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Abstract: Using computational techniques to identify intrinsically disordered residues is practical
and effective in biological studies. Therefore, designing novel high-accuracy strategies is always
preferable when existing strategies have a lot of room for improvement. Among many possibilities,
a meta-strategy that integrates the results of multiple individual predictors has been broadly used
to improve the overall performance of predictors. Nonetheless, a simple and direct integration of
individual predictors may not effectively improve the performance. In this project, dual-threshold
two-step significance voting and neural networks were used to integrate the predictive results of four
individual predictors, including: DisEMBL, IUPred, VSL2, and ESpritz. The new meta-strategy has
improved the prediction performance of intrinsically disordered residues significantly, compared to
all four individual predictors and another four recently-designed predictors. The improvement was
validated using five-fold cross-validation and in independent test datasets.

Keywords: meta strategy; dual threshold; significance voting; decision tree based artificial neural
network; protein intrinsic disorder

1. Introduction

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) play critical
functions in many biological processes [1–7]. Among all the possible molecule mechanisms for the
functions of IDPs/IDRs, a major one is that IDPs/IDRs physically interact with their partners through
either conformational search or induced fit [8–10]. Eventually, due to them having structural flexibility,
IDPs/IDRs may bind to the partners with low-affinity but high-specificity [11–15], and thus regulate
the downstream biological processes. Clearly, to characterize the dynamic process of the interaction
and the mechanism of regulation, the exact locations of those intrinsically disordered amino acids
(IDAAs) involved in the interaction need to be determined. However, high-accuracy experimental
methods for the detection of IDPs/IDRs/IDAAs are time-consuming and cost-inefficient. Besides,
high-through experimental identification of disordered residues, although having attracted a lot of
attention and approaches have been widely scouted [16], is still challenging and the methods are not
currently available.

Consequently, many computational tools have been developed to identify IDPs/IDRs/IDAAs
and associated molecular interactions. The Protein Data Bank (PDB) [17], while being used in the
majority of cases for the three-dimensional structures of biomolecules, does contain information
on residues with missing coordinates. These residues are interpreted as IDAAs. Furthermore,
PDB also contains the structure of molecular complexes, which frequently provides information
of molecular interactions involving IDPs/IDRs. DisProt [18], which is the first database of IDPs/IDRs,
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not only collects IDPs/IDRs/IDAAs, but also integrates the information of molecular partners.
Similarly, IDEAL [19], another database of IDPs, incorporates the interaction networks of IDPs in
the database. DisBind [20], DIBS [21], and MFIB [22] are three recently developed databases for
IDPs/IDRs based molecular interactions. These databases can be used to search for IDAA/IDR/IDP,
or to develop computational predictors for various purposes. In fact, both PDB and DisProt are
frequently used for the development of disorder predictors. In addition, PDB contains complex
structures formed between a short IDR and another protein. Many of these short IDRs are known
as MoRFs (Molecular Recognition Features) [23]. MoRFs are the very first type of IDRs found in
molecular interaction. Based on this discovery, many MoRF related predictors have developed,
such as: MoRF [24], MoRFpred [25], MFSPSSMpred [26], MoRFchibi [27], MoRFPred-plus [28],
and OPAL [29], among many others. Furthermore, many other predictors have been developed for the
general binding site/regions within IDPs/IDRs, e.g., ANCHOR [30], SLiMpred [31], PepBindPred [32],
DISOPRED3 [33], IUPred2A/ANCHOR2 [34], etc.

All these computational tools provide information on protein intrinsic disorder for different
aspects. Databases are collections of experimentally observed examples; predictors can be used to
analyze novel sequences. Disorder predictors identify the location and, to some extent, the scale of
flexibility of IDRs/IDAAs; binding motif predictors spot the location of binding regions; other types of
predictors may provide information on various structural features and functional roles. Frequently,
the outputs of disorder predictors are used as input for other predictors to improve the prediction
accuracy [32,35–40]. Clearly, accurate identification of IDAAs is very important for studies associated
with protein structure, intrinsic disorder, interaction, and function. Therefore, improving the prediction
accuracy of protein intrinsic disorder predictors is always desirable, though also a real challenge at
present time. Furthermore, improving the prediction accuracy of IDAAs has other important impacts
on basic science. With more and more IDPs/IDRs being discovered, our knowledge on the actual
content of protein intrinsic disorder in nature is still elusive. Part of the reason is that the accuracy
of existing computational tools is still not able to meet the requirements. Therefore, developing
high-accuracy predictors is still in urgent need. In addition, it could also be expected that when
developing new predictors, novel computational strategies could be innovated, and thus, make a
much broader impact.

