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Abstract: Inadequate or excessive nutrient consumption leads to oxidative stress, which may disrupt
oxidative homeostasis, activate a cascade of molecular pathways, and alter the metabolic status of
various tissues. Several foods and consumption patterns have been associated with various cancers
and approximately 30–35% of the cancer cases are correlated with overnutrition or malnutrition.
However, several contradictory studies are available regarding the association between diet and
cancer risk, which remains to be elucidated. Concurrently, oxidative stress is a crucial factor for
cancer progression and therapy. Nutritional oxidative stress may be induced by an imbalance
between antioxidant defense and pro-oxidant load due to inadequate or excess nutrient supply.
Oxidative stress is a physiological state where high levels of reactive oxygen species (ROS) and free
radicals are generated. Several signaling pathways associated with carcinogenesis can additionally
control ROS generation and regulate ROS downstream mechanisms, which could have potential
implications in anticancer research. Cancer initiation may be modulated by the nutrition-mediated
elevation in ROS levels, which can stimulate cancer initiation by triggering DNA mutations, damage,
and pro-oncogenic signaling. Therefore, in this review, we have provided an overview of the
relationship between nutrition, oxidative stress, and cancer initiation, and evaluated the impact of
nutrient-mediated regulation of antioxidant capability against cancer therapy.
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1. Introduction

Nutrition is proposed to play an essential role in cancer progression. Cancer is the second leading
cause of deaths in people from developed countries, whereas it is the most leading cause of death in
people from developing or underdeveloped countries [1,2]. According to the International Agency
for Research on Cancer (IARC), more than 10 million new cases and about 10 million fatal cases have
occurred due to cancer onset worldwide [3]. In western countries, more than 65% of all the cancers
occur upon exposure to numerous harmful substances, such as those present in western-style diet,
alcohol, and smoking, that do not exist naturally in the environment [4].

Nutrition can also cause oxidative stress, augment a cascade of molecular reactions in cells,
and alter the metabolic state of tissues [5]. Oxidative metabolism and redox homeostasis are suggested
to be an essential part of aerobic life [6]. Living organisms cannot survive without these processes.
Under such unfavorable conditions, oxygen derivatives can damage nucleic acids, lipids, and proteins;
alter oxidative equilibrium; and regulate cell viability [7]. Oxidative stress induces the formation of
excess antioxidants to protect the human body from antioxidant deficiency [8]. Moreover, nutrition
can induce oxidative stress even in normal physiological conditions in the human body, and dietary
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factors can also serve as inflammatory and pro-oxidant factors [9]. Thus, nutritional oxidative stress
might be described as a postprandial imbalance between the antioxidant defense and the pro-oxidant
load as a consequence of inadequate or excess supply of nutrients [10].

Oxidative stress is known as a physiological state in which high levels of reactive oxygen
species (ROS) and free radicals are generated due to antioxidant metabolism [11]. Normal cellular
metabolism produces ROS and free radicals and plays a crucial role in cell signaling pathways [12].
Mechanically, mitochondria, the largest powerhouse of cells, generate ROS when generating adenosine
triphosphate (ATP), whereby electrons react with oxygen (O2) and subsequently form the superoxide
anion (O2

−) [13]. There are several studies confirming that oxidative stress may have a core relationship
with human pathophysiological diseases [14–16]. Specifically, oxidative stress is prominently known
to damage the DNA molecule, alter signaling pathways, and regulate progression of various cancers,
including those of the breast, lung, liver, colon, prostate, ovary, and brain [17–23]. Moreover,
it is reported that the whole DNA molecule can bind with hydroxyl radicals, and consequently,
damage the deoxyribose backbone, including purine and pyrimidine bases. During these damaging
processes, 8-OH deoxyguanosine (8-OHdG) can be produced, which may markedly increase the risk
of mutagenesis [24]. The 8-OHdG molecules are also used as indicators to detect free radicals during
DNA mutagenesis and are widely implicated as an early detection tool for cancer progression [24,25].
Importantly, 8-OHdG can transform GC pairs to TA pairs upon DNA replication, which might induce
mutagenesis if oxidative lesions exist, subsequently causing cancer initiation [26].

The precise mechanisms underlying induction of oxidative stress by nutrition followed by cancer
initiation are the current research topics, and the probable mechanisms include alterations in epigenetic
events and induction of genomic instability, which alter gene expression, cause resistance to apoptosis,
and induce tumor invasion and metastasis [12,14–16,24,26]. Therefore, in this review, we have provided
an overview of the correlation between nutrition, oxidative stress, and carcinogenesis.

