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Abstract: General cognitive (intelligence) function is substantially heritable, and is a major
determinant of economic and health-related life outcomes. Cognitive impairments and intelligence
decline are core features of schizophrenia which are evident before the onset of the illness. Genetic
overlaps between cognitive impairments and the vulnerability for the illness have been suggested.
Here, we review the literature on recent large-scale genome-wide association studies (GWASs) of
general cognitive function and correlations between cognitive function and genetic susceptibility
to schizophrenia. In the last decade, large-scale GWASs (n > 30,000) of general cognitive function
and schizophrenia have demonstrated that substantial proportions of the heritability of the cognitive
function and schizophrenia are explained by a polygenic component consisting of many common
genetic variants with small effects. To date, GWASs have identified more than 100 loci linked to
general cognitive function and 108 loci linked to schizophrenia. These genetic variants are mostly
intronic or intergenic. Genes identified around these genetic variants are densely expressed in brain
tissues. Schizophrenia-related genetic risks are consistently correlated with lower general cognitive
function (rg = −0.20) and higher educational attainment (rg = 0.08). Cognitive functions are associated
with many of the socioeconomic and health-related outcomes. Current treatment strategies largely fail
to improve cognitive impairments of schizophrenia. Therefore, further study is needed to understand
the molecular mechanisms underlying both cognition and schizophrenia.
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1. Introduction

Cognitive functions play important roles in mental and physical well-beings. This is supported
by observations that people with higher intelligence tend to have greater educational attainment, more
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professional jobs, higher incomes, and increased longevity [1,2]. Accordingly, impairments of cognitive
functions result in social and occupational dysfunction which leads to poor life outcomes [3–8].

Cognitive disturbances are a core feature of schizophrenia—a psychiatric disorder with clinical
and genetic heterogeneity [9,10]. Compared with healthy individuals, patients with schizophrenia
demonstrate about a 1–2 standard deviation decline in performance on tests of several cognitive
domains, including working, verbal and visual memories, processing speed, attention, social
cognition, and intelligence [11–17]. Although the disorder is generally characterized by positive
(e.g., hallucinations and delusions) and negative (blunted affect and withdrawal) symptoms,
cognitive impairments should also be considered as an independent clinical dimension [18,19].
These impairments exist before the onset of illness and are worsened around it [20–22]. It has been
suggested that cognitive deficits of schizophrenia may be resistant to treatment with antipsychotic
drugs [23–26]. This indicates a need for clarifications of the mechanisms underlying these conditions.

Schizophrenia has a strong genetic basis with an estimated heritability of approximately 80% [27].
Cognitive functions such as general intelligence also have a genetic component (h2 = 0.33–0.85) [28–32].
Despite the difference in heritability for intelligence between childhood (h2 = 0.45) and adulthood
(h2 = 0.80), there is a high correlation between IQ levels in childhood and those in adulthood
(rg = 0.89) [33]. Relatives or twin siblings of patients with schizophrenia have also displayed
impaired cognitive function to a lesser extent [9,34]. These findings suggest the contribution of
genetic components to cognitive impairments in schizophrenia.

Genome-wide association studies (GWASs) that examine millions of genetic variants are a
powerful tool to identify common variants responsible for susceptibility to common and complex
diseases. The largest GWAS to date is the Psychiatric Genomics Consortium (PGC) using 36,989 patients
with schizophrenia and 113,075 controls, which has identified 108 loci including genes and genetic
variants related to schizophrenia [35]. Several consortia, such as the Cognitive Genomics Consortium
(COGENT), Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE), and UK
Biobank (UKB), have performed GWASs to identify genetic loci related to cognitive function [36–43].
GWASs with fewer than 20,000 subjects did not find any significant loci [36,44–46]. These GWAS
consortia used diverse assessment tools to represent targeted cognitive constructs in various samples,
e.g., general cognitive function (g), Intelligence Quotient (IQ), fluid intelligence, etc., which could have
been subject to phenotypic heterogeneity. By contrast, GWASs using samples from nearly 300,000
individuals successfully detected more than 100 genome-wide significant loci related to cognitive
function [42,43]. In addition, part of the genetic correlation in the genetic effects identical between
cognitive function and schizophrenia has been identified [38–42]. Therefore, cognitive functions
have been proposed as an intermediate phenotype or biotype [9,15,47,48] to explain the mechanisms
involved in the pathogenesis of schizophrenia.