In our previous studies on the development of intrinsic disorder predictors [41,42], as well as
studies by many other researchers [43–47], meta-strategy has been demonstrated to have multiple
advantages over individual predictors that adopt a single computational strategy in the prediction. One
oversimplified but straightforward explanation for the success of meta-strategy is that meta-strategy is
able to combine the strengths of all individual predictors, and thus improve the prediction accuracy.
Nonetheless, a direct integration of multiple individual predictors may not improve the prediction
accuracy significantly [48,49], however, further integration of various data pre-processing techniques
will. Data pre-processing, such as angle-shift technique in protein dihedral angle prediction, was used
in artificial neural network based predictor and improved the accuracy remarkably [50]. A combination
of non-linear transformation and principal component analysis-based dimension reduction together
with meta-strategy was used to improve the prediction accuracy of miRNAs [48]. With these proofs,
it is expected that other novel techniques can also be used to improve the prediction accuracy of
protein intrinsic disorder. In this project, dual-threshold value and two-step significance voting were
integrated into a decision-tree based neural network to improve the prediction accuracy of IDAAs.

2. Results

2.1. Prediction Performance of Component Predictors

The ROC (Receiver Operating Characteristic) curves of four component predictors was presented
in Figure 1A. The AUC (Area Under the Curve) for DisEMBL, IUPred, VSL2, and ESpritz are
0.78, 0.82, 0.84, and 0.88, respectively. The balanced accuracy (Acc-b) of these four predictors at
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their default settings are: 68%, 76%, 77%, and 73%, accordingly. In Figure 1B, the overlap and
coverage between every two predictors were analyzed for the positive samples (disordered residues)
and negative samples (structured residues). Here, overlap stands for the ratio of true-positive
(or true-negative) predictions made by both predictors over the total number of positive (or negative)
samples, and coverage is defined as the ratio of correct predictions made by either predictors over
the total number of samples. Clearly, the overlap of positive samples between predictors normally
ranges from ~30% to 50%; however, the number for the overlap between IUpred and VSL2 went up to
~65%. In terms of coverage, the numbers were in the range from ~60% to ~80%. For negative samples,
the overlap was from ~70% to ~90%, and the coverage was normally higher than ~90%. The highest
values of coverage, as shown by bars at the most right-hand side of both panels, were ~85% and 97%
for positive and negative samples, respectively. These two values may outline the theoretical uplimits
of combining these four predictors.
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Figure 1. Prediction performance of four component predictors, including DisEMBL, IUPred, VSL2,
and ESpritz. (A) ROC curves of four component predictors. The ROC curves were obtained by using
the default settings of these predictors. (B) The pairwise overlap (gray bars) and coverage (dashed
bars) for true positive predictions (upper panel) and true negative predictions (lower panel) between
each pair of predictors. Axis shows pairs of predictors as follows: D-DisEMBL, I-IUPred, V-VSL2,
and E-ESpritz. All-coverage on x-axis stands for the maximum coverage of all predictors.

2.2. Use Information Gain to Choose Threshold Values

To use the new meta-strategy, threshold values of the decision tree need to be determined first.
Other than using the method based on the distribution of positive samples and negative samples as a
function of prediction score [49], the information gain of all the component predictors in the dataset
was analyzed and compared to the distribution of positive samples and negative samples, as shown in
Figure 2. The curves of information gain can be roughly characterized by a single-peak distribution,
and the location of peaks was, roughly, on the right-hand side of the cross-point where the ratio of
positive samples surpassed negative samples. More specifically, the locations of peaks for DisEMBL,
IUPred, VSL2, and ESpritz were around 0.5, 0.52, 0.64, and 0.26, respectively. By notation, the locations
of the peaks provide a rough estimation of the threshold values, which can be used to maximally
partition positive samples and negative samples. Clearly, these values can hardly be determined by
the analysis of distribution of positive and negative samples.
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Figure 2. The distribution of information gain, positive sample, and negative samples as a function
of prediction score for (A) DisEMBL, (B) IUPred, (C) VSL2, and (D) ESpritz. The x-axis shows the
prediction score, the y-axis on the left shows the values of information gain, and the y-axis on the right
shows the fractions of positive samples and negative samples at different prediction scores, respectively.

