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Abstract: Bacillus subtilis ATCC (American type culture collection) 6633 was found to biotransform
ganoderic acid A (GAA), which is a major lanostane triterpenoid from the medicinal fungus Ganoderma
lucidum. Five glycosyltransferase family 1 (GT1) genes of this bacterium, including two uridine
diphosphate-dependent glycosyltransferase (UGT) genes, BsUGT398 and BsUGT489, were cloned
and overexpressed in Escherichia coli. Ultra-performance liquid chromatography confirmed the two
purified UGT proteins biotransform ganoderic acid A into a metabolite, while the other three purified
GT1 proteins cannot biotransform GAA. The optimal enzyme activities of BsUGT398 and BsUGT489
were at pH 8.0 with 10 mM of magnesium or calcium ion. In addition, no candidates showed
biotransformation activity toward antcin K, which is a major ergostane triterpenoid from the fruiting
bodies of Antrodia cinnamomea. One biotransformed metabolite from each BsUGT enzyme was then
isolated with preparative high-performance liquid chromatography. The isolated metabolite from
each BsUGT was identified as ganoderic acid A-15-O-f3-glucoside by mass and nuclear magnetic
resonance spectroscopy. The two BsUGTs in the present study are the first identified enzymes that
catalyze the 15-O-glycosylation of triterpenoids.
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1. Introduction

The fundamental step in developing new drugs is finding new compounds. In addition to
synthetic and natural sources, biotransformation is an alternative route for obtaining new compounds.
Xenobiotics can be biotransformed into new compounds via microorganisms or enzymes. Based on
the numerous bioactivities of triterpenoids, several scientists have focused on studying triterpenoid
biotransformations to find new bioactive triterpenoids [1-4].

Ganoderma lucidum (the Chinese name for which is “Lingzhi”) has numerous bioactive constituents,
such as polysaccharides and triterpenoids [5]; more than 300 different triterpenoids have been identified
from Ganoderma spp. [6]. Ganoderic acid A (GAA) is a typical Ganoderma triterpenoid [7] which has
been validated with many bioactivities [8-13]. Although hundreds of bioactive triterpenoids have been
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isolated from G. lucidum, few studies have focused on the biotransformation of Ganoderma triterpenoids.
On the other hand, our previous study showed that Bacillus subtilis ATCC (American type culture
collection) 6633 biotransforms antcin K, a major ergostane triterpenoid from the fruiting bodies of
Antrodia cinnamomea, to its glycoside derivatives [14]. In the present study, the B. subtilis strain was
confirmed to biotransform the most abundant Ganoderma triterpenoid GAA as well. Therefore, we
were interested in examining the key enzymes of B. subtilis ATCC 6633 in the biotransformation of
GAA and antcin K triterpenoids.

In nature, glycosylation is catalyzed by glycosyltransferases (GTs, EC 2.4.x.y), which transfer sugar
moieties from the activated donor molecules to specific acceptor molecules [15-17]. According to the
Carbohydrate-Active Enzymes (CAZy) database, GTs are now classified into 105 families [18]. Among
them, some glycosyltransferases family 1 (GT1) proteins were found to use small molecules, such as
flavonoids or terpenes, as sugar acceptors [15-17]. Furthermore, uridine diphosphate (UDP)-dependent
glycosyltransferases (UGTs), which belong to the GT1 gene family, can use UDP-glucose as the sugar
donor [15,18]. Thus, five GT1 genes, including two UGT genes, were cloned from the B. subtilis ATCC
6633 strain and overexpressed in Escherichia coli. The biotransformation activities of the expressed
enzymes were confirmed and optimized in this study. The metabolite biotransformed by the functional
enzymes was then isolated and identified.

2. Results

2.1. Confirming Biotransformation of GAA by Bacillus Subtilis ATCC 6633

To confirm whether B. subtilis ATCC 6633 could biotransform GAA, the bacterium was cultivated
in broth with GAA, and the fermentation broth was analyzed using ultra-performance liquid
chromatography (UPLC).

