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Abstract: NVP-BEZ235 or BEZ235 is a dual inhibitor of adenosine triphosphate (ATP)-competitive
phosphoinositide 3-kinase (PI3K)/mammalian-target-of-rapamycin (mTOR) and is promising for
cancer treatment. Because it targets more than one downstream effector, a dual approach is promising
for cancer treatment. The aim of this study was to evaluate the efficacy of NVP-BEZ235 in treating oral
cavity squamous cell carcinoma (OSCC). Two human OSCC cell lines, SCC-4 and SCC-25, were used
in this study. PI3K-AKT signaling, proliferation, and cell migratory and invasion capabilities of
OSCC cells were examined. In NVP-BEZ235-treated SCC-4 and SCC-25 cells, the phosphorylation
of 70-kDa ribosomal S6 kinase (p70S6K), but not mTOR, decreased within 24 h. NVP-BEZ235
inhibited OSCC-cell proliferation, migration, and invasion possibly by directly deregulating the
phosphorylation of p70S6K. The phospho-p70S6K inhibitor mimicked the effects of NVP-BEZ235
for preventing proliferation and weakening the migratory and invasion abilities of SCC-4 and
SCC-25 cells. This study further confirmed the effect of NVP-BEZ235 on OSCC cells and provided
a new strategy for controlling the proliferation, migration, and invasion of OSCC cells using the
phopho-p70S6K inhibitor.
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1. Introduction

Squamous cell carcinoma of the head and neck (SCCHN) is the sixth most common malignancy
worldwide. With a mortality rate of approximately 50%, it affects 600,000 new patients every year.
Oral cavity squamous cell carcinoma (OSCC) accounts for the vast majority of all SCCHN cases [1].
OSCC has the sixth highest cancer incidence in Taiwan and is the most common malignancy diagnosis
for Taiwanese men aged 30 to 50 years [2,3]. Most treatment modalities are based on tumor (T) staging,
and they include surgery and adjuvant therapy, such as chemotherapy and radiotherapy [4].

Even though progress has been made in cancer treatment, oral cancer has high rates of local
recurrence, secondary primary malignancy, and morbidity [5]. Once patients with inoperable and
recurrent OSCC, or distant metastasis, platinum-combination therapy is the standard first-line
treatment [6,7]. However, if cis-diamminedichloridoplatinum (CDDP)-based chemotherapy fails
and a patient’s cancer is still inoperable, the therapeutic options are limited; moreover, most patients
are only eligible to receive palliative radiation or supportive care [8–10].

With the advances of cancer research, target therapy has become the major trend for
various malignant diseases as the first- or second-line treatment option, including OSCC [11].
Synergistic antitumor effects exerted by combination of targeted therapy with CDDP have been
demonstrated in many preclinical studies [12,13]. The PI3K/AKT/mTOR intracellular signaling
pathway plays a vital role in various physiological processes, such as cellular survival, migration,
proliferation, and differentiation, as well as angiogenesis, protein synthesis, and glucose metabolism.
Additionally, the PI3K/AKT/mTOR pathway is associated with various oncogenic processes, and is
one of the signaling pathways most frequently dysregulated in cancer, including OSCC [14].
The PI3K/AKT/mTOR pathway and its downstream 70-kDa ribosomal S6 kinase (p70S6K) are
constitutively activated in human tumor cells, providing unique opportunities for therapeutic
intervention. Therefore, targeting PI3K/AKT/mTOR signaling could be a rational strategy for
the treatment of OSCC, a disease—particularly when advanced—in which systemic therapy plays
a crucial role. The ability of NVP-BEZ235 (dactolisib), a dual PI3K/mTOR inhibitor, to treat
some cancer types is being evaluated in phase I/II clinical trials. NVP-BEZ235 is an imidazo [4]
quinoline derivative. It binds to the ATP-binding cleft of enzymes and thus inhibits PI3K and mTOR
kinase activity [5]. A dual approach that targets more than one downstream effector is promising
because it may delay or even prevent therapy resistance [15]. NVP-BEZ235 has exhibited antitumor
effects on lung cancer [16,17], human glioma cells [18,19], breast cancer [20,21], melanoma [22],
pancreatic cancer [23,24], sarcoma [15,25], nasopharyngeal cancer [26,27], and hepatoma [28–30].
Additionally, NVP-BEZ235 demonstrated great promise for controlling solid tumors in a preclinical
mouse model [15].