2.3. Performance of the New Predictor

Table 1 shows the prediction performance of the new meta-strategy compared to the component
predictors, as well as another four recently-developed predictors under five-fold cross-validation.
In brief, the performance of new meta-strategy developed in this project was obviously better than
others. In terms of accuracy (Acc), balanced accuracy (Acc-b), Matthews Correlation Coefficient (MCC),
F1 score, Area Under ROC Curve (AUC_ROC), and Under Precision-Recall Curve (AUC_PR), the new
prediction strategy achieved 84.2%, 83.1%, 0,635, 0.744, 0.899, and 0.788, respectively, and was ranked
at the first place among all eight different predictors. The new meta-strategy was ranked at the second
place on sensitivity (Sens), with one percentage point behind VSL2. With regard to specificity (Spec),
the new strategy was inferior to the predictors ESpritz (94%), DisEMBL (91.4%), AUCpreD (90.9%),
IUPred2 (87.7%), and IUPred (87.4%). Regardless, it should be noted the Sens values of these predictors
are at least 15 percentage points lower than the new meta-strategy.

Table 1. Prediction performance of the new strategy under five-fold cross-validation, in comparison
with four component predictors, another four recently-designed predictors.

DisEMBL IUPred VSL2 Espritz PONDR-FIT MFDp2 IUPred2 AUCpreD This Work

Sens 0.440 ± 0.008 0.650 ± 0.003 0.817 ± 0.004 0.514 ± 0.009 0.713 ± 0.004 0.777 ± 0.004 0.640 ± 0.003 0.592 ± 0.006 0.807 ± 0.012
Spec 0.914± 0.002 0.874 ± 0.004 0.736 ± 0.003 0.939 ± 0.002 0.859 ± 0.004 0.859 ± 0.004 0.877 ± 0.004 0.909 ± 0.002 0.856 ± 0.007
Acc 0.779 ± 0.003 0.810 ± 0.003 0.759 ± 0.002 0.818 ± 0.004 0.817 ± 0.004 0.836 ± 0.003 0.810 ± 0.003 0.819 ± 0.003 0.842 ± 0.003

Acc-b 0.677 ± 0.006 0.762 ± 0.002 0.776 ± 0.002 0.726 ± 0.004 0.786 ± 0.003 0.818 ± 0.003 0.759 ± 0.002 0.751 ± 0.003 0.831 ± 0.004
MCC 0.410 ± 0.007 0.529 ± 0.006 0.504 ± 0.004 0.521 ± 0.007 0.561 ± 0.007 0.614 ± 0.006 0.526 ± 0.006 0.535 ± 0.006 0.635 ± 0.006

F1 0.531 ± 0.006 0.660 ± 0.003 0.658 ± 0.003 0.616 ± 0.006 0.689 ± 0.004 0.729 ± 0.003 0.657 ± 0.004 0.651 ± 0.005 0.744 ± 0.004
AUC_ROC 0.776 ± 0.004 0.823 ± 0.001 0.841 ± 0.003 0.886 ± 0.003 0.857 ± 0.003 0.879 ± 0.002 0.822 ± 0.001 0.869 ± 0.003 0.899 ± 0.004
AUC_PR 0.607 ± 0.007 0.675 ± 0.007 0.656 ± 0.020 0.752 ± 0.006 0.696 ± 0.004 0.629 ± 0.006 0.657 ± 0.004 0.716 ± 0.007 0.788 ± 0.010

Note Bene. The measures of predictor performance include: sensitivity (Sens), specificity (Spec), accuracy (Acc),
balanced accuracy (Acc-b), Matthews Correlation Coefficient (MCC), F1 score, Area Under ROC Curve (AUC_ROC),
and Area Under Precision-Recall Curve (AUC_PR). The highest value in each of these measures is in bold and
highlighted (red).
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The performance of all these nine predictors was also assessed using the independent dataset as
shown in Table 2. By comparing the data of Tables 1 and 2, it is obvious that although the numbers
have fluctuations, the overall levels and trends of all the measures of prediction performance are
essentially the same.

Table 2. Prediction performance of all nine predictors in the independent dataset.

DisEMBL IUPred VSL2 Espritz PONDR-FIT MFDp2 IUPred2 AUCpreD This Work

Sens 0.454 0.656 0.82 0.529 0.728 0.78 0.647 0.609 0.811 ± 0.007
Spec 0.915 0.872 0.735 0.932 0.856 0.857 0.87 0.908 0.856 ± 0.006
Acc 0.784 0.811 0.759 0.818 0.82 0.835 0.811 0.823 0.844 ± 0.003

Acc-b 0.684 0.764 0.777 0.731 0.792 0.819 0.761 0.759 0.834 ± 0.001
MCC 0.424 0.532 0.507 0.521 0.569 0.615 0.53 0.53 0.639 ± 0.003

F1 0.544 0.663 0.659 0.622 0.696 0.729 0.66 0.66 0.747 ± 0.002
AUC_ROC 0.779 0.824 0.841 0.888 0.857 0.88 0.822 0.872 0.9 ± 0.002
AUC_PR 0.617 0.673 0.642 0.754 0.695 0.622 0.672 0.72 0.789 ± 0.005

Note Bene. The new strategy was optimized five times under five-fold cross-validation. Therefore, the performance
was also tested in the independent test dataset five times. The results shown in the table is the average of all five
times. The highest value in each of these measures is in bold and highlighted (red).

