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Abstract: Bone grafts, i.e., autologous, allogeneic or synthetic bone substitute materials play an
increasing role in reconstructive orthopedic surgery. While the indications and materials differ,
it is important to understand the cellular mechanisms regarding their integration and remodeling,
which are discussed in this review article. Osteoconductivity describes the new bone growth on
the graft, while osteoinductivity represents the differentiation of undifferentiated cells into bone
forming osteoblasts. The best case is that both mechanisms are accompanied by osteogenesis, i.e.,
bone modeling and remodeling of the graft material. Graft incorporation is mediated by a number
of molecular pathways that signal the differentiation and activity of osteoblasts and osteoclasts
(e.g., parathyroid hormone (PTH) and receptor activator of nuclear factor κβ ligand (RANKL),
respectively). Direct contact of the graft and host bone as well as the presence of a mechanical load
are a prerequisite for the successful function of bone grafts. Interestingly, while bone substitutes show
good to excellent clinical outcomes, their histological incorporation has certain limits that are not yet
completely understood. For instance, clinical studies have shown contrasting results regarding the
complete or incomplete resorption and remodeling of allografts and synthetic grafts. In this context,
a foreign body response can lead to complete material degradation via phagocytosis, however it may
also cause a fibrotic reaction to the bone substitute. Finally, the success of bone graft incorporation is
also limited by other factors, including the bone remodeling capacities of the host, the material itself
(e.g., inadequate resorption, toxicity) and the surgical technique or preparation of the graft.
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1. Introduction

For the effectiveness of orthopedic or dental implants, it is essential to create a mechanically
stable interface with fusion of the implant surface and the bone tissue. Since bone defects are common
problems in complex fractures, revision arthroplasty procedures or tumor reconstructions, bone
substitute materials (bone grafts) are required to fill these bone defects and to ensure a tight junction
between the implant and the host bone. For example, the surgical treatment of intra-articular fractures
often involves bone grafts to ensure the anatomic reduction of the depressed joint fragments and to
preserve the joint surface [1].
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Bone grafts that are commonly used are autologous, allogeneic (cadaveric bone/bone bank) or
synthetic. The main requirements for bone grafts are osteoconduction (new bone growth on the
graft), osteoinduction (cells differentiating into bone forming osteoblasts) and osteogenesis (bone/callus
formation). While the transplantation of autologous bone, which is commonly harvested from the iliac
crest or via the Reamer-Irrigator-Aspirator, remains the gold standard providing osteoconductive and
osteoinductive features, it is also associated with high donor side morbidity and limited availability [2,3].
Therefore, both allografts (including structural allografts and allograft chips/particulate bone) and synthetic
grafts (including ceramics and metals) are regarded as a suitable alternative for bone regeneration.
However, the regenerative potential of allografts and synthetic grafts may be limited to osteoconductive
bone growth, which is why bone substitute materials with additional osteoinductive features have
been developed.

The combination of bone grafts with cells (e.g., osteoblasts, mesenchymal stem cells, platelet-rich
plasma) or proteins (e.g., collagen, bone morphogenetic protein) enables the promotion of cell adhesion
on osteoconductive material to create osteoinductive materials [4,5]. Another strategy to overcome the
issue of limited osteoinductivity is the development of novel tissue, perfectly engineered “biomimetic”
materials. Also, the combination of bone grafts with bioactive metal ions has been proposed for
improved bone regeneration [6].

During the clinical use of bone substitutes, the success of their incorporation can be readily estimated
by conventional radiography (Figure 1). However, research studies require a closer examination, e.g.,
by microscopic preparations. Several histological and micro-morphological studies from retrieved
specimens have proven the successful incorporation of bone substitutes such as allografts or synthetic
grafts [1,7,8]. For allografts, bone remodeling with the subsequent interconnection of the host bone and
the graft bone was found in the majority of the interface, leading to the progressive incorporation of the
bone graft [9]. Furthermore, synthetic materials such as beta-tricalcium phosphate (β-TCP) were also
found to induce bone formation and promote bone repair [1]. While the restoration of bone defects is
often successful, there are also certain materials and conditions which are associated with a failure of
the bone healing process, for example in terms of impaired integration and induction of immunologic
responses [10]. The following article reviews the current state of knowledge about the success and failure
of bone substitute materials, and will be focused on the cellular basis and histological features of the bone
substitute incorporation process.
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Figure 1. Clinical examples (radiographs) of two different bone substitute types. (A) beta-tricalcium
phosphate (β-TCP) block (red arrow) used in a patient with a multi-fragment proximal tibia fracture.
Adapted from [1]. (B) Implantation of a structural allograft in revision total hip arthroplasty, left:
clinical radiograph (red box indicates the area where the allograft was implanted), right: post-mortem
high-resolution contact radiograph. * indicates absent area with no contact, arrow indicates close
contact between the graft and the host bone.
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2. Bone Remodeling