The p70S6K is a member of the protein kinase A, G, and C families (AGC) serine/threonine kinase
family which contains more than 60 human proteins including Akt, protein kinase C, and 90-kDa
ribosomal S6 kinase [31]. By increasing ribosomal production and mRNA translation, p70S6K can
promote cell growth through global protein synthesis [31]. p70S6K is a downstream target of the
mTOR signaling pathway, specifically mTOR complex 1 (mTORC1). p70S6K is also a downstream
signal of mitogen activated protein kinase (MAPK)/extracellular-signal-regulated kinase (ERK)
pathway. p70S6K involves in the cross-talk between mTOR and MAPK/ERK signaling pathways at
various regulatory levels. Activation of p70S6K occurs via phosphorylation at serine-411 (Ser411),
threonine-421 (Thr421), and Ser424 by endogenous mitogens such as epidermal growth factor,
thrombin, and lysophosphatidic acid. The p70S6K pathway is also essential for signaling two
filamentous actin (F-actin) microdomains in cells and regulating cell migration [32].

In the present study, we investigated the effect of NVP-BEZ235 on PI3K/AKT/mTOR signaling in
OSCC cells in vitro. We first discovered that NVP-BEZ235 inhibited proliferation and attenuated cell
migration in a subset of SCC-4 and SCC-25 cells and thus enhanced reduction of p70S6K expression.
We also used a p70S6K inhibitor to investigate the possibility of substituting NVP-BEZ235, which has
undesirable side effects.
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2. Results

2.1. Analysis of mTOR Expression in OSCC Tissue Using Real-Time Quantitative Reverse
Transcriptase—Polymerase Chain Reaction (qRT-PCR)

To clarify whether the expression levels of mTOR and p70S6K were different in cancerous tissue
compared with noncancerous tissue, cancerous and noncancerous tissue samples taken from the
28 OSCC patients were examined using qRT-PCR to determine the expression of mTOR and p70S6K.
Our data demonstrated that the expression levels of mTOR (p < 0.05) and p70S6K (p < 0.01) were
significantly upregulated in OSCC (Figure 1A).
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6.03 ± 0.31 (cancer parts) and 7.01 ± 0.19 (noncancer parts).The red * p < 0.05 and blue ** p < 0.01 
indicate the statistical significance of differences between the cancer parts and noncancer parts. 
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for at least 3 days when the 30 nM dose was administered (Figure 2B,D). However, the 
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Figure 1. Expression of mTOR and p70S6K of squamous cell carcinoma (OSCC). Expression of mTOR
(A) and p70S6K (B) was upregulated in the cancerous tissue of OSCC (p < 0.05 and 0.01, respectively).
The y-axis represents the fold change in the mTOR or p70S6K expression level of cancerous relative
to noncancerous tissues. The mean mTOR or p70S6K expression level in noncancerous tissues was
assigned a value of 1 to obtain the fold change in expression in cancerous tissues. The mean ∆Ct
values for mTOR are 5.98 ± 0.26 (cancer parts) and 6.84 ± 0.22 (noncancer parts), and for p70S6K are
6.03 ± 0.31 (cancer parts) and 7.01 ± 0.19 (noncancer parts).The red * p < 0.05 and blue ** p < 0.01
indicate the statistical significance of differences between the cancer parts and noncancer parts.