The performance of this new meta-strategy, as well as other predictors, for twenty types of amino
acids was analyzed using balanced accuracy in Figure 3. Overall, the new meta-strategy has the highest
Acc-b values in fifteen types of residues. The new meta-strategy was also ranked first together with
the more recent predictor MFDp2 for residues P and Q. However, the new meta-strategy was ranked
at the second position for C, N, and Y, with several percentage points behind MFDp2.
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Figure 3. Comparison of balanced accuracy for twenty types of amino acids. The x-axis shows amino
acid types in the alphabetic order, while the y-axis shows the value of balanced accuracy. For each
type of amino acid, the predictors from left to right are: DisEMBL, IUPred, VSL2, ESpritz, PONDR-FIT,
MFDp2, IUPred2A, and AUCpreD.

The balanced accuracies of all predictors for terminal residues were also analyzed in Figure 4.
Obviously, the accuracy is location and predictor dependent. For many predictors, the closer to the
termini, the lower the accuracy. For N-terminal residues, IUPred, ESpritz, MFDp2, and IUpred2
achieved ~67% balanced accuracy, which was also largely location independent. For DisEMBL, VSL2,
and AUCpreD, the balanced accuracies increased gradually from ~55% to ~65% in the window from the
5th to the ~15th residues and then kept similar accuracy afterwards. The newly designed meta-strategy
had a lower balanced accuracy of ~52% for the first several residues. The accuracy then increased
gradually to ~63% at the 25th residue. PONDR-FIT, a more recently developed predictor, was the least
accurate predictor for N-terminal residues, especially in the range from the 10th to the 20th residues
where its accuracy was 2–5 points lower than the new strategy. For C-terminal residues, the patterns
of accuracy were different from N-terminal residues. First, the balanced accuracy was higher in
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general than N-terminal residues by several percentage points. Second, although the accuracies of
predictors were still either location-independent or location-dependent, the values of accuracies were
highly diversified. AUCpreD, MFDp2, IUPred, IUPred2, and ESpritz made location-independent
predictions for C-terminal residues, however, the accuracy of these predictors spread from ~74% to
68%, accordingly. DisEMBL, VSL2, and PONDR-FIT’s accuracy increased gradually from ~55 to62% at
the 5th residue to ~67% at the 20th residue. The accuracy of the newly designed strategy for C-terminal
residues was at the lower-end for the first several terminal residues, though increased consistently and
achieved the highest balanced accuracy for residues at the ~20th position.
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With these observations, all the samples were regrouped into three new datasets each containing
the first 25 N-terminal residues, the first 25 C-terminal residues, and the middle region, respectively.
The meta-strategy was re-trained in three different datasets separately. The prediction performance
of all predictors in all three regions under five-fold cross-validation was compared and analyzed in
Table 3. Evidently, compared to the results in Figure 4, the prediction accuracy of terminal residues
improved substantially. More specifically, the values of improvement of accuracy, balanced accuracy,
F1, MCC in N-ter, Mid, and C-ter datasets ranged from 1 to 5 percentage points. For sensitivity
and specificity, since many other predictors were trained to maximize either sensitivity or specificity,
the new meta-strategy was normally not able to compete with them.

Table 3. Comparison of prediction performance under five-fold cross-validation of eight predictors,
as well as the new strategy trained for N-terminal, middle region, and C-terminal residues. The highest
value in each of these measures is in bold and highlighted (red).

DisEMBL IUPred VSL2 Espritz PONDR-FIT MFDp2 IUPred2 AUCpreD This Work

N-ter

Sens 0.553 ± 0.009 0.541 ± 0.017 0.782 ± 0.011 0.582 ± 0.010 0.837 ± 0.004 0.782 ± 0.009 0.539 ± 0.015 0.748 ± 0.011 0.829 ± 0.023
Spec 0.741 ± 0.016 0.841 ± 0.020 0.524 ± 0.024 0.789 ± 0.012 0.405 ± 0.020 0.582 ± 0.039 0.842 ± 0.020 0.590 ± 0.038 0.572 ± 0.049
Acc 0.614 ± 0.003 0.639 ± 0.012 0.698 ± 0.005 0.650 ± 0.004 0.697 ± 0.006 0.718 ± 0.012 0.638 ± 0.014 0.697 ± 0.011 0.746 ± 0.014