Figure 1 shows the UPLC of the initial (dashed line) and 24 h (solid line) fermentation broths of the
strain B. subtilis ATCC 6633 with GAA. The precursor GAA appeared at a retention time (RT) of 8.6 min.
After 24 h fermentation, the peak of the precursor decreased, while two new peaks—a major peak,
compound (1), with a RT of 7.0 min and a minor peak, compound (2) with a RT of 6.3 min—appeared.
Moreover, the two new peaks did not appear at 24 h of the fermentation broths of the strain in the
absence of GAA (Figure S1). The results confirmed that GAA was biotransformed by the strain
B. subtilis ATCC 6633.
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Figure 1. Biotransformation of ganoderic acid A (GAA) by B. subtilis ATCC (American type culture
collection) 6633. The strain was cultivated in modified glucose-nutrient (MGN) media containing
0.02 mg/mL of ganoderic acid A (GAA). The initial cultivation (dashed line) and the 72 h cultivation
(solid line) of the fermentation broth were analyzed with ultra-performance liquid chromatography
(UPLC). The UPLC operation conditions are described in the Materials and Methods section.
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2.2. Phylogenetic Analysis of GTs from B. subtilis ATCC 6633

Previous studies showed three microbial UGTs were validated with triterpenoid glycosylation
activity, including BsYjiC (GenBank Protein Accession No. NP_389104) from B. subtilis 168 [19,20],
UGT109A1 (GenBank Protein Accession No. ASY97769) from B. subtilis CTCG 63501 [21], and BsGT1
(GenBank Protein Accession No. ANP92054) from B. subtilis KCTC 1022 [22]. To classify which GT
genes of B. subtilis ATCC 6633 are responsible for the biotransformation of GAA, a phylogenetic
analysis of 30 annotated GTs from the B. subtilis ATCC 6633 genome (GenBank BioProject Accession
No. PRJNA43011) was compared with the three validated microbial UGTs (Figure 2).

Among the 30 GTs, nine GT1 family genes (star in Figure 2), including two UGTs (BsUUGT398 and
BsUGT489), were identified as putative gene candidates. The results revealed BsUUGT489 (GenBank
Protein Accession No. WP_003220489) of B. subtilis ATCC 6633 was clustered with three validated
UGTs (gray background in Figure 2). BsUGT398 (GenBank Protein Accession No. WP_003225398),
BsGT110 (GenBank Protein Accession No. WP_003220110), BsGT292 (GenBank Protein Accession
No. WP_032727292), and BsGT296 (GenBank Protein Accession No. WP_003219296) were closely
related to the UGT cluster. Thus, the five candidates (bold text in Figure 2) were selected for further
functional assay.
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Figure 2. Molecular phylogenetic analysis of BsGT candidates inferred with the maximum likelihood
(ML) method. The best-fit ML model selection is mtREV24 [23]. The tree with the highest log likelihood
(—6498.11) is shown. The percentage of trees in which the associated taxa clustered together is shown
next to the branches. Initial tree(s) for the heuristic search were obtained automatically by applying the
neighbor-join and BioN] algorithms to a matrix of pairwise distances estimated using a JTT model and
then selecting the topology with the superior log likelihood value. The tree is drawn to scale, with the
branch lengths measured in the number of substitutions per site. The analysis involved 10 amino
acid sequences. All positions with less than 95% site coverage were eliminated. That is, fewer than
5% alignment gaps, missing data, and ambiguous bases were allowed at any position. There were a
total of 372 positions in the final dataset. Evolutionary analyses were conducted in MEGA X [24].



Int. ]. Mol. Sci. 2018, 19, 3469 40f11

2.3. Cloning and Overexpression of GT1 from B. subtilis ATCC 6633 in E. coli

Among the five GT1 genes of B. subtilis ATCC 6633, three GT1 genes (BsGT110, BsGT292, BsGT296)
had been previously subcloned into the pETDuet-1™ expression vector, overexpressed in E. coli BL-21
(DE3), and the produced GT1 proteins were purified with Ni?* chelate affinity chromatography [25].
Thus, the three purified GT1 enzymes were ready for use in this study. The other two GT1 genes
(BsUGT398, and BsUGT489) were newly amplified from B. subtilis ATCC 6633 genomic DNA with
polymerase chain reaction (PCR) with specific primer sets (Table S1) and subcloned into the pETDuet-1
expression vector to form pETDuet-BsUGT (Figure S2a). The recombinant BsUGT was overexpressed in
E. coli. The produced protein was purified and analyzed with sodium dodecyl sulfate polyacrylamide
gel electrophoresis (SDS-PAGE) (Figure S2b). Thus, the five purified GT1 proteins were used for
another biotransformation assay.