2.2. NVP-BEZ235 Inhibited Cell Proliferation and Downregulated the PI3K/AKT/mTOR-Signaling Pathway of
OSCC Cells, Resulting in the Suppression of Phospho-p70S6K

The antiproliferative potential of NVP-BEZ235 was assessed using 3-(4.5-dimethylthiazol-
2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay on SCC-4 and SCC-25 cells. After 72 h of treatment,
NVP-BEZ235 had significantly inhibited the growth of SCC-4 (Figure 2A) and SCC-25 (Figure 2C)
when it was used at concentrations of 7.5 nM and greater. The phosphorylation of p70S6K decreased
within 24 h, and the phosphor-p70S6K was completely absent for at least 3 days when the 30 nM dose
was administered (Figure 2B,D). However, the phosphorylation of mTOR did not reduce significantly
up to 3 days.
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Figure 2. NVP-BEZ235 suppressed cell proliferation and reduced the expression of phospho-mTOR
and phospho-p70S6K in SCC-4 and SCC-25 cells. The inhibitory effects of various doses (7.5, 15, 30,
and 100 nM) of NVP-BEZ235 on SCC-4 (A) and SCC-25 (C) cells were assessed using MTT assay after
72 h of treatment. Data presented are the mean and standard error of the mean of three independent
experiments. The ** p < 0.01 and *** p < 0.001 indicate the statistical significance of differences between
the results for cells with and without treatment (red ** and *** for SCC-4 and blue ** and *** for SCC-25).
As determined through Western blotting, NVP-BEZ235 reduced the expression of phospho-mTOR
(p-mTOR) and phospho-p70S6K (p-p70S6K) in SCC-4 (B) and SCC-25 (D) cells. SCC-4 and SCC-25
cells were treated with 15 or 30 nM NVP-BEZ235 for 30 min (30 min), 1 h (1 h), 2 h (2 h), 1 day (1 d),
2 days (2 d), and 3 days (3 d) in six-well plates. Western blot analysis was performed to examine the
expression levels of p-mTOR, mTOR, p-p70S6K, p70S6K, and β-actin.

2.3. NVP-BEZ235 Inhibited the Migratory and Invasion Abilities of SCC-4 and SCC-25 Cells

Weaker migratory ability was observed in SCC-4 and SCC-25 cells that had been treated with
NVP-BEZ235 through the detection of the wound-healing assay (Figure 3A). In SCC-4 cells, migration
was significantly slower in the cells that had been treated with NVP-BEZ235 for 4 to 24 h than in
untreated cells. In SCC-25 cells, migration was significantly slower from 8 to 36 h after NVP-BEZ235
treatment. Weaker invasion ability was also observed in SCC-4 and SCC-25 cells that had been treated
with NVP-BEZ235, as detected using the transwell cell migration assay (Figure 3B). After incubation for
24 h in transwell chambers, the number of cells that had migrated or invaded was markedly decreased
in NVP-BEZ235-treated SCC-4 (p < 0.01) and SCC-25 (p < 0.01) cells.
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inhibition, we wondered if the direct suppression of phospho-p70S6K would achieve the same 
effect. PF-4708671, a phospho-p70S6K inhibitor, was used to evaluate its antiproliferative potential 

Figure 3. NVP-BEZ235 inhibited the migratory and invasion capabilities of SCC-4 and SCC-25 cells.
(A) Wound-healing assay determined that SCC-4 and SCC-25 cells had shorter migration distances after
NVP-BEZ235 treatment. * p < 0.05, ** p < 0.01, and *** p < 0.001 indicate the statistical significance of
differences at one point in time between the results for cells with and without treatment. Hollow dots
are for negative controls and solid dots are for NVP-BEZ235 treatments. (B) After incubating for 24 h
(SCC-4) or 48 h (SCC-25) with transwell chambers, the area of migratory or invasive cells was markedly
decreased in NVP-BEZ235-treated cells in comparison with cells without treatment. ** p < 0.01 indicates
the statistical significance of the differences between cells with and without treatment (red ** for SCC-4
and blue ** for SCC-25).