Acc-b 0.647 ± 0.004 0.691 ± 0.011 0.653 ± 0.010 0.686 ± 0.004 0.621 ± 0.011 0.682 ± 0.020 0.691 ± 0.014 0.669 ± 0.016 0.701 ± 0.020
MCC 0.277 ± 0.009 0.364 ± 0.021 0.308 ± 0.019 0.349 ± 0.009 0.265 ± 0.024 0.361 ± 0.038 0.363 ± 0.027 0.330 ± 0.029 0.410 ± 0.035

F1 0.660 ± 0.007 0.669 ± 0.015 0.778 ± 0.006 0.692 ± 0.008 0.789 ± 0.007 0.789 ± 0.007 0.668 ± 0.014 0.770 ± 0.010 0.815 ± 0.013

Middle

Sens 0.387 ± 0.009 0.682 ± 0.005 0.820 ± 0.004 0.481 ± 0.010 0.663 ± 0.004 0.777 ± 0.005 0.672 ± 0.005 0.539 ± 0.007 0.807 ± 0.013
Spec 0.927 ± 0.001 0.877 ± 0.004 0.751 ± 0.004 0.948 ± 0.002 0.888 ± 0.004 0.875 ± 0.005 0.880 ± 0.004 0.927 ± 0.001 0.877 ± 0.006
Acc 0.801 ± 0.004 0.831 ± 0.004 0.767 ± 0.003 0.839 ± 0.004 0.835 ± 0.004 0.852 ± 0.005 0.831 ± 0.004 0.836 ± 0.003 0.861 ± 0.004

Acc-b 0.657 ± 0.005 0.780 ± 0.003 0.786 ± 0.003 0.715 ± 0.005 0.776 ± 0.003 0.826 ± 0.004 0.776 ± 0.003 0.732 ± 0.003 0.842 ± 0.005
MCC 0.376 ± 0.009 0.544 ± 0.005 0.497 ± 0.006 0.506 ± 0.008 0.546 ± 0.006 0.616 ± 0.008 0.540 ± 0.007 0.510 ± 0.006 0.643 ± 0.008

F1 0.477 ± 0.007 0.628 ± 0.003 0.622 ± 0.005 0.583 ± 0.008 0.653 ± 0.004 0.711 ± 0.004 0.650 ± 0.004 0.606 ± 0.005 0.731 ± 0.006

C-ter

Sens 0.584 ± 0.014 0.615 ± 0.017 0.847 ± 0.016 0.609 ± 0.019 0.828 ± 0.017 0.771 ± 0.016 0.598 ± 0.016 0.681 ± 0.013 0.790 ± 0.018
Spec 0.787 ± 0.021 0.838 ± 0.023 0.586 ± 0.014 0.857 ± 0.015 0.615 ± 0.017 0.743 ± 0.015 0.845 ± 0.019 0.796 ± 0.019 0.769 ± 0.021
Acc 0.686 ± 0.013 0.727 ± 0.005 0.715 ± 0.007 0.734 ± 0.009 0.720 ± 0.008 0.757 ± 0.007 0.723 ± 0.007 0.739 ± 0.009 0.780 ± 0.009

Acc-b 0.685 ± 0.012 0.726 ± 0.006 0.716 ± 0.007 0.733 ± 0.007 0.721 ± 0.009 0.757 ± 0.007 0.722 ± 0.008 0.739 ± 0.008 0.780 ± 0.009
MCC 0.379 ± 0.026 0.465 ± 0.014 0.448 ± 0.015 0.482 ± 0.015 0.453 ± 0.018 0.514 ± 0.014 0.459 ± 0.018 0.481 ± 0.018 0.560 ± 0.018

F1 0.649 ± 0.012 0.691 ± 0.008 0.747 ± 0.008 0.694 ± 0.009 0.746 ± 0.008 0.759 ± 0.006 0.682 ± 0.012 0.722 ± 0.007 0.781 ± 0.006