2. Correlation between Nutrition and Oxidative Stress

It is known that overnutrition may generate free radicals, and subsequently elevate oxidative
stress [27] and ROS-mediated modulation of various molecular pathways [28–30]; therefore, scientists
have directed increasing attention towards investigation of the function of oxidative stress in various
pathophysiological diseases and normal body metabolism [16,31–35]. Therefore, the antioxidant
capability of the human body is considered a crucial factor for overcoming free radical-mediated
oxidative stress and the subsequent pathophysiological processes.

2.1. Nutrition Induces Oxidative Stress during Early Human Development

There are various crucial environmental factors, including nutrition, involved in epigenetic
modifications [36]. For instance, undernutrition or malnutrition and low birth weight in utero due to
early infant growth deficiency may be closely linked to risk factors, such as insulin resistance, obesity,
reproductive dysregulation, and cardiovascular disease, in adulthood [37,38]. Similarly, offspring
grown in a prenatally rich nutritional circumstance is at an increased risk of compromised fertility
and cardiometabolic disorders later in life [39,40]. A recent study proposed that oxidative stress has a
potent effect in nutrition-mediated epigenetic changes in various experimental models [41].

Obesity, maternal malnutrition, or obesogenic maternal diet upon gestation, but not in the
post-weaning period [42], is associated with augmented oxidative stress markers and diminished
antioxidant capability in the offspring, resulting in diabetogenic effects [43,44]. Concurrently,
antioxidant supplementation could significantly attenuate obesity in their offspring [45]. Nutrition
may trigger epigenetic changes in perinatal development into adulthood via different pathways, such
as metabolic risk factor progression and oxidative stress generation.
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2.2. Nutrition Triggers Oxidative Stress at the Cellular Level

A previous study demonstrated that after glucose intake, mononuclear (MNC) and
polymorphonuclear (PMN) leukocytes of normal subjects generate ROS and induce inflammation
due to excess micronutrients [46]. Similarly, after lipid intake, leukocytes in normal subjects may also
significantly induce ROS generation and inflammation; protein intake can trigger ROS generation, but
to a much lesser degree than glucose and lipid intake can [47]. Moreover, upon assessing a mixed meal
in well-fit subjects, severe inflammatory alterations were identified, with a reduction in inhibitor κBα
(IκBα), and upregulation of binding of nuclear factor κB (NF-κB) and expression of inhibitory proteins
p47phox subunit, IκB kinase α (IKKα), IκB kinase β (IKKβ), and plasma C-reactive protein (CRP) [48].

Postprandial oxidative stress might increase due to excessive caloric intake, which abnormally
increases blood glucose, free fatty acids (FFA), and triglycerides circulating in the blood. These
high concentrations of FFA and glucose outpace the entire capability of mitochondria for oxidative
phosphorylation, ultimately leading to improved transfer from single electrons to molecular oxygen;
consequently, O2

− enters the circulation [49,50]. Besides mitochondria, ROS production by leukocytes
is also induced by the caloric amount, as previous studies indicated that caloric limit led to a decent
reduction in ROS production via lipid peroxidation and protein carboxylation [51–53].

Inappropriate lifestyle patterns of an individual, including physical inactivity or obesity, can also
cause ROS production in the postprandial state. As a result, obese individuals experience pernicious
and acute oxidative stress after a fatty meal, compared to responses of the non-obese well-fitted
individuals [54]. Inconsistent data exist regarding the outcome of exercise in postprandial oxidative
stress. Although exercise is thought as a tool to increase endogenous antioxidant defenses, numerous
researchers have been unsuccessful in showing a positive effect of physical activity on postprandial
oxidative stress [55–57].

Cooking method can also have a postprandial impact on oxidative metabolism. Protein- and
fat-rich food cooked quickly under high temperatures lead to the formation of dietary advanced
glycation end products (AGEs) [58]. Studies showed that a single oral challenge by AGEs (coke) caused
severe postprandial endothelial dysfunction, as illustrated by a significant reduction in flow-mediated
dilatation both in diabetic and in healthy subjects [59]. Nutritive AGEs appear to affect reproductively
challenged women as well. A study in women with polycystic ovarian syndrome (PCOS) showed
that low-AGE meals in combination with six-month treatment with orlistat (a lipase inhibitor) led to a
significant improvement of their hormonal profile and body mass index (BMI) [60].