2.4. Phospho-p70S6K Inhibitor 2-((4-(5-Ethylpyrimidin-4-yl)piperazin-1-yl)methyl)-5-(trifluoromethyl)-1H-
benzo[d]imidazole (PF-4708671) Suppressed Proliferation and Inhibited the Expression of Phospho-mTOR and
Phospho-p70S6K in SCC-4 and SCC-25 Cells

Because NVP-BEZ235 did not demonstrate proliferative abilities through phospho-p70S6K
inhibition, we wondered if the direct suppression of phospho-p70S6K would achieve the same
effect. PF-4708671, a phospho-p70S6K inhibitor, was used to evaluate its antiproliferative potential
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in SCC-4 and SCC-25 cells. As displayed in Figure 4A, the expression of phospho-p70S6K was
completely abolished in SCC-4 (2 days) and SCC-25 (18 h) after PF-4708671 treatment. The expression of
phosphor-mTOR was also downregulated by PF-4708671 treatment. MTT assays were also performed
to determine the effects of PF-4708671 on cell growth. After 72 h of PF-4708671 treatment, the growth
of SCC-4 and SCC-25 cells was significantly inhibited (Figure 4B). SCC-4 cells were more sensitive to
PF-4708671 than SCC-25 cells were.
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Figure 4. Phospho-p70S6K inhibitor (PF-4708671) suppressed phospho-p70S6K expression and cell
proliferation in SCC-4 and SCC-25 cells. (A) As determined using Western blotting, the phospho-p70S6K
(p-p70S6K) inhibitor (PF-4708671) reduced the expression of phospho-mTOR (p-mTOR) and p-p70S6K
in SCC-4 and SCC-25 cells. SCC-4 and SCC-25 cells were not treated as negative control (NC) or treated
with 20 µM PF-4708671 for 6 h (6 h), 12 h (12 h), 18 h (18 h), 1 day (1 d), 2 days (2 d), and 3 days (3 d).
Western blot analysis was performed to examine the expression levels of p-mTOR, mTOR, p-p70S6K,
p70S6K, and β-actin. (B) Inhibitory effects of various doses (0.5, 1, 2, 5, 10, 20, and 40 µM) of PF-4708671
on SCC-4 (B) and SCC-25 (C) cells were assessed using MTT assay after 72 h of treatment. Data
presented are the mean and standard error of the mean of three independent experiments. * p < 0.05,
** p < 0.01, and *** p < 0.001 indicate the statistical significance of differences between cells with and
without treatment. t (red ** and *** for SCC-4 and blue *, ** and *** for SCC-25).

2.5. Phospho-p70S6K Inhibitor (PF-4708671) also Suppressed Migration and Invasion as an NVP-BEZ235 in
SCC-4 and SCC-25 Cells

The migratory and invasion abilities of SCC-4 and SCC-25 cells were also weakened by the
phospho-p70S6K inhibitor (PF-4708671). In SCC-4 cells, migration was significantly slower in cells
treated with PF-4708671 for 4 to 36 h than in untreated cells. In SCC-25 cells, migration was significantly
slower at 24 and 36 h after PF-4708671 treatment (Figure 5A). After incubating for 24 h in transwell
chambers, the number of migrated and invaded cells was markedly decreased in PF-4708671-treated
SCC-4 (p < 0.05) and SCC-25 (p < 0.05) cells (Figure 5B).
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3. Discussion 

Figure 5. Phospho-p70S6K inhibitor (PF-4708671) inhibited the migratory and invasion activities of
SCC-4 and SCC-25 cells. (A) Wound-healing assay revealed that SCC-4 and SCC-25 cells had shorter
migration distances after PF-4708671 treatment. * p < 0.05, ** p < 0.01, and *** p < 0.001 indicate the
statistical significance of the differences at one point in time between cells with and without treatment.
(B) After incubating for 24 h (SCC-4) or 48 h (SCC-25) in transwell chambers, the area of migratory
or invasive cells was markedly decreased in PF-4708671-treated cells compared with cells without
treatment. * p < 0.05 indicates the statistical significance of differences between cells with and without
treatment (red * for SCC-4 and blue * for SCC-25).
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3. Discussion

This is the first study to investigate the effect of NVP-BEZ235 therapy in OSCC. NVP-BEZ235 is a
novel, orally consumable dual PI3K/mTOR inhibitor that is currently being used in clinical trials [33].
The PI3K/AKT/mTOR signaling pathway and abnormal activation of this pathway reportedly play
an essential role in the progression, metastasis, and chemoresistance of numerous tumor types [34].
Currently, NVP-BEZ235 is in phase I/II clinical trials and was demonstrated to control solid tumors in
a preclinical mouse model [33].