In this article, we review the literature on recent large-scale GWASs of general cognitive function
and genetic correlations between cognitive function and schizophrenia.

2. General Cognitive Function (g)

A number of tests have been used to measure various domains of cognitive functions. It is
difficult to perform GWASs of cognitive functions uniformly because these cognitive tests vary among
study cohorts. Twin and family studies show strong genetic correlations across diverse cognitive
domains [49]. Under this circumstance, general cognitive function (g) is defined as a latent trait
underlying shared variance across multiple subdomains of cognition [36,37,39,44,45]. To extract g,
principal component analysis (PCA) is required on at least one cognitive measure across at least three
domains, e.g., logical memory for verbal declarative memory, digit span for working memory, and
digit symbol coding for processing speed. In other words, the first unrotated principal component
of several distinct neuropsychological tests is obtained from the PCA. For example, an average of
eight neuropsychological tests across COGENT cohorts were selected: digit span, digit symbol coding,
verbal memory for words, visual memory, semantic fluency, word reading, verbal memory for stories,
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phonemic fluency, vocabulary, and the trail-making test [39]. The first principal component obtained
accounted for approximately 40% of the variance in overall test performance. The g factors extracted
from different cognitive tests were strongly correlated (>0.98) [50], supporting the universality of g.

Several cognitive GWASs have been performed using the g approach [15,36,37,39,44,45]. GWASs
with fewer than 20,000 subjects did not find any genome-wide significant variants [15,36,44,45], while
the GWASs with 35,298 [39] and 53,949 [37] subjects successfully identified two (RP4-665J23.1 on 1p22.2
and CENPO on 2p23.3) and three (MIR2113 on 6q16.1, AKAP6/NPAS3 on 14q12 and TOMM40/APOE
on 19q13.32) genome-wide significant loci, respectively (Table 1). However, neither these loci, nor the
reproducibility of the findings, were consistent across studies.

3. Fluid Intelligence

Fluid-type intelligence requires swift thinking, relies relatively little on prior knowledge, and is
often measured by unfamiliar and sometimes abstract materials [44]. By contrast, crystallized-type
intelligence is typically assessed using tests such as those for acquired knowledge and vocabulary [44].
The discrepancy between fluid and crystallized intelligence becomes particularly noticeable in late
adulthood—the age-related decline of fluid intelligence comes earlier and more rapidly [51,52].

To assess crystallized intelligence, either the National Adult Reading Test or the WAIS vocabulary
subtest is used. Fluid intelligence, which may be equivalent to g, is assessed using PCA of data
from several cognitive tests, such as logical memory, verbal fluency, auditory verbal learning tests
(AVLT), and subtests from the Wechsler Adult Intelligence Scale (WAIS)-III [44]. Fluid intelligence is
also measured by the verbal–numerical reasoning (VNR) test [42]. This test uses 13 multiple-choice
questions—six verbal and seven numerical—which are presented on a touchscreen computer in either
an assessment center or a web-based format at home [38,40]. Scores are obtained from the number
of questions answered correctly in two minutes. With this method, the GWAS in UKB (n = 36,035)
detected three genome-wide significant loci, including several genes, e.g., CYP2D6 and NAGA at
22q13.2, FUT8 at 14q23.3 and PDE1C at 7p14.3 [38].