2.4. Activity Assays of GT1 from B. subtilis ATCC 6633 Toward GAA

The five purified GT1 proteins were incubated with UDP-glucose and the precursor GAA. After a
30 min reaction, the reaction mixtures were analyzed with UPLC. Only BsUGT398 and BsUGT489 had
biotransformation activity toward GAA, while the other three GT1 proteins of B. subtilis ATCC 6633 did
not have this activity. Because our previous study showed that BsGT110 exhibited glycosylation
activity toward 8-hydroxydaidzein [25], the reason for the lack of activity of the GT1 toward GAA
is the substrate specificity. However, neither BsGT292 nor BsGT296 were active toward GAA and
8-hydroxydaidzein. The substrates of the two BsGTs are not known yet. The UPLC results further
revealed the biotransformed metabolite in either the BsUGT398 (Figure 3a) or BsUGT489 (Figure 3b)
reaction had an identical RT of 7.0 min, which was the same as the RT of compound (1) in the GAA
biotransformation by the strain B. subtilis ATCC 6633 (Figure 1). Thus, this result implied that the
BsUGT enzymes and the strain B. subtilis ATCC 6633 might have the same or similar biotransformation
activity toward GAA.

In a previous study, we showed that B. subtilis ATCC 6633 could glycosylate antcin K, a major
ergostane triterpenoid from the fruiting bodies of Antrodia cinnamomea [14]. Thus, we speculated that
the five GT1 enzymes might have the ability to biotransform antcin K. The purified GT1 proteins were
also incubated with UDP-glucose and the precursor antcin K. After a 30 min reaction, the reaction
mixtures were analyzed with UPLC. Unfortunately, the results showed that no metabolite was
biotransformed by the five GT1 proteins.

GAA
0.007

0.006
0.005
0.004
0.003 Compound (1)
0.002

Intensity (254 nm)

0.001 -

0 L R ——— . — -

2 3 4 5 6 7 8 9 10 11 12 13
-0.001

Retention time (min)

(a)

Figure 3. Cont.



Int. J. Mol. Sci. 2018, 19, 3469 50f11

0.007

0.006 Compound (1)

0.005 \‘:

0.004 I GAA

0.003 [

Intensity (254 nm)

0.002 I

0.001 - L

2 3 4 3 6 7 8 9 10 11 12 13
-0.001

Retention time (min)

(b)

Figure 3. Biotransformation of GAA by purified BsUGT398 (a) or BsUGT489 (b). Two micrograms of
purified BsUGT398 or BsUGT489 were incubated with 0.4 mM uridine diphosphate (UDP)-glucose
and 0.02 mg/mL of GAA in the presence of 50 mM Tris pH 8.0 and 10 mM of MgCl,. After 30 min
incubation, the mixtures were analyzed with UPLC. The UPLC conditions are described in Materials
and Methods.

2.5. Optimal Catalyzing Conditions for BsUGT398 and BsUUGT489

The activities of purified BsUGT398 and BsUGT489 were determined at different pH values,
temperatures, and metal ions. Many GTs utilize divalent metal ion cofactors, and Mg?* was conjugated
in the native crystals of some GTs [26]. In addition, Ca?" and Mn?" were also used in the crystal
structure studies of GTs [27]. Therefore, we decided to use the three metal ions to optimize the
activities of the two BsUGTs. On the other hand, to expand the testing range of the metal ions,
a potentially inhibitory cation, Cd?*, was also used. The result is shown in Figure 4. The optimal
catalyzing condition for each UGT protein is pH 8.0 with 10 mM of Mg?* or Ca?*. The activity of
the two UGTs decreased by about 70% in the absence of either the Mg?* or Ca?* metal ion and was
completely inhibited in the presence of Cd?*. For temperature, BsUGT398 and BsUGT489 had optimal
activity at 40 and 30 °C, respectively.
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Figure 4. Effects of pH (a,b), temperature (c,d), and metal ion (e f) on BsUGT398 (a,c,e) or BsUGT489
(b,d,f) activity. The standard condition was set as 2 pg of the purified enzyme, 1 mg/mL of GAA,
10 mM of MgCl,, and 10 mM of uridine diphosphate (UDP)-glucose in 50 mM of Tris at pH 8.0 and
40 °C. To determine the optimal reaction condition, the pH, temperature, or metal ion in the standard