The performance of all the predictors were then tested in CASP10 dataset and then compared to
DISOPRED3, which is one of the two best predictors in CASP10 competition (see Appendix A for more
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details). In brief, DISOPRED3 and AUCpreD have very similar performance and are better than other
predictors on multiple measures, such as specificity, accuracy, MCC, F1, and AUC-ROC. PONDR-FIT
achieved the highest balanced accuracy. The new meta-strategy has the highest sensitivity. In addition
to the whole dataset analysis, the per-sequence accuracy was also analyzed. The balanced accuracy
of PONDR-FIT, MFDp2, AUCpreD, and the new meta-strategy in CASP10 dataset was compared in
Figure 5A. All the symbols above the diagonal line represent sequences with higher accuracy when
predicted using PONDR-FIT, MFDp2, or AUCpreD, and vice versa. For symbols in the dashed circle,
the prediction accuracies of the compared four predictors are all not satisfactory. Symbols in dashed
box constitute another group of sequences of which the prediction accuracy of the new meta-strategy
is much higher than the other three predictors. For pair-wise comparison between predictors, there
are more open circles above the diagonal line, more triangles under the diagonal line, and similar
numbers of filled circles on both sides of the diagonal line. Thus, PONDR-FIT (open circles) has better
per-sequence prediction performance in the CASP10 dataset. The new meta-strategy and AUCpreD
achieved similar results on per-sequence prediction performance. Since the new meta-strategy also
made a very low-accuracy prediction on some of the sequences, analyzing the potential reasons
could be beneficial. For this purpose, the per-sequence balanced accuracy, fraction of experimentally
validated IDAAs per sequence, and the length of each sequence were analyzed in Figure 5B. In this
figure, it is apparent that sequences with a very low fraction of experimentally validated IDAAs have
very low accuracy. Therefore, the fraction of IDAAs is a critical factor for the performance of the
new meta-strategy.
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Figure 5. (A) Comparison of per-sequence balanced accuracy among AUCpreD (filled circle),
PONDR-FIT (open circle), MFDp2 (filled triangle), and this work on sequences in the CASP10 test
dataset. The reasons for selecting these predictors are: (1) they are developed in recent years; (2) they
have higher performance on some of the accuracy measures; (3) for simplicity of visualization, only
four predictors were selected. The x-axis shows the per-sequence balanced accuracy of this work,
and the y-axis shows the per-sequence accuracy of the other three predictors. (B) Per-sequence balanced
accuracy of this work (y-axis) as a function of the fraction of experimentally validated intrinsically
disordered amino acids (IDAAs) (x-axis). The size of the symbol is proportional to the length of
the sequence.

3. Discussion

Intrinsically disordered proteins play critical roles in biomolecular interaction and signaling;
therefore, identifying these residues is crucial for the subsequent analysis and biological studies of the
functions and mechanisms. Many experimental techniques have been designed for characterizing these
residues. Nonetheless, these techniques are normally time-consuming and/or cost-inefficient. Besides,
these techniques may not be appropriate for proteomic studies, although many new approaches
are under development [16,51,52]. Therefore, using computational tools to predict intrinsically
disordered residues becomes practical, especially for novel protein sequences. Under this situation,
using high-accuracy predictors is essential. However, as shown in the previous analysis, the current
levels of prediction accuracy of many disordered predictors still have a lot of room for improvement.
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There are multiple ways to improve the accuracy of machine learning based techniques. Tuning
the list of input features is often the first trial. Recently, deep learning and meta-strategy have
also been applied to improve the prediction accuracy. Our previous studies and the studies of
other groups [41–47] a direct application of meta-strategy may not lead to the improvement of
prediction accuracy, although it has been demonstrated that meta-strategy has many advantages [48].
In these cases, novel data processing techniques are very helpful [48,49]. Therefore, in this project,
a dual-threshold was employed; two-step voting with different accuracy stringency was also integrated
in the pipeline, based on the analysis of information gain. These techniques eventually contributed
remarkably to the improvement of prediction accuracy. The outcomes of this new strategy demonstrate
that: (1) integrating lower-accuracy predictors is able to produce higher-accuracy output; (2) the
improvement of prediction performance of meta-strategy is significant and impressive, compared to
individual predictors and other state-of-the-art predictors, including deep-learning based predictors;
(3) the meta-strategy has well-balanced results for sensitivity and specificity, and therefore, is able
to achieve higher values on other evaluation quantities, such as F1, MCC, etc.; (4) the meta-strategy
provides novel ideas on the renovation of existing predictors.

Many data-processing techniques could be integrated into the meta-strategy. In this project,
dual-threshold and two-step significance voting were designed and were critical for the improvement
of prediction performance. Dual-threshold refers to true prediction and false prediction having
different threshold values. By using dual-threshold, it is possible to control the increase of false
positive rate and false negative rate. Two-step voting is a technique to use two sets of threshold values
at two steps. At the first step, a set of more stringent threshold values are used, and at the second
step less-stringent threshold values are used. In this way, the results from the first step have higher
reliability than the second step. Significance-voting is another very useful technique complementary
to the well-known majority-voting. When using majority-voting, the number of predictors making
true predictions and the number of predictors making false predictions competes to determine the
final results. In the application of significance-voting, the Euclidean distance of a prediction score
from the corresponding threshold value is calculated, then the sum of distances of predictors making
true predictions is compared to that of predictors making false predictions. Clearly, this technique
is also beneficial for reducing the prediction error. For majority-voting based strategy, overlap is a
critical measurement. However, in significance-voting based predictor, although overlap is still very
important, coverage plays a more critical role. In addition, results from majority-voting and from
significance-voting predictors have different preferences. Majority-voting is strong in selecting part of
the true predictions that have very high confidence. However, significance-voting is able to pick up
additional true predictions that cannot be identified by majority-voting.