Taken together, increasing evidence demonstrates that nutrition triggers major oxidative and
inflammatory imbalances in the postprandial state. Indeed, postprandial hyperlipidemia and
hyperglycemia, or so-called postprandial dysfunction in the body, are gradually gaining vital
consideration as major risk factors for some diseases. Continuous accumulation of all these imbalances
during the constant postprandial state that symbolizes current lifestyles may contribute to the
pathophysiology of reproductive and metabolic disorders (Figure 1).
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Figure 1. Overnutrition and decreased physical activity lead to overloaded glucose and free fatty acid 
(FFA) levels in cells. Their conversion into energy is supplemented by augmented free radical 
generation (oxidative stress). The muscle adipocytes can defend themselves from this situation and 
exhibit insulin resistance, aiming to decrease glucose and FFA permeation into the cells. The 
endothelial and β cells are insulin-independent. In these cells, glucose and FFA overload may cause 
oxidative stress, which in turn induces dysfunction of both endothelial and β cells. Endothelial 
dysfunction may induce cardiovascular disease (CVD), and β cell dysfunction is characterized by 
altered insulin secretion. β cell dysfunction is particularly characterized by a decrease in first-phase 
insulin secretion, which in turn produces the clinical situation of impaired glucose tolerance (IGT). 
This last condition is clinically characterized by increased postprandial hyperglycemia. Postprandial 
hyperglycemia induces oxidative stress. The persistence of this condition exhausts β cells, leading to 
overt diabetes. Oxidative stress produced during both IGT and overt diabetes may contribute to the 
development of CVD. Moreover, the cluster of risk factors that accompany insulin resistance also 
contributes to CVD development. Red colored arrow represents overload (Adapted from [49]). 

2.3. Nutrition Increases Oxidative Stress during Tissue Metabolism 

Nutrient consumption elicits a major oxidative and inflammatory effect at the cellular level, 
which alters tissue metabolism. Nutritional oxidative stress after carbohydrate, protein, and lipid 
intake results in a domino of metabolic alterations in various tissues, including the liver, adipose 
tissue, pancreatic β-cells, and skeletal muscle. These active but metabolically distressed tissues 
interacting with nutrients further augment oxidative stress, eventually resulting in an infinite vicious 
cycle (Figure 2). 
  

Figure 1. Overnutrition and decreased physical activity lead to overloaded glucose and free fatty
acid (FFA) levels in cells. Their conversion into energy is supplemented by augmented free radical
generation (oxidative stress). The muscle adipocytes can defend themselves from this situation and
exhibit insulin resistance, aiming to decrease glucose and FFA permeation into the cells. The endothelial
and β cells are insulin-independent. In these cells, glucose and FFA overload may cause oxidative
stress, which in turn induces dysfunction of both endothelial and β cells. Endothelial dysfunction
may induce cardiovascular disease (CVD), and β cell dysfunction is characterized by altered insulin
secretion. β cell dysfunction is particularly characterized by a decrease in first-phase insulin secretion,
which in turn produces the clinical situation of impaired glucose tolerance (IGT). This last condition
is clinically characterized by increased postprandial hyperglycemia. Postprandial hyperglycemia
induces oxidative stress. The persistence of this condition exhausts β cells, leading to overt diabetes.
Oxidative stress produced during both IGT and overt diabetes may contribute to the development of
CVD. Moreover, the cluster of risk factors that accompany insulin resistance also contributes to CVD
development. Red colored arrow represents overload (Adapted from [49]).

2.3. Nutrition Increases Oxidative Stress during Tissue Metabolism

Nutrient consumption elicits a major oxidative and inflammatory effect at the cellular level, which
alters tissue metabolism. Nutritional oxidative stress after carbohydrate, protein, and lipid intake
results in a domino of metabolic alterations in various tissues, including the liver, adipose tissue,
pancreatic β-cells, and skeletal muscle. These active but metabolically distressed tissues interacting
with nutrients further augment oxidative stress, eventually resulting in an infinite vicious cycle
(Figure 2).



Int. J. Mol. Sci. 2017, 18, 1544 5 of 30

Int. J. Mol. Sci. 2017, 18, 1544 5 of 30 

 

 
Figure 2. Nutrition mediates oxidative stress at the metabolic tissue level. Dietary fat (lipids) induces 
intracellular lipid accumulation in the liver and subsequently causes the inflammatory response and 
ER stress, which ultimately results in oxidative stress- and insulin resistance-induced liver 
dysfunction. A nutritious diet can induce the inflammatory response and impair FoxO1 expression, 
adipokine secretions, and antioxidant enzyme activity in the adipose tissue, resulting in an increased 
ROS generation, which ultimately causes dysfunction of the adipose tissue. In pancreatic β-cells, 
hyperglycemia can induce mitochondrial ROS production promoting a native oxidative 
microenvironment, which unfortunately changes insulin gene expression and activity that further 
increases oxidative stress, including inflammation generation, consequently collapsing β-cell 
function. Overfeeding and increased dietary fat (lipids) appeared to enhance mitochondrial 
dysfunction, with decreased ATP synthesis, attenuated mitochondrial gene expression, and 
augmented ROS generation. Consequently, a vicious cycle occurs as these mitochondrial dysfunctions 
further intensify the metabolic abnormalities of the skeletal muscle. ER: endoplasmic reticulum, 
FoxO1: Forkhead box protein O1, IL-6: Interleukin 6, MCP-1: Monocyte chemoattractant protein-1, 
TLR4: Toll-like receptor 4, ETC: electron transport chain. (Adapted from [60]) 