condition was replaced with the tested condition. Relative activity was obtained by dividing the area
of the summation of the product peak of the reaction in the UPLC profile with that of the reaction at
the standard condition. The mean (1 = 3) is shown, and the standard deviations are represented by

error bars.

2.6. Isolation and Identification of the Biotransformation Metabolite

To resolve the chemical structures of the metabolites, the biotransformation was scaled up
by either BsUGT398 or BsUGT489, and the metabolite from each biotransformation was purified
with preparative high-performance liquid chromatography (HPLC). From a 40 mL reaction mixture
containing 20 ug/mL of BsUGT, 1 mg/mL of GAA, 10 mM of UDP-glucose, 10 mM of MgCl,,
and 50 mM of Tris pH 8.0, 15.1 mg and 37.4 mg of the metabolite, compound (1), were isolated
from the biotransformation by BsUGT398 and BsUGT489, respectively. The metabolite from each
biotransformation was elucidated with electrospray ionization mass spectrometry (ESI-MS) and nuclear
magnetic resonance (NMR) spectra. They showed identical mass and '*C-NMR data. The mass data
showed an [M — H]™ ion peak at m/z: 677.67 in the ESI-MS spectrum, corresponding to C3sHs53012
that indicated the glucosylation of GAA. The structure of the metabolites was further confirmed
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as GAA-15-O-3-glucoside using NMR data, by comparison with that in our previously reported
study [28]. The NMR spectrum of the two metabolites from either BsUGT398 or BsUGT489 are
shown in Figure S3-516.The biotransformation process of GAA by either BsUGT398 or BsUGT489,
where D-glucose was tentatively assumed, is shown in Figure 5.

OH

BsUGT398 or BsUGT489

Glucosylation

GAA GAA-15-O-p-glucoside

Figure 5. Biotransformation process of GAA by BsUGT398 or BsUGT489.

3. Discussion

Before the present study, three microbial UGTs—BsYjiC [19,20], UGT109A1 [21], and BsGT1 [22]—
had been demonstrated to possess triterpenoid glycosylation activity. These UGTs catalyze the
C-3, C-6, C-12, or C-20 carbon positions with a hydroxyl group for glycosylation of triterpenoids.
Accordingly, BsUGT398 and BsUGT489 from B. subtilis ATCC 6633 that catalyzes the C-15 glycosylation
of GAA are unique, and the glycosylation site on the triterpenoids is also new. Only one metabolite,
glycosylation on the C-15 hydroxyl group, was biotransformed by the two BsUGTs, in spite of the
other C-7 hydroxyl or C-26 carboxyl groups of GAA available for glycosylation (Figure 5). Moreover,
neither of the two BsUGTs catalyzed the glycosylation of antcin K, which contains C-3, C-4, and C-7
hydroxyl and C-26 carboxyl groups but lacks the C-15 hydroxyl group available for glycosylation in the
structure. The results imply that the two BsUGTs have regio- and substrate selection of glycosylation
of triterpenoids.

B. subtilis ATCC 6633 has been reported to possess glycosylation activity toward the pentacyclic
triterpenoids oleanolic acid, echinocystic acid, or betulinic acid [29] or the C-26 carboxyl group of
tetracyclic ergostane triterpenoid, antcin K [14]. Moreover, all the glycosylation activity by the strain
were at carboxyl groups of the triterpenoid precursors. However, five GT1 enzymes of B. subtilis
ATCC 6633 lacked biotransformation activity toward antcin K. Therefore, other enzymes must be
responsible for catalyzing glycosylation on the carboxyl groups of the triterpenoids in the B. subtilis
ATCC 6633. Nevertheless, previously identified triterpenoid-glycosylation UGT enzymes, including
BsYjiC [19,20], UGT109A1 [21], BsGT1 [22], BsUGT398, and BsUGT489 (the present study), have been
proven to catalyze the glycosylation of triterpenoids only on the hydroxyl groups of triterpenoids. Thus,
the other GT family enzymes responsible for glycosylation on the carboxyl groups of triterpenoids
remain unknown and should be investigated from the B. subtilis ATCC 6633 strain in the future.
In addition to the GT families, some glycoside hydrolase (GH) families, such as the GH13 and GH70
families, have been reported to possess glycosyltransferase activity and accept small molecules, such as
flavonoids, as sugar acceptors [17,30]. Thus, these GH enzymes of B. subtilis ATCC 6633 might also
catalyze glycosylation on the carboxyl group of triterpenoids. Further studies to elucidate such catalytic
enzymes will be undertaken in our laboratory.