Because performance on the VNR is correlated with g [40,53], the level of power in recent GWASs
has been increased through combinations of g and fluid intelligence [40–43]. The total sample sizes
in these studies were approximately 80,000–300,000 (Table 1). For example, one of the recent GWASs
with 269,867 subjects identified 205 genome-wide significant loci [43]. This GWAS also identified
some overlapping loci (2p23.3, 6q16.1, 7p14.3, 14q12, 19q13.32, and 22q13.2) consistent with previous
reports [37–39], although these loci did not fully include lead genetic variants. The sample size in
GWASs is positively correlated with the number of genome-wide associated loci detected (Figure 1,
r2 = 0.92, p = 1.18 × 10−5). Several of these loci overlapped with those associated with schizophrenia,
such as 1p21, 1p34, 2q24, 2q33, 3p21, 3q22, 4q24, 5q21, 6p22, 7q22, 8q24, 11q25, 12q24, 14q12, 14q32,
16q22, and 22q13 [35,41,43].
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Table 1. A summary of GWASs of general cognitive function.

Authors (year) n Phenotypes Ethnics Participants Consortium Age Range GWS Loci SNP Hits GWS Gene

Ohi et al. (2015) [15] 411 g or IQ Japanese Psychiatric healthy subjects Osaka University 18–66 0 0 NA

Davies et al. (2011) [44] 3511 g Caucasian Nonclinical healthy samples CAGES, LBC1921,
LBC1936, ABC1936, etc. 64.6–79.1 * 0 0 1

Lencz et al. (2014) [36] 5000 g Caucasian
General population

(epidemiologically representative
cohorts or mentally healthy cohorts)

COGENT 15.9–69.5 * 0 0 NA

Benyamin et al. (2014) [45] 17,989 g or IQ European Children CHIC 6–18 0 0 0

Kirkpatrick et al. (2014) [46] 7100 IQ Caucasian Community-based family study
samples MTFS, SIBS 11.8–43.3 * 0 0 0

Davies et al. (2015) [37] 53,949 g European Population-based cohorts CHARGE >45 3 13 1

Davies et al. (2016) [38] 36,035 Fluid intelligence
(VNR) White British Touchscreen-based

community-dwelling individuals UKB 40–73 3 149 17

Trampush et al. (2017) [39] 35,298 g European General population COGENT 8–96 2 7 7

Sniekers et al. (2017) [40] 78,308 g, IQ or Fluid
(VNR) European

Web-base and touchscreen-based
community-dwelling individuals

and population-based cohorts
UKB, CHIC, MTFS, etc. 8–78 18 336 47

Lam et al. (2017) [41] 107,207 g, IQ or Fluid
(VNR) European

Web-base and touchscreen-based
community-dwelling individuals

and population-based cohorts

COGENT, UKB, CHIC,
etc. 8–96 28 469 73

Davies et al. (2018) [42] 300,486 g or Fluid (VNR) European
Web-base and touchscreen-based
community-dwelling individuals

and population-based cohorts

CHARGE, COGENT,
UKB 16–102 148 11,600 709

Savage et al. (2018) [43] 269,867 g, IQ or Fluid
(VNR) European Epidemiological cohorts COGENT, UKB, etc. 5–98 205 12,110 507

VNR, Verbal–numerical reasoning; CAGES, Cognitive Aging Genetics in England and Scotland; LBC1921, LBC1936, Lothian Birth Cohorts of 1921 and 1936; ABC1936, Aberdeen Birth
Cohort 1936; COGENT, Cognitive Genomics Consortium; MTFS, Minnesota Twin Family Study; SIBS, Sibling Interaction & Behavior Study; CHARGE, Heart and Aging Research in
Genomic Epidemiology consortium; UKB, UK Biobank; GWS, Genome-wide significant. * Mean age range among cohorts was indicated.
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Figure 1. Relationship between sample sizes in GWASs of general cognitive function and genome-wide
associated loci detected in each GWAS. Circles represent GWASs.

4. Educational Attainment

Educational attainment, represented by the number of years of education, is strongly influenced
by genetic and environmental factors [54,55]. At least 20% of the variation among individuals is
accounted for by genetic factors [54]. GWASs of educational attainment in 111,114 and 293,723
European individuals identified 14 genome-wide significant loci associated with the attainment of
a college or university degree [38] and 74 loci associated with the number of years of schooling
completed [55], respectively. Individuals with a higher level of intelligence tend to stay in school
longer and attain higher qualifications than those with a lower level of intelligence. In addition, general
cognitive ability (fluid intelligence) is correlated with educational attainment (rg > 0.70) [38–41,43].
Therefore, educational attainment is useful as a proxy phenotype for general cognitive function in
GWAS analyses. In fact, several loci, such as 1p31.1, 2q11.2, 3p21.31, 6q16.1, and 13q21.1, in a GWAS of
educational attainment overlapped with those of general cognitive function.