2.3.1. Liver 

Dietary fat intake or overfeeding augments free fatty acid (FFA) supply in the liver, which can 
affect liver metabolism by the accumulation of intracellular lipids. In the liver tissue, increased 
malonyl-CoA levels stimulate de novo FA production and prevent carnitine palmitoyltransferase-1 
(CPT-1) function. Consequently, fatty acids (FAs) cannot be broken down in the mitochondria and 
are diverted to other metabolic pathways, resulting in the formation of ceramides, diacylglycerol 
(DAG), and triacylglycerol (TAG) [61]. In a rat model, fat-rich meal administration for only three days 
led to a three-fold increase in liver lipid accumulation, without any significant growth in the skeletal 

Figure 2. Nutrition mediates oxidative stress at the metabolic tissue level. Dietary fat (lipids)
induces intracellular lipid accumulation in the liver and subsequently causes the inflammatory
response and ER stress, which ultimately results in oxidative stress- and insulin resistance-induced
liver dysfunction. A nutritious diet can induce the inflammatory response and impair FoxO1
expression, adipokine secretions, and antioxidant enzyme activity in the adipose tissue, resulting in an
increased ROS generation, which ultimately causes dysfunction of the adipose tissue. In pancreatic
β-cells, hyperglycemia can induce mitochondrial ROS production promoting a native oxidative
microenvironment, which unfortunately changes insulin gene expression and activity that further
increases oxidative stress, including inflammation generation, consequently collapsing β-cell function.
Overfeeding and increased dietary fat (lipids) appeared to enhance mitochondrial dysfunction, with
decreased ATP synthesis, attenuated mitochondrial gene expression, and augmented ROS generation.
Consequently, a vicious cycle occurs as these mitochondrial dysfunctions further intensify the metabolic
abnormalities of the skeletal muscle. ER: endoplasmic reticulum, FoxO1: Forkhead box protein O1, IL-6:
Interleukin 6, MCP-1: Monocyte chemoattractant protein-1, TLR4: Toll-like receptor 4, ETC: electron
transport chain. (Adapted from [60]).

2.3.1. Liver

Dietary fat intake or overfeeding augments free fatty acid (FFA) supply in the liver, which can
affect liver metabolism by the accumulation of intracellular lipids. In the liver tissue, increased
malonyl-CoA levels stimulate de novo FA production and prevent carnitine palmitoyltransferase-1
(CPT-1) function. Consequently, fatty acids (FAs) cannot be broken down in the mitochondria and are
diverted to other metabolic pathways, resulting in the formation of ceramides, diacylglycerol (DAG),
and triacylglycerol (TAG) [61]. In a rat model, fat-rich meal administration for only three days led to a
three-fold increase in liver lipid accumulation, without any significant growth in the skeletal muscle or
visceral fat content, suggesting that liver insulin resistance may precede systemic insulin resistance
(Figure 2) [62]. As stated above, these lipids recruit numerous inflammatory factors that derestrict
insulin signaling, including the c-Jun N-terminal kinase (JNK) and protein kinase C (PKC) pathways.
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Additionally, in an investigational model, FFA-containing cultured hepatocytes exhibited augmented
levels of prothrombotic and oxidative markers, such as nitric oxide (NO), plasminogen activator
inhibitor-1 (PAI-1), and malondialdehyde (MDA) [63]. Concurrently, massive substrate supply and
liver overfeeding expose the ER to a substantial anabolic load that accordingly stimulates ER stress
and protein misfolding, which can induce inflammatory signaling activation and ROS generation
(Figure 2) [61]. Lastly, lipid accumulation in the hepatic cells affects hepatic glucose production in
impaired insulin-mediated suppression and hyperlipidemia, categorized by elevated hepatic clearance
of high-density lipoprotein (HDL)-cholesterol combined with elevated secretion of very low-density
lipoproteins (VLDL) [64].

2.3.2. Adipose Tissue

In the adipose tissue, ROS production and oxidative metabolism play major roles in
adipogenesis [65]. Various sources are involved in producing intracellular ROS in adipocytes. Although
adipocytes are not thought to be pure energy-producing cells, ROS may be generated from electron
transport chain (ETC) substrate overload as well as from mitochondria [66]. Moreover, several
enzymes can induce ROS generation in adipocytes, including nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase. In adipocytes, NADPH oxidase 4 (NOX4) is the core isoform and its
expression is augmented in the fat cells upon exposure to enriched nutrient derivatives, including
glucose or palmitate [67]. Knockdown of NOX4 in adipocytes (3T3-L1 cells) prevented glucose-
and palmitate-stimulated ROS production, indicating the significance of non-mitochondrial ROS in
adipocytes [68].