Glycosylation is a common modification reaction in the biosynthesis of natural compounds.
GT1 proteins are powerful enzymes in the glycosylation of natural compounds for in vivo or
in vitro use. Glycosylation enhances the lipophilicity and water solubility of natural compounds.
The development of a new biotransformation system of triterpenoid glycosylation would expand the
search for new triterpenoids and the applications of the newly produced triterpenoids in medicine,
cosmetics, and pharmacology use in the future.
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4. Materials and Methods

4.1. Microorganism and Chemicals

B. subtilis ATCC 6633 (BCRC 10447) was purchased from BCRC (Food Industry Research and
Development Institute, Hsinchu, Taiwan). Antcin K was obtained by the procedure in our previous
study [14]. GAA was bought from Baoji Herbest Bio-Tech (Xi-An, Shaanxi, China). UDP-glucose was
purchased from Cayman Chemical (Ann Arbor, MI, USA). The other chemicals, materials needed for
PCR, restriction enzymes, reagents and solvents used were of high quality, and were purchased from
commercially available sources.

4.2. Identification of Bacteria B. subtilis ATCC 6633 with Biotransformation Activity

B. subtilis ATCC 6633 was cultivated in 20 mL of a modified glucose-nutrient (MGN) medium
which contained 5 g/L of peptone, yeast extract, K;HPO,, and NaCl; 20 g/L of glucose [14] and
20 mg/L of GAA. The cultivation was carried out at 180 rpm and 28 °C for 24 h. After cultivation,
1 mL of the culture was then mixed with an equal volume of methanol and analyzed with UPLC.

4.3. UPLC

The UPLC system (Acquity UPLC H-Class, Waters, Milford, MA, USA) was equipped with an
analytic C18 reversed-phase column (Kinetex® C18, 1.7 um, 2.1 i.d. x 100 mm, Phenomenex Inc.,
Torrance, CA, USA). The operation conditions for UPLC of GAA and antcin K were from our previous
study [14].

4.4. Expression and Purification of GT1 of B. subtilis ATCC 6633

The genomic DNA of B. subtilis ATCC 6633 was isolated using the commercial kit Geno Plus™
(Viogene, Taipei, Taiwan). BsUGT398 and BsUGT489 of B. subtilis ATCC 6633 were amplified from
the genomic DNA with PCR with specific primer sets (Table S1). The amplified GT1 genes were
subcloned into the pETDuet-1™ vector through suitable restriction enzyme sites (Table S1) to obtain
the expression vector pETDuet-UGT (Figure S2a). The expression vectors were transformed into E. coli
BL21 (DE3) via electroporation to obtain recombinant E. coli.

Recombinant BsUGT398 and BsUGT489 were produced and purified from the recombinant E. coli.
The experimental procedure was the same as our previous study [25].

4.5. In Vitro Biotransformation Assay

In vitro biotransformation was performed by purified GT1 protein. In 1 mL reaction mixture,
2 ug of purified GT1 protein, 0.02 mg/mL of GAA or antcin K, 0.4 mM of UDP-glucose, 10 mM of
MgCl,, and 50 mM of Tris pH 8.0 were added. The reaction was carried out at 40 °C for 30 min.
After the reaction, the mixture was stopped by adding an equal volume of methanol and analyzed
with UPLC. For the optimal experiments, 2 pg of the purified BsUGT398 or BsUGT489, 1 mg/mL of
GAA, and 10 mM of UDP-glucose were used. The pH, temperature, or metal ion described above was
replaced by the tested condition. For pH testing, phosphate buffer at pH 6.0 and 7.0) and Tris buffer at
pH 8.0 and 9.0 were used. For metal ion testing, 10 mM of MgCl,, CaCl,, CdSO4 or MnCl, was used.
The relative activity was obtained by dividing the area of the product peak of the reaction in the UPLC
profile by that of the reaction at Tris pH 8.0 and 10 mM of MgCl,.