The skeleton is normally subject to constant remodeling which is mediated by the activity
of two different cell types, the bone-forming osteoblasts and the bone-resorbing osteoclasts [11].
Osteoblastogenesis is initiated by the differentiation of the mesenchymal stem cells into
osteoprogenitors and is associated with the high expression of hormones and cytokines, such as
parathyroid hormone (PTH), interleukins, insulin-like growth factor 1 (IGF-1) and transforming growth
factor beta (TGF-β). After proliferation, the bone-forming cells express alkaline phosphatase (ALP) and
secrete collagen type 1 and other matrix proteins before the matrix becomes mineralized. Osteoclasts are
large multinucleated terminally differentiated cells from the monocyte-macrophage lineage that are
able to resorb bone. While excessive bone resorption leads to bone loss (i.e., osteoporosis, tumor
osteolysis, etc.), it is also needed for the renewal of the skeleton and for graft incorporation (as discussed
later in this article). Many factors signal osteoclast development where some of the most important
early signals are RANKL (receptor activator of nuclear factor κβ ligand) and M-CSF (Macrophage
colony-stimulating factor).

This skeletal remodeling process is influenced by osteocytes, which represent terminal
differentiated osteoblasts, and form a cellular network within the mineralized bone matrix [12].
While the bone remodeling process involves bone formation following bone resorption, the bone
modeling process only involves the formation of new bone. Bone modeling is a prevailing process
during growth, modifying the shape and size of the bone. Bone remodeling is a lifelong process that
persists throughout life, maintaining bone function by continuously replacing old bone with new bone.

The concept of bone remodeling is not only important regarding common and uncommon skeletal
diseases such as osteoporosis, however it is also important in the understanding of bone healing as
well as the success and failure of bone substitutes. Bone (fracture) healing enables the full restoration
of fractured or damaged bone to its previous composition, structure and function [13]. One may
differentiate primary and secondary bone healing. This means a direct continuous ossification of small
fracture gaps or indirect ossification through multiple events such as blood clotting, inflammation,
cartilage callus formation, intramembranous and endochondral ossification and eventually bone
remodeling. Large gaps and/or other conditions (e.g., infections, impaired blood supply) may lead
to the insufficient healing of bone defects, ultimately resulting in non-union. In general, a length
exceeding 2–2.5 times the diameter of the affected bone was found to be problematic for spontaneous
fracture healing (“critical sized defect”) [14]. Bone substitutes come into play to provide bridging and
to improve the bone regeneration of bone defects that have arisen from large fracture gaps or from
complex orthopedic reconstructions.

