHOT (middle) and POODLE
(right), the number of PPIs, and expression level. Grey vertical bars represent interquartile ranges, with
their bottom and top corresponding to the 25th to the 75th percentile, respectively. The abbreviations
for localizations are as in Table 1.
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Figure 2. Medians of four quantities in different localizations in two non-mammalian eukaryotes. (A) 
A. thaliana; (B) S. cerevisiae; the data are presented as in Figure 1. 
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2). The negative correlation is consistent with previous results [3,4]. As the number of PPIs was 
generally low in extracellular proteins (SN and SI, Figures 1 and 2), the negative correlation partially 
explains their high evolution rates. 
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rates of these proteins. By contrast the expression levels of immune-related secreted proteins (SI) 
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Fractional IDR content was positively correlated with evolution rate in all the four species (Table 2). 
Although the correlation coefficients were generally small, they all significantly differed from zero 

Figure 2. Medians of four quantities in different localizations in two non-mammalian eukaryotes.
(A) A. thaliana; (B) S. cerevisiae; the data are presented as in Figure 1.

2.3. Correlation of Evolution Rates with Protein Properties

We computed Spearman’s correlation coefficients (Rhos) of number of PPIs with evolution rate
(ω) and found them to be weakly negative but significantly different from zero (all at p < 0.01) (Table 2).
The negative correlation is consistent with previous results [3,4]. As the number of PPIs was generally
low in extracellular proteins (SN and SI, Figures 1 and 2), the negative correlation partially explains
their high evolution rates.

We also found small but significant (all at p < 1 × 10−113) negative correlations between expression
level and ω (Table 2), corroborating previous findings [5,6]. The negative correlation was stronger in
budding yeast. Since the expression levels of non-immune-related secreted proteins (SN) were not
high (Figures 1 and 2), the negative correlation at least in part explains the high evolution rates of
these proteins. By contrast the expression levels of immune-related secreted proteins (SI) were not
significantly low (Figure 1) and do not contribute to the extremely high evolution rates.

As IDRs have a propensity to evolve faster than SDs, the more IDRs a protein has, the faster it is
expected to evolve. To test this possibility, correlation coefficients of %IDR with ω were calculated.
Fractional IDR content was positively correlated with evolution rate in all the four species (Table 2).
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Although the correlation coefficients were generally small, they all significantly differed from zero (at
p < 1 × 10−4). As the median fractional IDR contents in immune-related secreted proteins (SI) were
lower than average, this factor does not make positive contribution to the evolution rates.

Table 2. Correlations between three properties and evolution rate ω.

Correlation with H. sapiens M. musculus A. thaliana S. cerevisiae

#PPI withω −0.293 −0.194 −0.054 −0.195
Expression level withω −0.264 −0.231 −0.337 −0.459

%IDR (DISOPRED) withω 0.093 0.094 0.168 0.264
%IDR (DICHOT) withω 0.113 0.146 0.052 0.303
%IDR (POODLE) withω 0.096 0.097 0.113 0.179

Spearman’s correlation coefficient (Rho) of each pair is shown.

2.4. Evolution Rates in SDs and IDRs in Different Subcellular Localizations

In order to see whether IDRs or SDs in immune-related proteins mostly account for the high
evolution rates, we calculated the evolution rates in IDRs and SDs separately and compared the two.
The median evolution rate in IDRs in all proteins was significantly higher than that in SDs, irrespective
of species (Figures 3 and S1). We detected the same disparity at most localizations.