Upon intake of a meal, an inflammatory response occurs in the adipose tissue [69]. A study
conducted on rat visceral adipose tissue showed that rats fed with a fatty meal showed an acute
postprandial stimulation of inflammatory signaling [70]. Similarly, in humans, 6 h after the feeding
of a mixed meal, a similar upregulation of MCP-1 and IL-6 was noted within the adipose tissue in
normal-weight, overweight, and obese subjects, independent of the grade of adiposity (Figure 2) [71].
In addition, the change in postprandial inflammatory effects in the adipose tissue due to the specific
quantity and quality of dietary fat was studied by various scientific groups, but their results are
conflicting. A study involving 75 subjects with metabolic syndrome revealed that as compared to
long-term ingestion of saturated fat diet, that of high-monounsaturated fat diet led to a weakened
postprandial inflammatory effect in the adipose tissue [72], whereas another study indicated that
individuals with metabolic syndrome displayed impaired postprandial adipose tissue inflammation,
regardless of the quantity and the quality of fat ingested [73]. From the direct stimulation of
inflammatory pathways by nutrient consumption, a high-fat diet may prompt native inflammation
in the adipose tissue through the discharge of unnecessary FFAs. The responses of FFAs in the
inflammatory pathways are facilitated through the Toll-like receptor (TLR-4), which further induces
the secretion of different cytokines and macrophage aggregation in the adipose tissue (Figure 2) [74].

Overall, oxidative stress can also be identified postprandially in adipocytes. In cultured
adipocytes, elevated FFA levels augmented oxidative stress via NADPH oxidase stimulation,
and oxidative stress directly caused dysfunctional secretion of adipokines. Additionally, increased
ROS generation caused by increased expression of NADPH oxidase and decreased expression
of antioxidative enzymes was investigated in the adipose tissue of overweight mice [75]. Thus,
nutrition-activated oxidative stress likely leads to a contrary native redox status that could affect the
role of free radicals in the adipose tissue (Figure 2) [76].

2.3.3. Pancreas

Oxidative stress can also likely compromise pancreatic β-cell function, as β-cells are inherently
sensitive to oxidative stress. In a previous study, β-cells exposed to H2O2 generated cyclin- and
p21-dependent kinase inhibitors and downregulated insulin mRNA, calcium flux, and ATP reduction
in the cytosol and mitochondria [77]. Moreover, β-cells express low levels of antioxidant enzymes,
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such as catalase, superoxide dismutase (SOD), and glutathione peroxidase, and are more sensitive to
detrimental ROS actions [78]. Hence, oxidative stress, induced by elevated FFA and glucose levels,
insulin resistance, and long-term inflammation through the above-stated mechanisms, clearly plays a
role in pancreatic cells and alters insulin secretion (Figure 2) [16].

In patients with diabetes, long-term induction of plasma FFA and glucose levels has damaging
effects on the pancreatic cell function [16]. An in vitro study showed that the islets or HIT-T15 cells
cultured in high concentrations of FFA and glucose exhibited reduced levels of insulin mRNA and
gene function and altered glucose-induced insulin secretion pathway [79]. Aberrant free radical
production and oxidative stress could be one of the crucial mechanisms underlying these instabilities
(Figure 2). Moreover, hyperglycemia by itself can augment intracellular mitochondrial ROS generation
in pancreatic β-cells, triggering a native oxidative microenvironment, which incidentally alters several
metabolic signaling pathways that further intensify oxidative stress [80], including long-term low-grade
AGE and inflammation generation, consequently collapsing β-cell function (Figure 2) [81].

2.3.4. Skeletal Muscle

Regarding metabolic circulation, the skeletal muscle can also be characterized as a pathway
controller. This tissue represents a crucial source of energy generation and accounts for approximately
80% of the postprandial insulin-induced glucose dumping [82]. As a pure energy-generating organ,
skeletal muscle is packed with mitochondria that control energy homeostasis.

After nutrient feeding, insulin induces glucose entry in the skeletal muscle through glucose
transporter type 4 (GLUT4) [83]. This is a cardinal phase in the body’s metabolic pathways as fuel
consumption should be attuned to fuel obtainability. The capability of skeletal muscle to mainly shift
from lipid oxidation and high amounts of FA utilization in fasting situations to glucose ingestion,
oxidation, and storage under insulin-prompted circumstances is recognized as metabolic flexibility.
The inability to shift from lipid to carbohydrate use (metabolic inflexibility) was investigated in
obese patients and is accompanied with intra-myocellular lipid aggregation and insulin resistance
(Figure 2) [84]. Numerous factors regulate the metabolic flexibility of a subject, including nutrient
presence, plasma FFA levels, the accessibility of the adipose tissue for lipid storage, and their level of
physical activity [85]. Another factor that may be associated with metabolic flexibility is mitochondrial
oxidative capability. Although a study showed contradictory data, it was suggested that mitochondrial
aberrations in the muscle could stimulate metabolic flexibility to lipids and prompt insulin resistance
(Figure 2) [85].