In our patients with OSCC, the expression of mTOR and p70S6K was significantly upregulated
(Figure 1). It has been reported that p70S6K plays an important role in metastasis within the
mTOR signaling networks, including mTORC1 and mTORC2 [35]. Our in vitro results demonstrated
that NVP-BEZ235 significantly reduced SCC-4 and SCC-25 proliferation. They also revealed
that NVP-BEZ235 suppressed phospho-mTOR and phospho-p70S6K levels. S6 kinase proteins
(S6K) has also been reported to influence apoptosis through different mechanisms [36,37]. In the
PI3K/AKT/mTOR pathway, activation of mTOR results in the phosphorylation of numerous
substrates, including the phosphorylation of S6K by mTORC1. The effect of NVP-BEZ235 on the
apoptosis of OSCC cells may be associated with the phosphorylation of S6K. The antitumor effects of
NVP-BEZ235 result not only from inhibiting the Akt survival pathway but also from promoting cell
apoptosis. These effects raise the possibility that a combination treatment, once developed, would be
a promising therapeutic strategy for enhancing the effects of chemotherapy and improving clinical
outcomes for patients with OSCC. NVP-BEZ235 completely reduces phosphor-p70S6K activation and
can inhibit phospho-mTOR activation. p70S6K has been reported to regulate cytoskeletal organization
and cell motility induced by members of the Ras homologous (Rho) GTPase family, such as Ras
homolog gene family, member A (Rho A), Ras-related C3 botulinum toxin substrate 1 (Rac1), and cell
division control protein 42 homolog (cdc42) [38]. Therefore, NVP-BEZ235 affects not only cell
proliferation but also cell migration (Figure 3). The rate of distant metastasis or regional lymph
node metastasis of OSCC is possibly reduced by NVP-BEZ235.

The function of PI3K/Akt pathway is to promote cell survival and to inhibit apoptosis. When the
intracellular signaling of PI3K/Akt pathway is altered, the cellular proliferation will be promoted and
the upregulated glycolysis caused by the Warburg effect will be used to sustain the higher metabolic
demand of transformed cells [39]. Carlo et al. reported grade 3–4 adverse effects of NVP-BEZ235 in
50% of patients (5 of 10) [40], without objective responses from subjects in the study group. The fatigue,
diarrhea, nausea, and mucositis that has been reported with NVP-BEZ235 has limited the doses in
which it is commonly prescribed, and it is unsurprising that combined PI3K and mTOR blockades
resulted in frequent adverse effects [41]. Hence, caution is advised when taking NVP-BEZ235 orally.

According to our results, the p70S6K inhibitor could mimic the effects of NVP-BEZ235 and other
mTOR inhibitors. The phospho-p70S6K inhibitor significantly inhibited the growth of SCC-4 and
SCC-25 cells (Figure 4). Therefore, the phosphor-p70S6K inhibitor could weaken the Warburg effect
and replace the mTOR inhibitor in the future. Indeed, the phospho-p70S6K inhibitor (PF-4708671)
could suppress not only phospho-p70S6K but also phospho-mTOR, which is a result superior even to
that obtained with NVP-BEZ235 (Figure 4).

In conclusion, proliferation and migration of OSCC cells could be effectively inhibited by
NVP-BEZ235 through direct deregulation of phosphorylation of p70S6K. Even p70S6K is the
downstream of PI3K/AKT/mTOR pathway, inhibition of phospho-p70S6K could still reduce the
phosphorylation of mTOR. This study further confirmed the effect of NVP-BEZ235 on OSCC cells and
provided a new strategy for controlling the migration and proliferation of OSCC cells by using the
phopho-p70S6K inhibitor.
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4. Materials and Methods

4.1. Patients and Samples

This study enrolled 28 patients (27 men and one female aged 31–75 years; mean ± standard
deviation [SD]: 53.23 ± 10.98 years) diagnosed with OSCC who underwent surgery in the Department
of Otolaryngology at Kaohsiung Chang Gung Memorial Hospital between 2009 and 2012. The clinical
pathological characteristics—such as age; sex; tumor, neck lymph node, and metastasis staging;
tumor size; and survival—of the patients are listed in Table 1. Tissues of tumor and adjacent nontumor
parts were obtained from surgery and tissue samples were snap-frozen in liquid nitrogen immediately
after resection. Prior to tissue acquisition, all the patients agreed and signed the informed consent.
The Institutional Review Board of the Kaohsiung Chang Gung Memorial Hospital approved this study
on August 01, 2012 (IRB No. 100-4455A3).