Upon closer examination of the mammalian rates, we noticed that the IDR/SD evolution rate ratio
tended to be higher in intracellular localizations (NU, NC, CY, MT, and EG) than in extracellular ones
(SN and SI). In the plant A. thaliana the inside–outside difference in evolution rate was detectable but
was less pronounced (Figure S1A). In contrast, budding yeast failed to show this tendency (Figure S1B).
In immune-relate secreted proteins (SI), the rates in IDRs and SDs were both higher than average, with
the difference between them statistically insignificant in a majority of cases (Figure 3). SDs apparently
evolve quite rapidly in immune-related proteins to approach the rates of IDRs to give rise to the
anomalously high evolution rates. So far as we are aware, the phenomenon of the evolution rate in SDs
that comes close that in IDRs in immune-related proteins is the first to be reported. The non-immune
related extracellular proteins (SN) also tended to have higher than average evolution rate in SDs
in H. sapiens and M. musculus, and A. thaliana, although the difference from the average was more
conspicuous in the two mammals (Figure 3) than in the plant species (Figure S1A). In contrast SDs
in non-immune related extracellular proteins (SN) did not show an above-average evolution rate in
S. cerevisiaie (Figure S1B). In mammalian mitochondrial (MT) and plasma membrane (PM) proteins,
the evolution rates of SDs and IDRs were close to each other (Figure 3), although the former was
significantly higher than the latter in all cases. By contrast the counterparts in the two non-mammalian
species failed to show the tendency (Figure S1). We need to investigate other species before attaching
any significance to this possibly mammalian-specific phenomenon.

We recognize the need to analyze more animal species to check the generality of our finding on
immune-related extracellular proteins. For accurate analyses by the same methodology, however, two
closely related and entirely sequenced species must be available and at least one of them must have
a majority of proteins annotated by UniProt to provide reliable subcellular localizations. Unfortunately
no animal species other than H. sapiens and M. musculus currently meet the latter criterion. Since
3463 (~22% of the total) Drosophila melanogaster proteins have been annotated, however, we carried
out preliminary analyses of this fly. Thirty-eight annotated immune-related extracellular proteins
were identified in 13,957 orthologs. The results showed that the evolution rates in IDRs and SDs were
both high in immune-related proteins but the former was much higher than the latter. The ratio of
the median evolution rate in IDRs to that in SDs was 2.37, 1.60, and 2.99 by DISOPRED, DICHOT,
and POODLE, respectively. As the corresponding ratios of all Drosophila proteins were 2.10, 2.45,
and 1.79, the ratio was not necessarily diminished in immune-related proteins in fruit fly. Thus,
the preliminary results indicate that the phenomenon of rapid evolution in both SD and IDRs in
immune-related secreted proteins is possibly limited to vertebrates.
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proteins in mammals. (A) H. sapiens; (B) M. musculus; the diagrams (top to bottom) in each panel are 
based on DISOPRED, DICHOT and POODLE-L predictions. The median evolution rates in SDs are 
shown in black rectangles, while those in IDRs are depicted in red (left scale). Grey vertical lines 
show ranges from the 25th to the 75th percentile. Blue lines represent the median evolution rate 
ratios of IDRs to SDs at respective localizations, while horizontal orange lines show the ratio of all 
proteins (right scale). One asterisk signifies a statistically significant difference between the evolution 
rate distributions of IDRs and SDs at p < 0.01, while two asterisks denote a statistically significant 
difference at p < 0.001 (U-test). The same abbreviations for localizations as those in Table 1 are used. 

In the cytosolic proteins (CY) of budding yeast, the median evolution rate in IDRs was only a 
little higher than that in SDs (Figure S1B). As noted before, budding yeast proteins generally interact 
with much more proteins than human proteins and did not exhibit intracellular-extracellular 
disparity in the IDR to SD evolution ratio. 

2.5. Examles of Proteins with Nonsynonymous and Synonymous Substitutions 

To give specific examples, we diagramed some human and mouse proteins with locations of 
nonsynonymous and synonymous substitutions (Figure 4). As we selected the proteins as they 

Figure 3. Evolution rates are higher in IDRs than in SDs except possibly for immune-related secreted
proteins in mammals. (A) H. sapiens; (B) M. musculus; the diagrams (top to bottom) in each panel are
based on DISOPRED, DICHOT and POODLE-L predictions. The median evolution rates in SDs are
shown in black rectangles, while those in IDRs are depicted in red (left scale). Grey vertical lines show
ranges from the 25th to the 75th percentile. Blue lines represent the median evolution rate ratios of
IDRs to SDs at respective localizations, while horizontal orange lines show the ratio of all proteins
(right scale). One asterisk signifies a statistically significant difference between the evolution rate
distributions of IDRs and SDs at p < 0.01, while two asterisks denote a statistically significant difference
at p < 0.001 (U-test). The same abbreviations for localizations as those in Table 1 are used.