In the skeletal muscle, dietary habits may also disturb physiological metabolic developments and
their role through direct changes in the mitochondrial biology [86]. Together, increased dietary fat
and overfeeding appeared to induce mitochondrial inactivity, with declined ATP synthesis, altered
mitochondrial gene expression, and augmented ROS generation. Consequently, a vicious cycle occurs
as these mitochondrial dysfunctions further intensify the metabolic abnormalities of the skeletal muscle
(Figure 2).

2.4. Nutrition Induces Oxidative Homeostasis

Nutrition-stimulated inflammatory and oxidative status in severe settings can alter extracellular
and intracellular physiological activities. When these instabilities are recurrent, they execute a
persistent inflammatory and oxidative response, which, in some cases, can prompt multiple diseases.

Limited-calorie dietary patterns can provoke the precise reverse effect, promoting cell longevity
and securing oxidative balance. For instance, six months of caloric limitation significantly diminished
oxidative stress and declined fasting insulin levels and body core temperature in healthy subjects [87].
Moreover, the study showed improved basal endothelial function and augmented plasma antioxidant
capability in patients with diabetes, who followed a Mediterranean diet for three months in comparison
with those patients on control diets [88].
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Overall, evidence suggests that diet regulates oxidative stability both in an acute and in a
chronic state. Nutritional variance can easily interrupt this cellular stability, initiate unfavorable
pathophysiological pathways, and stimulate the incidence of numerous diseases in humans.

3. The Relationship between Nutrition and Oxidative Stress Following Carcinogenesis

The worldwide cancer burden is anticipated to increase by more than two-fold over the next
two decades [89], therefore worsening a massive public health and medical care problem. Physical
activity, nutrition, and diet rank high among the most important risk factors for human cancer, in part
because of their influences on obesity, which is a recognized risk factor for various malignancies [90–95].
The role of some specific nutrients in cancer etiology has been proposed based on associations stated in
epidemiological studies, further supported by biological credibility. The ultimate carcinogen is known
as chemically reactive and activated form of a pro-carcinogen or carcinogen that is capable of a direct
covalent binding to protein and/or nucleic acid macromolecules. The ultimate carcinogen directly
binds with a cell component (probably DNA) to initiate carcinogenesis. These factors are linked
to the antioxidant status of selected nutrients, impact on epigenetic functions, DNA adducts, DNA
repair, regulation of gene expression, inflammation, stimulation of growth factors, or influence on
circulating intensities of endogenous hormones (Figure 3) [96–98]. Incessant exposure to environmental
carcinogens and inhalation chemicals is assumed to induce the amount of cytochrome P450 CYP1A1
expression in extrahepatic tissues via the aryl hydrocarbon receptor (AhR) [99–102]. Though the
latter has long been identified as a ligand-activated transcription factor (TF), which is accountable
for the xenobiotic inducing pathway of numerous phase I and phase II metabolizing enzymes, recent
studies propose that AhR is associated with several cell signaling pathways critical to cell cycle
modulation and normal homeostasis [101,102]. Alteration of these pathways is associated with tumor
progression. Moreover, it is increasingly evident that P450 plays a vital role in the detoxification of
environmental carcinogens, following the metabolic activation of dietary compounds (nutrition) with
cancer preventative activity (Figure 3) [102]. Along with other crucial factors, such as diet, energy
balance, BMI, physical activity, and metabolic rate, nutrition may also influence DNA replication
of cancer cells following cancer progression. Therefore, nutrition-mediated oxidative stress plays a
crucial role in carcinogenesis. Some of the vital dietary components that have an association with
oxidative stress following different aspects of carcinogenesis have been discussed in this section
(Table 1 and Figure 4).