Table 1. Characteristics of patients with OSCC.

Characteristic Number of Patients

Sex
Male 27
Female 1
Median age year (range) 53.23 (31–75)

Staging 1

I 6
II 6
III 7
IV 9

Site
Bucca 7
Gum 6
Palate 1
Tongue 12
Trigone 2

N stage 1

N0 20
N1 7
N2a 0
N2b 1
N2c 0
N3 0

Survival
Expired 10 2

Survived 18
1 The stage of OSCC is defined by the National Comprehensive Cancer Network
(NCCN) clinical practice guideline 7th edition; 2 The patients died from disease
after 5 years of follow-up.

4.2. Real-time Quantitative Reverse-transcriptase Polymerase Chain Reaction (qRT-PCR) Analysis

The total RNA of SCC-4 cells, SCC-25 cells, and cancerous and noncancerous tissues obtained
from the patients with OSCC was extracted using a TRIzol reagent (Invitrogen; Life Technologies,
Carlsbad, CA, USA), and the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, USA) was used to synthesize complementary DNA (cDNA). The PCR reaction mixture
contained 25 ng of cDNA; 0.5 µL of mTOR gene-expression assay (Hs00234508_m1, Applied Biosystems,
Foster City, CA, USA) or β-actin (ACTB) gene-expression assay (Hs01060665_g1, Applied Biosystems,
Foster City, CA, USA); and 5 µL of 2× TaqMan Universal PCR Master Mix (Applied Biosystems,
Foster City, CA, USA). qPCR analysis was run in an ABI 7500 Fast Real-Time System (Applied
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Biosystems, Foster City, CA, USA), and the thermal parameters were 1 cycle of 95 ◦C for 10 min and
40 cycles of 95 ◦C for 20 s and 60 ◦C for 1 min. The threshold cycle (Ct) of the mTOR gene or p70S6K
gene was first normalized to the ACTB internal control to obtain the relative threshold cycle (∆Ct),
and then the 2−∆∆Ct method was used to calculate the relative expression of target gene.

4.3. Cell Culture

The two human SCCHN cell lines, SCC-4 and SCC-25, used in this study were purchased from the
Food Industry Research and Development Institute in Taiwan. Both SCC-4 and SCC-25 cells are tongue
squamous cell carcinoma. Cells were preserved and grown in a minimum essential medium (MEM)-F12
medium (Invitrogen, Life Technologies, Carlsbad, CA, USA) containing 0.4 µg/mL hydrocortisone
(Sigma Aldrich, St. Louis, MO, USA) and 10% fetal bovine serum at 37 ◦C with 5% CO2.

4.4. MTT Assay

The mitochondrial conversion of MTT to formazine was used to determine the percentage of
metabolically active cells. Various concentrations of NVP-BEZ235 were used to treat SCC-4 and
SCC-25 cells. Cells treated with phosphate-buffered saline (PBS) were used as negative control.
The culture media were replaced with Dulbecco’s Modified Eagle Medium/Nutrient Mixture F-12
(DMEM/F-12) (without phenol) containing 0.02% MTT (Sigma Aldrich, St. Louis, MO, USA) after
different incubation times. After incubation for 4 h, the media containing MTT were then replaced
with dimethyl sulfoxide (200 µL per well). The absorbance at a wavelength of 595 nm were measured
using a DTX880 Multimode Detector (Beckman Coulter, Brea, CA, USA).