When selecting individual predictors, overlap and coverage between a pair of predictors or
among multiple predictors can be calculated and used to check the similarity of two predictors, and to
evaluate whether the combination of these two predictors is able to improve final prediction accuracy.
If the two predictors have extremely high overlap and very low coverage, these two predictors are
very similar to each other in terms of the predictive results, and vice versa. Evidently, these two types
of situations need to be avoided in most cases when selecting the component predictors. Normally,
the selected component predictors should have a reasonably level of overlap and a higher level of
coverage. The values of coverage also provide an estimation on the maximum values of true-positive
and true-negative predictions by combining a pair or several predictors.

It should also be noted that most experimental work aiming at IDAA validation is focused on
in vitro approaches, and consequently, the corresponding data analysis and computational strategies
are also focused on in vitro data. Regardless, the in vitro foldability of amino acid residues could be
very different from in vivo environment [53]. Therefore, novel ideas to develop large-scale in vivo
conformational assays are also urgently needed. In fact, novel in vivo labeling strategies of IDAAs
have been proposed [53]. It is hopeful that these in vivo techniques or at least the data of in vivo
studies will be eventually incorporated into novel predictors of in vivo foldability of IDAA.
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4. Materials and Methods

DisProt v7.0 and PDB (Protein DataBank) were combined to build the dataset of disordered
residues. DisProt contains over 800 protein sequences, in which the IDAAs/IDRs have been identified
using various experimental techniques, such as X-ray, NMR, circular dichroism (CD) spectrometry,
proteolysis, etc. For all the DisProt sequences, IDAAs have already been annotated. PDB sequences
were extracted using the PISCES server [54]. All the PDB structures in the list have 2.5 angstrom or
better resolution and 30% or less sequence identity. Then, 20% of the PDB sequences were randomly
selected for further analysis. The missing residues in these PDB sequences were assigned as IDAAs,
while all other residues were determined to be structured residues. All the extracted sequences from
both DisProt and PDB were further filtered using CD-HIT [55] to remove sequences with 30% or higher
sequence identity. Finally, there are 312 protein sequences, containing 30,140 disordered residues and
75,945 structured residues. All the sequences with X-ray structures in CASP10 [56] were also extracted.
These sequences were each aligned with all the sequences in the above-mentioned main dataset to
check the sequence identity. Only sequences with 30% or lower sequences identity were kept to make
the second independent test dataset. This second independent test dataset has 35 sequences.

The infrastructure of the meta-strategy is shown in Figure 6. The prediction results of
DisEMBL [57], IUPred [58], VSL2 [59], and ESpritz [60], were used as input. The major reasons
for choosing these four predictors are as follows: (1) these predictors were designed using very
different strategies. DisEMBL uses artificial neural networks. IUPred uses knowledge-based interaction
potential. VSL2 uses neural networks on sequences of different lengths. ESpritz applied bidirectional
recursive neural network (BRNN) and was trained separately on N-terminal, C-terminal, and the
general sequences; (2) they achieved relatively higher prediction accuracy; (3) these predictors have
standalone versions. These four scores were then fed into a decision-tree based artificial neural
network (DBann) to make the final prediction. The DBann combines four specific techniques including
dual-threshold, significance-voting, two-step selection [49], and two-hidden-layer Artificial Neural
Network (ANN). Dual-threshold is a technique using different threshold values for true prediction
and false predictions. Significance-voting is complementary to majority-voting by calculating the
Euclidean distance of prediction scores to their corresponding threshold values and then comparing
the distances of true predictions and false predictions to make selections. For example, when two
predictors make true predictions and another two predictors make false predictions, comparing the
number of true predictions (NT) and the number of false predictions (NP) may have limited usage.
In this case, comparing the sum of distances from true thresholds value (dT) and the total distance
from false threshold values (dF) provides more useful information of the relative significance of true
predictions and false predictions. Two-step selection uses two sets of dual-threshold values together
with significance-voting as follows: (1) use more stringent values as the first-step threshold values
for both true predictions and false predictions; (2) select less stringent values as the second-step
threshold values for both true predictions and false predictions; (3) if the numbers of predictors for true
prediction and false prediction are equal in the first-step, second-step examination will be performed.
If the numbers are still the same, the significance voting will be carried out; (4) based on the results
of the above-mentioned comparison, the predictive results of individual predictors will be encoded
differently. The encoded predictive results will then be fed into the two-hidden-layer ANN, which
is a fully connected ANN and has ten and two nodes in the input and output layers, respectively,
as well as twenty nodes in both hidden layers. The activation function for all the nodes is hyperbolic
tangent function. In addition, in the output layer, the output was further transformed using a soft
matrix function.
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Figure 6. Infrastructure of the new meta-strategy. NT and NF are the numbers of predictors making
true prediction and false prediction, respectively. “a1” and “a2” are the differences of prediction
score from the 1st-step threshold and the 2nd-step threshold values, respectively. The letter subscripts
represent DisEMBL (D), IUPred(I), VSL2(V), and ESpritz(E), accordingly. “dT” and “dF” are Euclidean
distances of prediction scores from their corresponding threshold values for true predictions and false
predictions, accordingly.