3.1. Alcohol

Alcohol is a prominent carcinogen linked with breast, oropharyngeal, colorectal, liver, and esophageal
cancers [103]. Excessive consumption of alcohol also leads to fibrotic changes in the liver [104,105].
Moreover, it leads to the production of ROS following oxidative stress, which, consequently,
causes severe dysfunction and damage to the biological signaling molecules [106]. Additionally,
it disrupts intra- and extra-cellular network and functions, which ultimately cause chromosomal
abnormalities, DNA damage, DNA methylation modification, signaling pathway alteration, tumor
necrosis factor α (TNF-α) release, and retinoid metabolism impairment, consequently, leading to cancer
initiation [107–110]. Functional diversity in the genes associated with alcohol metabolism can result in
varying exposure to the carcinogenic metabolites of alcohol; therefore, identifying genetic intolerance
to alcohol can aid in cancer prognosis [111]. For instance, people with a common genetic mutation
in the alcohol dehydrogenase gene that suppresses enzyme activity have a higher risk of esophageal
cancer than those who have a fully active enzyme [103]. Alcohol facilitates its mutagenic effects by
the derivation of acetaldehyde adducts, induction of the activity of Kupffer cells, and enhancing
oxidative stress by augmenting formation of gut-derived endotoxins [110]. Alcoholism results in
accumulation of acetaldehyde, which, consequently, causes genotoxicity. A similar change occurs due
to accumulated acetaldehyde in hepatocellular carcinoma [112,113]. Moreover, according to World
Cancer Research Fund (WCRF) analysis, alcohol intake is significantly correlated with increased breast
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cancer risk [90]. Numerous epidemiological studies supported a positive interaction between breast
cancer risk and alcohol [114]. A meta-analysis revealed that high alcohol consumption (10 g of ethanol
consumption per day) was highly associated with risks for ER+PR+, ER+PR−, ER+, and ER− breast
tumors, but not ER−PR− tumors [115]. Additionally, there are several contradictory studies on the
probable relationship of alcohol consumption with numerous histological grades or stages of prostate
cancer [116–120]. Previous meta-analyses have also emphasized these irregularities, highlighting the
necessity for further studies in this area [121,122].
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Table 1. The role of various dietary components in oxidative stress and carcinogenesis.

No. Dietary Components Role in Oxidative Stress Role in Carcinogenesis

1 Alcohol

� Promotes ROS production while lowering cellular antioxidant levels, thereby
altering homeostasis between pro- and anti-oxidants leading to oxidative
stress in multiple tissues [123].
� Increases ROS production and oxidative stress, and results in the
accumulation of acetaldehyde [124].
� alters mitochondrial function resulting in cellular death [125].

� Prominent carcinogen linked with several cancers [95].
� Higher risk for esophageal cancer [95].
� Highly associated with risks for breast tumors [115].
� Alcohol intake and the genes involved in alcohol metabolism and their interaction increase the
risk of breast cancer in post-menopausal women [126].
� Chronic alcohol abuse can cause folate deficiency, which is a well-documented risk factor for
breast cancer [127].

2 Carbohydrates

� Lead to increased oxidative stress, which has been associated with increased
risk for atherosclerosis and related disorders [128].
� High-carbohydrate meal may evoke a greater postprandial oxidative stress
response [129].

� Could affect breast cancer influencing plasma levels of glucose and insulin, and insulin
resistance [130].
� Consuming foods with high insulinogenic content may increase the risk of breast cancer [131].

3 Fatty acids (FAs)

� Omega-3 FAs reduce oxidative stress [132].
� FAs shorten in chain length and decrease unsaturation and peroxidation,
while the 1-carbon cycle shifts from the methylation to the transsulfuration
pathway [133].

� Established mechanism is an association between inflammatory pathways and the function of
omega-3 and omega-6 FAs on the action of cyclooxygenase-2 (COX-2) in prostate cancer [134–136].
� n-3 FAs, especially the long-chain polyunsaturated FAs, eicosapentaenoic acid and
docosahexaenoic acid, present in fatty fish and fish oils inhibit carcinogenesis [137].

4 Fiber

� Could protect from oxidative stress [138].
� Reduced levels of oxidative stress [139].
� Elicited modest improvements in indices of oxidative stress and
inflammation [140].
� Dietary fiber supplementation, rather than energy intake and dietary
restriction, appears to be the main process regarding oxidative stress in the
cardiac tissue [141].

� An 11% decrease in breast cancer risk in individuals consuming a fiber-rich diet versus that in
individuals consuming the lowest amount of fiber [142].
� With up to a 25% reduction in cancer risk when ingesting around 12.6–33.1 g/day of fiber, or 17%
reduction for consuming fiber 3 times a day [143,144].
� It reduces the risk of developing some types of cancer [145].

5 Flavonoids

� Prevent disuse muscle atrophy by attenuating oxidative stress derived from
mitochondrial dysfunction [146].
� Have potential antioxidant actions by reacting with and inactivating O2

−,
oxygen lipid peroxide radicals, and/or stabilizing free radicals involved in the
oxidative process by hydrogenation or complexing with oxidant species [147].
� Have both a cytoprotective effect owing to ROS scavenging and cytotoxic
effect caused by H2O2 generation [148].