5. Genes and Functions Related to General Cognitive Function

The genetic variants related to general cognitive function were mostly intronic or intergenic.
The genes identified around these genetic variants were densely expressed in the brain [42,56],
specifically striatal medium spiny neurons and hippocampal pyramidal CA1 neurons [43]. Common
gene functions linked to general cognitive function were determined in gene-set analyses in some
GWASs [40,42,43]. These functions include neurogenesis, regulation of nervous system development,
neuronal differentiation, and regulation of cell development. Functions such as neuron projection
and regulation of synaptic structure/activity were also associated with general cognitive function. As
pathways related to these functions have been implicated in the pathophysiology for general cognitive
function, these findings suggest that brain-expressed genes contribute to general cognitive function
via neurodevelopmental processes in specific brain cells.

Smeland et al. (2017) extensively investigated shared genetic loci of the GWAS by conditional
false discovery rate analysis and identified 21 genomic loci jointly influencing cognitive functions and
vulnerability to schizophrenia [56]. Of the 21 loci, 18 showed a negative correlation between risk of
schizophrenia and cognitive performance. The locus most strongly shared was detected on 22q13.2
that contains TCF20, CYP2D6, and NAGA. In addition, this locus was shown to have quantitative trait
locus (eQTL). NAGA encodes lysosomal enzymes that modify glycoconjugates, and CYP2D6 encodes
cytochrome P450 enzymes that metabolize a broad range of drugs [56]. Other loci, including KCNJ3,



Int. J. Mol. Sci. 2018, 19, 3822 6 of 13

GNL3 and STRC, were also identified as eQTLs. Although these genes shared by two phenotypes are
not localized in specific pathways, they may provide potential drug targets for improving cognitive
impairments in patients with schizophrenia.

6. Polygenic Risk Score Analysis and Genetic Correlation between General Cognitive Function
and Schizophrenia

Polygenic overlaps between alleles of general cognitive function and schizophrenia risk have
been examined [36,57]. On the basis of the polygenic risk scores (PRS) derived from GWASs, a set of
alleles associated with lower general cognitive function predicted an increased risk of vulnerability
to schizophrenia. Conversely, polygenic alleles associated with schizophrenia-related risks predicted
lower cognitive functions—particularly general cognitive function, performance IQ, attention, and
working memory [36,57–63]. Thus, greater PRS related to risks for schizophrenia were associated with
a greater decline in IQ after childhood in the general population [58]. So far, most studies on cognitive
functions have used general population [36,57,58,60–63], and have not been specific to patients with
schizophrenia [59,64].

Linkage disequilibrium score regression (LDSC) analysis estimates genetic variant correlations
(rg) from GWASs and is a powerful tool for investigating genetic architectures of common traits and
diseases [65]. Studies using this method have consistently reported negative correlation between general
cognitive function and schizophrenia-related risks, with rg of approximately −0.2 (Figure 2) [39–43].
Specifically, higher educational attainment is associated with lower schizophrenia risk [66], whereas
lower educational attainment predicts worse premorbid function and poorer outcomes [66]. These
correlations would be reasonable in view of positive correlations between educational attainment
and general cognitive function (Figure 3). However, recent studies found a positive correlation
between educational attainment and schizophrenia (Figure 2) [55,67]. This discrepancy may be
explained by at least two disease subtypes, i.e., patients with high intelligence, and those with
cognitive impairments [68].
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7. Genetic Correlations between General Cognitive Function and Socioeconomic and
Health-Related Outcomes

Cognitive function has been shown to be correlated with socioeconomic and health-related
outcomes as well as neuropsychiatric disorders, as evidenced by LDSC analysis (Figure 3) [39–43].
Educational attainments provide the most robust correlations among other phenotypes. Specifically,
better cognitive function was associated with a lower risk of several neuropsychiatric disorders,
including schizophrenia, major depressive disorder, bipolar disorder, attention-deficit hyperactivity
disorder, anxiety disorder, and Alzheimer’s disease. By contrast, a higher risk of autism spectrum
disorder was related to better cognitive function. As individuals around adolescence were included
in correlational analyses (Table 1), the timing of cognitive assessment, i.e., before or after onset of the
illness, may have obscured the results from these analyses.