3. Basic Cellular Concept of Bone Substitute Incorporation

Bone substitute materials vary widely, while all of them have individual advantages and
disadvantages. Apart from autografts and allografts, synthetic bone grafts include hydroxyapatite [15],
glass ceramics [16], polylactic acid/polyglycolic acid polymers [17], demineralized bone [18] and the
most commonly used calcium phosphates [19]. It is important to note that the basic cellular mechanisms
of their incorporation are always similar and involve osteoclastic bone resorption followed by new
osteoblastic bone formation (i.e., remodeling). While osteoblasts are considered as the main players
in osseointegration, increasing evidence suggests that osteoclasts are of crucial importance for the
durability of the different biomaterials. In other words, a preferred characteristic of these materials is
their ability to be remodeled through the activity of both bone cell types [20]. Therefore, the extent of
the graft incorporation is always mediated by the resorbability of the graft as well as the achievement
of sufficient bone formation on the graft. The success and activity of osteoclastic bone resorption can be
visualized by specific immunohistochemical staining methods, e.g., tartrate-resistant acid phosphatase
(TRAP) staining [21]. Besides the requirement of the graft to be remodeled, the perigraft environment
and the mechanical environment are some of the key factors affecting the graft incorporation [22].
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The basic cellular mechanism of bone substitute remodeling can be described in multiple steps
and is a well-studied process. First, a hematoma forms around the implanted graft. Secondly, necrosis
of the graft occurs followed by an inflammatory response and the formation of a fibrovascular stroma.
Thirdly, blood vessels and osteogenic precursor cells infiltrate the graft. Finally, new bone formation
(and potentially bone resorption) is initiated, indicating successful (re)modeling of the graft. On a
molecular level, the activation of osteoblasts is mediated through osteoblast related transcription
factors (e.g., Runx2). Osteoclast activation is directly linked to osteoblast function as well as the
immune response that is mediated by cytokines (e.g., RANKL). An overview of this process from a
histologic point of view which is based on a previous study of β-TCP combined with hyaluronic acid
and methylcellulose [23] can be found in Figure 2.
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Figure 2. Remodeling of β-TCP (Cerasorb®) in rabbits [23]. (A) Von Kossa stained sections
demonstrating the healing of the surgically induced tibial defect from the formation of intramedullary
bone after 4 weeks to a new cortex until 24 weeks. Boxs 1–3 indicate the regions of interest that are
shown at higher magnification below. (B) At higher magnification and in toluidine blue sections,
the cellular process of the remodeling process can be reconstructed. (1): β-TCP granules and invasion
by blood vessels (black arrow); (2) formation of immature, unmineralized bone; and (3) bone trabeculae
and bone formation by osteoblasts (white arrows).

The fact that the graft incorporation can be promoted by growth factors such as bone
morphogenetic protein (BMP), stromal stem cells or platelet-rich plasma has been shown multiple
times [24] and shows how these factors extend the function of osteoconductivity of the bone substitute
towards osteoinductivity through inducing the bone modeling and remodeling cascade. In particular,
increased bone formation and better vascular invasion have been found as a consequence of growth
factor administration [24]. Also, glycosaminoglycans, such as hyaluronic acid, supported the
osteoconductive effect of synthetic bone graft materials [23], and this effect was shown to be mediated
by an upregulation of BMP-2 activity [25]. Importantly, daily administration of PTH (teriparatide, PTH
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1-34) also improved osseointegration through the stimulation of bone formation [26], signifying its
potential use as a drug for the treatment of delayed union and graft incorporation.

Regarding the perigraft environment, it is clear that sufficient vascularization (and vascular
invasion) and a germ-free environment are the absolute minimum requirements for bone regeneration
to take place. However, as bone substitutes are commonly used in old patients with compromised
bone status (i.e., osteoporosis), the overall dissociation of low bone formation and increased bone
resorption might also limit the local potential of bone incorporation. The (long-term) integrity of
the graft is primarily influenced by the mechanical stress. According to the well-known and often
confirmed theory by Julius Wolff (Wolff’s law) [27], bone adapts to mechanical stress. There is repeated
evidence that osteocytes are the cells that act as mechanosensors to trigger bone remodeling at the
bone surface [28]. Therefore, the absence of mechanical load leads to bone resorption rather than an
adequate remodeling of the graft [29].

4. Allograft Incorporation

Frequently used allografts mainly include structural allografts or allograft chips. Histological studies
on cancellous allograft chips in humans have shown that they are completely incorporated, forming a new
bone structure [8]. More specifically, a revascularization of the graft was followed by osteoclastic resorption
and new bone formation on the graft. In structural allografts, successful incorporation and remodeling
was also detected [9], however, this was most likely limited to the area of direct contact between the host
bone and the allograft bone [30]. In general, the difference in the remodeling of chips and structural
allografts may be explained by the different surgical techniques (i.e., impaction grafting vs. maintained
structure). Due to the larger surface areas of allograft chips in comparison to structural allografts, they
have advantages regarding access to the bone cells (i.e., osteoblasts and osteoclasts) and may therefore
have improved the osteoconductive capacities [31]. Although structural allografts are most likely a better
alternative for larger bone defects, it is still not clear (both clinically and in basic research) which defect sizes
should not be exceeded for allograft chips in order to guarantee a sufficient incorporation. Regarding the
time course of allograft incorporation, it was found that allograft chips had incorporated within the first
12 weeks after implantation [32]. In structural allografts, long-term follow up observations revealed no
time-dependent increase in the incorporation between four years and 22 years after implantation [9].