In the cytosolic proteins (CY) of budding yeast, the median evolution rate in IDRs was only a little
higher than that in SDs (Figure S1B). As noted before, budding yeast proteins generally interact with
much more proteins than human proteins and did not exhibit intracellular-extracellular disparity in
the IDR to SD evolution ratio.
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2.5. Examles of Proteins with Nonsynonymous and Synonymous Substitutions

To give specific examples, we diagramed some human and mouse proteins with locations of
nonsynonymous and synonymous substitutions (Figure 4). As we selected the proteins as they
exhibit close-to-median ratios of nonsynonymous to synonymous substitution rates in SDs and IDRs,
the frequencies of nonsynonymous to synonymous substitutions do not necessarily show median
values. Although the three prediction methods gave different results, the major disparities were
found in the boundaries of IDRs and did not affect main results. In immune-related secreted proteins
(Figure 4A–D), nonsynonymous mutations (red bars) were almost as frequent as synonymous ones
(black bars) both in IDRs (pink rectangles) and SDs (gray regions). In comparison, in proteins of
other subcellular localizations, nonsynonymous substitutions occurred much less frequently than
synonymous substitutions in SDs, while the difference was less pronounced in IDRs (Figure 4E–H).
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Figure 4. Examples of proteins with locations of nonsynonymous and synonymous substitutions. Each
protein is represented by three rectangles with DISOPRED, DICHOT, and POODLE predictions (top
to bottom) of IDRs (pink) and SDs (gray) as well as signal sequences (blue), if any, and the length
shown on the right. The locations of nonsynonymous and synonymous substitutions are shown
above (red lines) and below (black lines), respectively. (A–D): Immune-related secreted proteins,
(E,F): non-immune-related secreted proteins, (G,H): nuclear proteins. (A) The human PRG2, (B) human
PRG3, (C) mouse PRG2, (D) mouse DEFA20, (E) human SERPINA10, (F) mouse NENF, (G) human
PROP1, (H) mouse NEK2 proteins.

2.6. Significance and Remaining Issues

The generally much lower frequency of nonsynonymous substitutions than synonymous
substitutions in SDs reflects the fact that nonsynonymous changes very often destabilize the structures.
By contrast, the difference between nonsynonymous and synonymous substitution rates is diminished
in IDRs as nonsynonymous changes are frequently accommodated in IDRs. Consequently the ratio
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of nonsynonymous to synonymous substitution rate (ω) is expected to be much smaller in SDs
than in IDRs. Although the actual results obtained in this research were mostly consistent with this
expectation, those of immune-related secreted proteins of the two mammalian species were not;ω in
SDs approaches that in IDRs.

Asω is larger than 1 at positively selected sites, the existence of numerous such sites in a region
increases the average ω. Since many sites in immune-related secreted proteins were reported to
be under positive selection [13–17], the heightened ω in SDs of such proteins indicates that many
positively selected sites fall in SDs. The observation that IDRs of immune-related proteins exhibit
higher ω than those of other proteins also implies that IDRs contain positively selected sites, too.
The classification of positively selected sites in immune-related proteins into SDs and IDRs will
probably lead to a better understanding of mechanisms of immunity. It is plausible that many
nonsynonymous changes occur at the surface of SDs that interacts with other proteins.

It is also of interest to investigate known genes under positive selection that are associated with
gamete recognition [32,33] and male reproduction [34,35] to find if SDs as well as IDRs of the encoded
proteins evolve rapidly. We note that extracellular domains receive a number of posttranslational
modifications such as phosphorylations, glycosylation, and lipidation. Investigation of evolution rates
at posttranslational modification sites of immune-related proteins is another prospective area.