Better cognitive function was associated with lower levels of neuroticism, depressive symptoms,
and insomnia (Figure 3). Physical factors contributing were smaller waist-to-hip ratio and waist
circumference, smaller volume of putamen, fewer numbers of cigarettes per day, less likelihood of
having ever smoked, and lower body mass index in adulthood. Other factors affecting cognition
included fewer children, higher levels of openness, age of onset of smoking and smoking cessation,
larger intracranial volume, larger head circumference in infancy, height, birth length and weight,
higher age of first birth, and greater longevity. These findings indicate that general cognitive function
is related to socioeconomic and health-related outcomes in addition to neuropsychiatric disorders.

8. Intelligence Decline in Schizophrenia

Intelligence decline is conceptualized as intra-individual difference in intellectual performance
between different time points [18,47,48,69]. Thus, it may be calculated by subtracting estimated
premorbid IQ, as measured by the Adult Reading Test, and the present IQ, as measured by the WAIS.
For the purpose of brief assessment, we have recently developed the WAIS-Short Form consisting of
the Similarities and Symbol Search subtests [70]. Because clinical trials targeting cognitive impairment
of schizophrenia have mostly yielded negative results, we suggest that patients without intelligence
decline be excluded from participation. To date, no large-scale GWAS for intelligence decline in
patients with schizophrenia has been performed, and further studies are needed.

The degree of intelligence decline in patients with schizophrenia is typically classified into three
intellectual levels [18,23,47,69,71–77]:

(a) Deteriorated group: patients with a difference of 10 points or more between premorbid IQ and
present IQ;

(b) Preserved group: patients with a difference of less than 10 points between premorbid IQ and
present IQ (premorbid IQ above 90);

(c) Compromised group: patients with a difference of less than 10 points between premorbid IQ and
present IQ (premorbid IQ below 90).

The compromised IQ subgroup includes patients who have intellectual disability. Although
cognitive impairments are a core feature of schizophrenia, approximately 30% of patients are classified
into the preserved IQ subgroup [47].

So far, GWAS, PRS, or LDSC analysis has not been performed based on the above classification
(deteriorated, preserved, and compromised IQ) in patients with schizophrenia. As the current
diagnostic criteria for schizophrenia is independent of cognitive traits and genetic architectures,
GWASs based on intelligence decline subgroups may reveal novel genetic variants specific to cognitive
impairments. Caution is needed in interpreting data from IQ measures, as they are subject to
non-specific consequences of schizophrenia, effects of medication, and cognitive decline preceding the
onset of illness. Additionally, IQ scores by themselves cannot describe specific cognitive domains that
are relatively more affected than others in individual patients.
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9. Conclusions

In this paper, we reviewed the literature of recent large-scale GWASs targeting general cognitive
function, a phenotype that captures shared variations in performance on tests of several cognitive
domains. Studies on polygenic correlations between cognitive function and schizophrenia were also
addressed. In the last decade, large-scale GWASs have identified more than 100 loci linked to general
cognitive function and schizophrenia. Genetic variants identified are mostly intronic or intergenic, and
genes around them are densely expressed in brain tissues. Substantial proportions of the heritability
of these phenotypes are explained by polygenic architectures consisting of many genetic variants
with small effects. General cognitive function has been reported to be genetically correlated with
socioeconomic and health-related outcomes, as well as neuropsychiatric disorders. In particular, lower
general cognitive function has been consistently correlated with schizophrenia risks. Current treatment
strategies largely fail to improve cognitive impairments of schizophrenia. In order to progress, further
study is needed to understand the shared pathogenesis for general cognitive function in relation to
the illness.
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