The extent of allograft incorporation within the host bone can be determined in ground sections
of total hip explants (Figure 3), for example. The main advantage of this technique is that screws and
implants, such as tantalum augmentations, can also be visualized in order to estimate the full area of
incorporation (Figure 3). These mechanical barriers result in an absent local remodeling with insufficient
incorporation of the graft around them [9]. On a higher magnified scale, the osteoconductive ability of
allografts can be demonstrated by various other techniques. In scanning electron microscopy of acid-etched
plastic embedded bone specimens from previously implanted allografts, the new bone formation on the
allograft surface can be visualized (Figure 4). Here, osteocyte lacunae that are connected via canaliculi are
the hallmark of viable bone matrix that stands in contrast to low or no connection of osteocyte lacunae
within the allograft.
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can be seen.
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Figure 4. Scanning electron microscopy (SEM) image of an acid-etched human allograft bone specimen,
demonstrating the interface of the dead allograft bone and the new bone growth with viable and
connected osteocytes on the graft.

5. Requirements for Synthetic Bone Substitutes

Modern requirements for synthetic bone substitute materials include biocompatibility,
biodegradation and osteoconductivity rather than just a filling of bone defects. Importantly, the bone
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substitute should provide structural support to the newly formed bone tissue. In other words, it should
serve as a template for bone cell attachments and the subsequent formation of the extracellular
matrix [33,34]. Further requirements include the possibility to provide direct contact between the host
bone and the graft, as well as the colonization of the graft by host blood vessels.

It is known that bone formation and bone resorption are influenced by individual properties of the
biomaterial, such as structural morphology, porosity and particle size [21,35]. While bone degradation
occurs faster with small granules (<50 µm), bone regeneration may be improved through slower
degradation in larger granules (>500 µm), as shown for TCP [21]. In addition to the size, the purity of
the compounds influences bone regeneration. Impurities can potentially weaken the scaffolds through
the increased risk of particular disintegration. Given the need for a close contact of the bone substitute
and the host bone, despite the presence of irregularly shaped bone defects, various modifications
such as granules or block shapes are available. Furthermore, injectable bone substitutes have been
developed to avoid unnecessary preparation of the graft and host bone leading to additional bone
loss [36].

Since bone substitutes have been commonly used in delayed fracture healing and/or infected
areas, they may also serve as carriers for growth factors or antibiotics. Next to osteoconductive bone
substitutes, growth factors are one of the minimum requirements that have to be present for successful
bone repair [37]. Therefore, these bone grafts should facilitate cell attachment and migration and
should incorporate desirable biological and chemical signaling. Furthermore, the successful use of
ceramics that are composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for
growth factors (e.g., BMP) has been studied and confirmed [38]. However, the development of a perfect
osteoconductive, osteoinductive and osteogenic tissue-engineered product is still being studied [34].

In infectious conditions, the interest is focused on bone substitute materials which can release
antibiotics. Several methods have been described for loading porous ceramics with additives like
antibiotics or other drugs [39,40]. Thereby, biodegradable bone substitutes may be preferred as they
do not have to be removed surgically.

Ceramic-based synthetic bone substitutes are completely resorbable by osteoclasts, and although
weaker than cortical bone, they have proved to be effective by replacement through new bone [19].
However, one main limitation of these materials is their brittle nature and poor mechanical properties.

6. Bone Modeling on Implants

Due to the poor mechanical features of most synthetic bone substitutes (as stated above), they are
mostly limited to non-load-bearing applications. Given their better mechanical strength compared to
bone substitutes, metals (e.g., titanium) have shown to have a greater potential as the basis of implants
for long-term load-bearing orthopedic applications. Bone ingrowth around various types of implants
represents a desirable feature for long-term optimal stability. Various orthopedic implants have been
tested for their integration within the host bone. Porous coated implants have been considered suitable
for the ingrowth of bone [41]. It is interesting to note that similarly to bone substitute materials,
the ingrowth into porous implants is again influenced by factors such as the porous structure, implant
stiffness or micromotion between the implant and the host bone [42,43]. This illustrates that bone cells
need a certain environment, including sufficient surface areas and mechanical stability, regardless of
whether bone grafts or metal implants have been used.