3. Materials and Methods

The nucleotide sequences of H. sapience, M. musculus, and Rattus norvegicus genes were
downloaded from Ensembl (Release 91) [36]. The nucleotide sequences of A. thaliana (TAIR10),
Arabidopsis lyrata, Drosophila melanogaster (BDGP6) genes were obtained from Ensembl, too. Ensembl
also provided the orthologous relationships between H. sapience and M. musculus as well as those of
M. musculus and R. norvegicus. The sequences of S. cerevisiae and Saccharomyces paradoxus were obtained
from the Saccharomyces Genome Database [37], while those of Drosophila pseudoobscura genes were
downloaded from FlyBase [38]. The orthologs of the two Arabisopsis species, the two yeast species,
and the two Drosophila species were selected by bidirectional best hit analysis. The proteins were
classified by subcellular localizations based on the Gene-Ontology (GO) annotations in UniProt (Release
2017_05) [39]. Specifically, the following GO IDs were used for subcellular classifications: nucleus:
GO:0005634; cytoplasm: GO:0005829; mitochondria: GO:0005739; endoplasmic reticulum/Golgi
apparatus: GO:0005783, GO:0005794, and GO:0005793; plasma membrane: GO:0005886; secreted:
GO:0005576 and GO:0005615; immune-related: GO:0002376.

From the coding sequences, the signal peptides were removed based on UniProt annotations
because they are unclassifiable as SDs or IDRs due to their absence in mature proteins. The remaining
amino acid sequences of orthologs were aligned by MAFFT [40] and the corresponding nucleotide
sequences were aligned according to the MAFFT results. dn/ds values were then computed using
the codeml program (model M0) in PAML (version 4.9d) [41]. Statistical differences between two
quantities were tested by Mann-Whitney’s U-test, while statistical significance of correlations was
evaluated by Spearman’s rank correlation by means of in-house programs.

Number of PPIs and expression levels were taken from the BioGRID (version 3.4.158) [42] and
the PaxDb (version 4.1) [43] databases, respectively. BioGRID is a curated database of interactions
including protein-protein interactions obtained by two-hybrid studies, affinity purification coupled
to mass spectrometry, and other methods, while PaxDB contains whole genome protein abundance
information obtained by integrating numerous datasets using scores and ranks. Each protein was
divided into SDs and IDRs by three methods: DISOPRED3 [29], DICHOT [30] and POODLE-L [31].
Briefly, DISOPRED3 assigns IDRs based on sequence profiles and other sequence-derived features,
DICHOT classifies proteins into SDs and IDRs using sequence characteristics, alignments to existing
protein structures, and sequence divergence, while POODLE-L is a prediction method for long IDRs
that makes use of support-vector machine with 10 kinds of simple physico-chemical properties of
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amino acids. Based on the overall MAFFT alignments, the alignments of the corresponding sections
were made. The evolution rate of each section was then determined as above.

4. Conclusions

In human and mouse, the SDs of immune-related proteins evolve at a high rate which comes
close to that of the IDRs. This observation indicates that positive selection operates on both SDs and
IDRs of the encoded proteins in many immune-related genes. Comparatively high evolution in SDs is
also observed in non-immune-related secreted proteins in human and mouse, and to a lesser extent in
thale cress, but not in budding yeast. Thus accelerated evolution in SDs as well as in IDRs contributes
to rapid evolution of extracellular proteins in mammals.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/19/12/3860/s1.
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SD Structural domain
IDR Intrinsically disordered region
PPI Protein-to-protein interaction
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NC Nucleus and cytosol
CY Cytosol
MT Mitochondria
EG Endoplasmic reticulum or Golgi apparatus
PM Plasma membrane
SN Secreted, non-immune-related
SI Secreted, immune-related
ML Multiple localizations except NC
dN Nonsynonymous substitution rate
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GO Gene Ontology
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