4.6. Scale-Up, Isolation, and Identification of the Biotransformation Product

To purify the biotransformation metabolite, the reaction was scaled up to a 40 mL reaction mixture
containing 20 ug of purified BsUGT398 or BsUGT489, 1 mg/mL of GAA, 10 mM of UDP-glucose,
10 mM of MgCl,, and 50 mM of Tris pH 8.0. After reaction at 30 °C (BsUGT489) or 40 °C (BsUGT398)
for 60 min, 40 mL of methanol was added to stop the reaction. The reaction mixture was filtrated
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through a 0.2 um nylon membrane, and applied into a preparative YoungLin HPLC system (YL9100,
YL Instrument, Gyeonggi-do, South Korea). The system was equipped with a preparative C18
reversed-phase column (Inertsil, 10 um, 20.0 i.d. x 250 mm, ODS 3, GL Sciences, Eindhoven,
The Netherlands). The operational conditions for the preparative HPLC were the same as those
in UPLC. The elution corresponding to the peak of the metabolite in UPLC was collected, concentrated
under vacuum, and then lyophilized. Finally, 15.1 mg and 37.6 mg of compound (1) were obtained from
the BsUGT398 and BsUGT489 biotransformation, respectively, and the structure of the compound was
confirmed with NMR and mass spectrometry analysis. The mass spectrometry analysis was performed
on a Finnigan LCQ Duo mass spectrometer (ThermoQuest Corp., San Jose, CA, USA) with electrospray
ionization (ESI). For the NMR experiments, purified samples quantities ranged from 4 mg to 8 mg
and were dissolved in 400 uL pyridine-ds, and 'H- and '*C-NMR, and distortionless enhancement
by polarization transfer (DEPT), heteronuclear single quantum coherence (HSQC), heteronuclear
multiple bond connectivity (HMBC), correlation spectroscopy (COSY), and nuclear Overhauser effect
spectroscopy (NOESY) spectra were recorded on a Bruker AV-700 NMR spectrometer (Bruker Corp.,
Billerica, MA, USA) at ambient temperature. Standard pulse sequences and parameters from the
Bruker library were used for the NMR experiments, and all chemical shifts were reported in parts per
million (ppm, 5).

4.7. Phylogenetic Analysis of GT5 from B. subtilis ATCC 6633

The unrooted phylogenetic tree of these candidate GT protein sequences was constructed with the
maximum likelihood method, using Molecular Evolutionary Genetics Analysis (MEGA X) software [24]
with 500 bootstrap replications, the general reversible mitochondrial model [23], and partial deletion.

5. Conclusions

Two new BsUGTs from B. subtilis ATCC 6633 were identified as transferring a glucose moiety to
GAA, producing a new triterpenoid glucoside, GAA-15-O-f3-glucoside. More than 10,000 microbial
GT genes have been deposited in the CAZy database. However, less than 1% of these GT genes
have been functionally characterized. The two BsUGTs were newly identified with novel triterpenoid
glycosylation activity. The two B. subtilis BsUGTs are the only identified GTs with glycosylation activity
toward Ganoderma triterpenoids. Thus, the present study has developed a novel biotransformation
system which might be applied to numerous Ganoderma triterpenoids to create many new Ganoderma
triterpenoid glucosides in the future.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/
11/3469/s1. Table S1: Nucleotide sequences of the primers used for amplification of GT1 in the present study.
Figure S1: UPLC of the 24 h fermentation broth using the B. subtilis ATCC 6633 strain without the addition
of GAA. Figure S2: Expression of BsUGT398 and BsUGT489 from B. subtilis ATCC 6633 in E. coli. Figure S3.
The 'H-NMR (700 MHz, pyridine-ds) spectrum of metabolite derived from GAA biotransformation by BsUGT398.
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