Metal implants are most commonly used in different joint replacement surgeries, and porous
coating is especially important considering the growing numbers of cementless procedures.
However, different implants and prosthetic augmentations may also be used in the treatment of
extensive bone loss that cannot always be treated with bone grafts [44]. Tantalum augmentations
have been shown to provide a good substrate for bone attachment in several in vitro and animal
studies [45,46], and in vivo studies have shown promising clinical and radiographic results [47] as well
as the formation and ingrowth of bone, even under difficult conditions [48]. In Figure 5, the successful
bone growth on the porous tantalum is demonstrated (Figure 5).
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7. Limits and Failure of Bone Substitutes and Implants

The incorporation of bone substitutes also has certain limits. For example, when observing the
interface between the host bone and the allograft bone, not only can an overlap be seen, but also a layer of
fibrosis containing blood vessels (Figure 6). Furthermore, while superficial areas of structural allografts
are often completely remodeled, the center of the allograft remains unremodeled. Therefore, despite the
very good clinical outcome of these allografts, as well as the impression of a completely remodeled graft
in conventional imaging [49–52], there are indications that the incorporation might be less pronounced
than previously expected (at least in humans) [9]. Also, synthetic materials showed incomplete remodeling
with detectable remnants in human studies [1], although various animal studies indicated a complete
remodeling [53].
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Apart from the described conditions that involve incomplete remodeling but sufficient
osseointegration, there are also cases of true failure of bone substitutes. These failures include
mechanical failure [54], absence of integration or graft collapse and an inadequate immune response
(29). The latter is described in detail in the next paragraph. There are also other reasons for the failure
of bone substitutes. Glass ionomer cement was used as a bone substitute in granulate form, mixed with
homologous bone. While initially excellent biocompatibility was reported, there were several cases
with a failure of the bone substitute in terms of early loosening of the prosthesis. Histology indicated
that osteoblastic function and bone mineralization were clearly inhibited [55]. In fact, large areas
of non-mineralized osteoid matrix were seen in undecalcified histological sections, pointing to local
osteomalacia (Figure 7). These areas of non-mineralized bone had not been associated with glass
ionomer due to the decalcification of the tissue specimens. Further examination showed large deposits
of aluminum in the adjacent connective tissue and bone as the cause for the absent mineralization of the
newly formed bone tissue. These cases also show that the appropriate methodology (i.e., undecalcified
bone preparation) is of paramount importance to unravel mineralization defects and should therefore
be the method of choice in analyzing the incorporation of bone grafts.
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8. Immune Responses to Bone Substitute Materials