All the selected sequences were grouped into two datasets. One contains a randomly-selected 20%
of all the samples and was set as the independent test dataset, while the other, containing the rest 80%
of the samples, was designated as the training and validation dataset. The ratios of positive samples
(disordered residues) to negative samples (structured residues) in two datasets are roughly the same.
The training and validation dataset was further split into five subsets for five-fold cross-validation.
In brief, three out of five subsets were used to train the predictor, the forth subset was used to prevent
overfitting, and the last one was used to validate the final prediction performance. By using the
different subsets for training, preventing overfitting, and validation, the aforementioned process was
repeated five times. The final prediction performance was the average of all five times in the validation
subsets. The trained predictors were also evaluated in the independent test dataset.

The performance of predictors was assessed using Sensitivity (Sens), Specificity (Spec), Accuracy
(Acc), balanced accuracy (Acc-b, the average of sensitivity and specificity), F1 score (F1), Matthews
Correlation Coefficient (MCC), Area Under ROC Curve (AUC, or AUC_ROC), and Area Under
precision-recall Curve (AUC_PR) under five-fold cross-validation and in independent datasets.
The performance of newly designed predictor was compared to four component predictors (DisEMBL,
IUPred, VSL2, and ESpritz), as well as another four recently developed predictors, including
PONDR-FIT [42], MFDp2 [61], IUPred2A [34], and AUCpreD [62].

Information Gain (IG) was calculated as a function of predictive score as follows:

IG(x) = ∑
i=1,2

pi log2 pi − ∑
j=1,2

f j(x) ∑
k=1,2

pj,k log2 pj,k (1)

In which, pi is the fraction of positive (i = 1) or negative (i = 2) samples in the dataset; “x” is the
threshold prediction score to split the dataset into two groups; fj(x) is the fraction of samples with
prediction score higher than the threshold (j = 1) or the fraction of samples with prediction score lower
than the threshold (j = 2); and pj,k refers to the fraction of positive samples (k = 1) or negative samples
(k = 2) in the j-th group.
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Abbreviations

IDP Intrinsically disordered protein
IDR Intrinsically disordered region
IDAA Intrinsically disordered amino acid
ANN Artificial neural network
IG Information gain
Sens Sensitivity
Spec Specificity
Acc Accuracy
Acc-b Balanced accuracy
MCC Mathew’s correlation coefficient
AUC-ROC Area under ROC curve
AUC-PR Area under precision-recall curve

Appendix A

Table A1. Comparison of prediction accuracy of in the CASP10 test dataset.

Sen Spec Acc Acc-b MCC F1 AUC_ROC AUC_PR

Disembl 0.379 0.954 0.929 0.666 0.286 0.318 0.754 0.295
IUPred 0.168 0.958 0.924 0.563 0.122 0.161 0.618 0.175
VSL2 0.612 0.811 0.803 0.712 0.214 0.213 0.774 0.275

Espritz 0.512 0.921 0.903 0.716 0.298 0.316 0.815 0.404
DISOPRED3 0.362 0.993 0.966 0.678 0.495 0.481 0.860 0.495
PONDRFIT 0.586 0.929 0.914 0.758 0.362 0.374 0.830 0.358

MFDp2 0.325 0.975 0.947 0.650 0.322 0.349 0.778 0.352
IUPred2 0.164 0.959 0.924 0.561 0.119 0.158 0.616 0.170

AUCpreD 0.425 0.984 0.960 0.705 0.465 0.481 0.863 0.501
This work 0.629 0.840 0.831 0.734 0.249 0.245 0.793 0.305

Note Bene. DISOPRED3 is one of the two best predictors in CASP10 competition and therefore was used in the
comparison. The other one and its web server were not available when the study was carried out. The highest value
in each of these measures is in bold and highlighted (red).
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