4.5. Western Blotting

Radioimmunoprecipitation assay buffer (20 mM Tris-HCl at pH 7.5, 150 mM NaCl, 1 mM
Na2EDTA, 1 mM ethylene glycol tetraacetic acid (EGTA), 1% Nonidet P-40 (NP-40), 1% sodium
deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3VO4,
and 1 µg/mL leupeptin) was added to samples for protein extraction. For Western blotting,
30 µg of the total lysates was separated using 6% to 15% sodium dodecyl sulfate–polyacrylamide
gel electrophoresis and transferred to a polyvinylidene fluoride membrane (Millipore, Darmstadt,
Germany). After blocking with dried nonfat milk for 1 h, the membrane was incubated overnight
with primary antibodies at 1:3000 dilution. The primary antibodies and antibodies against
phosphorylated epitopes used in this study were mTOR, phospho-mTOR (Ser2448), p70S6K,
and phospho-p70S6K (all purchased from Cell Signaling Technologies, Danvers, MA, USA).
β-actin (1:5000 dilution; Sigma Aldrich, St. Louis, MO, USA) was used as the internal control.
Horseradish-peroxidase-conjugated goat anti-mouse IgG (Sigma Aldrich, St. Louis, MO, USA) and
goat anti-rabbit Immunoglobulin G (IgG) (Sigma Aldrich, St. Louis, MO, USA) were used as secondary
antibodies. Western Lightning® Plus-Enhanced Chemiluminescence (ECL) Substrates (PerkinElmer,
Inc., Boston, MA, USA) were used to visualize the proteins.

4.6. Wound-Healing Assay

The migration activity of cells was analyzed using wound-healing assay. Cultures of SCC-4 and
SCC-25 cells were optimized to ensure a homogeneous and viable cell monolayer prior to application
of the wound-healing assay. One day before the assay, 2 × 105 cells were seeded in 6-well plates,
and when cell confluence reached approximately 90%, a homogeneous wound was artificially created
on the monolayer using a sterile, plastic, 200-µL-micropipette tip. After creating the wound, cells were
washed with PBS to remove debris. Cells that had migrated into the wounded area were photographed
using a Zeiss microscope (Zeiss, Gottingen, Germany) at 40× magnification, and the migration area
was calculated using ImageJ free software, version 1.41o (NIH, Bethesda, MD, USA).
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4.7. Transwell Assays

The migration ability of SCC-4 and SCC-25 cells was measured using a 24-pore transwell
chamber (Corning Inc., Corning, NY, USA) with a polycarbonate membrane filter covered by a
gelatin package. The bottom membranes (8-µm aperture) of the transwell chambers were coated with
Matrigel (Sigma, St. Louis, MO, USA) for the determination of invasive ability. Cells (5 × 105 in 200 µL)
were inoculated onto the upper chamber, and the lower chamber was filled with 600 µL of DMEM
nutrient solution containing 10% fetal bovine serum (FBS). After a 24- to 48-h incubation at 37 ◦C with
5% CO2, the wells were removed, fixed with methanol and glacial acetic acid (3:1), stained with 0.1%
crystal violet, and finally mounted [33]. The areas of migratory or invasive cells were discerned by
calculating five randomly selected fields of stained cells using ImageJ free software, version 1.41o
(NIH, Bethesda, MD, USA) [42].

4.8. Statistical Analysis

The data sets for MTT assay, wound-healing assay, and transwell migration assay consisted of at
least three biological replicates, and the data are expressed as a mean ± SD. For statistical analysis of the
gene expression of qRT-PCR, ∆Ct values were used. The statistical significance was determined using
a two-sample t-test, and p-values < 0.05 mean if null hypotheses of no difference were rejected. All the
statistical analyses in this study were performed using SPSS version 15.0 software (SPSS, Chicago,
IL, USA).
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Abbreviations

CDDP Cis-diamminedichloridoplatinum
cDNA Complementary DNA
mTOR Mammalian target of rapamycin
mTORC1 Mammalian target of rapamycin complex 1
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide
OSCC Oral cavity squamous cell carcinoma
p70S6K 70-kDa ribosomal S6 kinase
PBS Phosphate-buffered saline
PI3K Phosphoinositide 3-kinase
qRT-PCR Real-time quantitative reverse transcriptase–polymerase chain reaction
S6K S6 kinase proteins
SCCHN Squamous cell carcinoma of the head and neck
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