The inflammatory tissue reactions to biomaterials in general, and also to bone substitute
materials, have shown to have an eminent influence on healing processes [56,57]. In this context,
it has been revealed that every biomaterial elicits a material-specific tissue reaction cascade that is
called a “foreign body reaction to biomaterials” [57]. This cascade starts with an agglomeration of
proteins on the surfaces of a biomaterial within the first seconds to minutes after implantation [58].
Interestingly, the protein layer is dependent on the physicochemical properties of a biomaterial, such as
the surface chemistry or the surface topography [57,58]. Thus, all of the material properties lead to the
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agglomeration of a material-specific protein layer which is not only specifically related to the bound
proteins, however it is also related to the conformation of the proteins [57,58]. Altogether, the proteins
and different binding sites, such as the RGD motif in case of the fibrinogen molecule, mediate between
the biomaterial and the first generation of cells within an implantation site [57–59]. Cell types such as
monocytes, macrophages and neutrophils interact with the proteins and a material-specific release
of cytokines that guide the further tissue reaction pattern that is released [57,58]. In the further
course of the tissue reaction cascade, regulatory cell types such as macrophages and multinucleated
giant cells (MNGCs), which are polykaryons of monocytes or macrophages, are involved [57,60–64].
Even in cases of bone substitutes and the related cell reactions, these cells are of special interest for the
material-related healing success or implant failures [60,65]. Both cell types have been identified as key
regulators of the degradation process of bone substitute materials and the pro- and anti-inflammatory
tissue response [60,65,66]. When macrophages have a restricted phagocytosis capacity, they fuse into
MNGCs [67]. Interestingly, not only have MNGCs been shown to be of the foreign body giant cell
phenotype instead of being osteoclastic polykaryons, however they have also been shown to express
pro- and anti-inflammatory molecules within the implant bed of both synthetic and xenogeneic bone
substitutes (Figure 8) [60,63]. These results have led to the assumption that MNGCs are a heterogeneous
cell population that is comparable to anti-inflammatory M1- and pro-inflammatory M2-macrophages
(Figure 8) [60]. In this context, it has been shown by Ghanaati et al. that this multinucleated cell type is
able to support implant bed vascularization as well as bone cell differentiation and bone growth by
the expression of the vascular endothelial growth factor (VEGF) [68]. Interestingly, different material
properties have shown to influence the number of MNGCs and also affect the expression pattern of
pro- and anti-inflammatory molecules [61,62,64,68,69]. Although the precise relationship between the
different physicochemical properties of a bone substitute and the activation or expression pattern of
MNGCs is unknown, these data lead to the conclusion that a special combination of material properties
can optimize the immunologic response to a bone substitute to optimally support the bone healing
process (Figure 9). Altogether, the immunologic response is strongly connected to the process of bone
healing (Figure 9).
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Figure 8. Histological images showing the immunologic alignment of both macrophages and
multinucleated giant cells (MNGCs) within the bony implantation bed of a synthetic bone substitute
(SBS). CT: connective tissue. (A) Detection of pro-inflammatory mononucleated (arrows) and
multinucleated cells (arrowheads) at the bone substitute granule surfaces (CD206-immunostaining);
(B) Detection of anti-inflammatory mononuclear (arrows) and multinucleated (black arrowhead) cells
at the bone substitute granule surfaces. Interestingly, most of the MNGCs that were adherent to the
bone substitute granules (blue arrowheads) did not show an expression of the anti-inflammatory
molecule (CD163-immunostaining).
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Recent results from an in vivo study of Barbeck et al. [70] reveal that material degradation
is mainly carried out by pro-inflammatory cells of the macrophage and MNGC lines (Figure 8).
These results lead to the assumption that the degradation of bone substitutes is strongly connected
to pro-inflammatory cell reactions. This assumption is further reinforced by the fact that the
degradation of bone substitutes is often accompanied by the synthesis of reactive oxygen species
(ROS) that have shown to play an important role in the progression of inflammatory conditions [71].
In addition, it is questionable whether the local pro-inflammatory milieu that was induced by the
material degradation was compensated by an equally high anti-inflammatory tissue response, or if a
balanced result of pro- and anti-inflammation was important for the course of bone healing (Figure 8).
However, the material-induced immune response could also lead to a regenerative failure as the
foreign body response to a bone substitute can end in its fibrous encapsulation [72,73]. In other
words, the foreign body response that can lead to complete material degradation via phagocytosis
might also cause a fibrotic reaction to a bone substitute. In this context, it is conceivable that after
the initial frustrated phagocytosis of macrophages and the following induction of MNGCs, these
polykaryons are incapable of degrading the bone substitute. This process might lead to the expression
of molecules such as the platelet-derived growth factor (PDGF) and transforming growth factor beta
(TGF-β), matrix metalloproteinases MMP-2 and -9 or platelet-derived growth factor BB (PDGF-BB)
that lead to capsule formation by myofibroblasts [74,75]. These molecules are suspected to lead
not only to the differentiation of fibroblasts to myofibroblasts, but also to the differentiation of
other cell types such as epithelial cells, smooth muscle cells, fibrocytes or macrophages [76–79].
This reactivity is also dependent on the bone substitute material that is used [73]. In the case of fibrous
encapsulation of a bone substitute, the material-related inflammatory tissue reaction is downsized as
the material is isolated, and further interaction between the host and implanted device is limited [80].
Interestingly, a thin fibrous capsule seems to be tolerable in the process of bone regeneration, while
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an exaggerated inflammatory process that ends in the manifestation of a thick fibrous capsule can be
considered a tissue reaction that is associated with restricted bioincompatibility [81].

Moreover, a material-related immunological response that includes an exaggerated level of
pro-inflammation, and particularly one that combines such a high level of inflammation with a high
level of dissolution of the bone substitute, will often lead to implant failures as the material cannot
fulfill its role as an osteoconductive scaffold in the framework of the bone regeneration process [82].

9. Conclusions

Understanding the basic cellular mechanisms of bone healing and bone substitute integration
is not only important for further advancement with these materials, however it is also important for
orthopedic surgeons who must choose both the most suitable graft and technique for implantation.
The successful incorporation of bone grafts and implants involves remodeling by osteoblasts and
osteoclasts and is influenced by a number of factors including the perigraft environment (e.g.,
vascularity and sterility), mechanical stability and growth factors. The way that the body’s immune
response can lead to bone substitute material degradation and subsequent successful incorporation on
one hand and a fibrotic reaction on the other hand merits further investigation.
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