� Isoflavones are the most well-known compounds that possess well-characterized anti-estrogenic
activity; functions in intracellular steroid metabolism; and anti-angiogenic, anti-proliferative,
and pro-apoptotic activities in various tumor cells [149–151].
� Isoflavones consumption of 20 mg/day can decrease breast cancer risk by 29% compared to that
by consumption of 5 mg/day [152].
� Flavonoids are potent regulators of cyclin B and p21 required for cell cycle progression, which
may play some roles in the prevention of carcinogenesis [153].
� Flavonoids have emerged as potential chemopreventive candidates for cancer treatment,
especially, by their ability to induce apoptosis [154].

6 Proteins

� Long-term intake of high protein diets did not increase variables of oxidative
stress [155].
� Become activated by oxidation and help bacteria to respond to oxidative
stress [156].

� Protein-rich food (especially animal protein) could be associated with a higher risk of cancer [157].
� Colorectal cancer progression occurs upon satisfactory consumption of animal protein [158].

7 Vitamins

� Vitamin A is rapidly oxidized in the presence of oxygen, transient metals,
and light [159].
� Vitamin E plays an important protective antioxidant role in elderly,
particularly in conditions where oxidative stress and free radicals are
potentiated [160].

� Numerous vitamins, including vitamin A, B, C, D, and E, have been implicated in the risk of
cancer occurrence [161–165].
� Intake or synthesis of vitamin D is associated with reduced incidence and death rates of colon,
breast, prostate, and ovarian cancers [166].
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3.2. Carbohydrates

Ingestion of nutritional carbohydrate, a key dietary factor, disturbs an individual’s glycemic
response and insulin secretion, while consequences differ depending on the amount of carbohydrates
consumed [167]. Carbohydrate quality could affect cancer risk, especially, that of breast cancer,
significantly by influencing plasma levels of glucose and insulin, and insulin resistance [130]. Recent
meta-analysis studies described a potential relationship between glycemic index (GI), degree of
cancer risk, and intake of carbohydrate quality [168–171]. Previous studies suggest that oxidative
stress may have an important role connecting acute hyperglycemia to augmented cardiovascular
risk [172–174]. Acute enhancement in blood glucose concentrations may increase the formation of free
radicals by an imbalance in the ratio of NADH to NAD and by non-enzymatic glycation increased by
glucose in cells [175,176]. The direct indication from studies presented that enhanced hyperglycemia
or meal consumption and its derived glucose can promote oxidative stress and impair antioxidant
defenses [177,178]. Consequently, oxidative stress was significantly augmented after food intake that
produced a superior degree of hyperglycemia in both normal subjects and those with diabetes [179].
According to the European Prospective Investigation into Cancer and Nutrition (EPIC), increased
carbohydrate and glycemic burden in the food were associated with an increase in ER−/PR− and ER−

breast cancer among older women [180]. Similarly, the Women’s Health Initiative (WHI) suggested
that consuming foods with high insulinogenic content may increase the risk of breast cancer [131].
Together, the potential relationship between cancer risk and dietary GI was more commonly stated by
case-controls than by the cohort studies. A probable purpose for this is that case-control reports are
more liable to problems of remembering and selection difficulty than cohort studies are. In addition,
most case-control studies were conducted in Europe and most cohort studies were conducted in North
America. The diverse results between studies performed in North Americans and Europeans may
also reveal variances in nutritional lifestyles between the two regions. Individuals from Europe ingest
carbohydrate-enriched food and different kinds of carbohydrates [181] compared to individuals in
North America [182], who consistently consume more fats. Studies are often unable to demonstrate a
relationship between oxidative stress-induced cancer risk and carbohydrate intake.

3.3. Fatty acids (FAs)

Dietary lipids or fats are frequently blamed as the key source of superfluous energy. When
caloric consumption surpasses energy expenses, the resultant substrate-induced enhancement in
citric acid cycle activity produces an excess of ROS. Moreover, dietary FA ingestion influences the
relative FA configuration of biological membranes defining its sensibility to oxidative changes [183].
There are huge controversies around finding a relationship between FA-rich meals and cancer risk in
population-based reports, despite a solid biological credibility underlying these relationships. The role
of inflammation in membrane fluidity and functions, stimulation of growth factors, and regulation
of gene expression, or its effect on circulating levels of endogenous hormones has been cited. Recent
data demonstrate a link between dietary FA with induced oxidative stress and carcinogenesis in
the rat model [184]. Several epidemiological studies mention that, rather than total dietary fat
ingestion, subgroups of FAs could differentially affect cancer risk [185–188]. Essential FAs (EFAs) of
the omega-3 family (α-linolenic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA))
and omega-6 family (arachidonic acid and linoleic acid) have been a vast subject of study, because of
their dietary significance and their association with the prognosis of various types of cancers. In spite
of numerous studies conducted over the last decades, recent scientific data are debatable and there
is a lack of reliable conclusions about the effect of EFAs and the risk of breast, bladder, colorectal,
lung, or prostate cancers [189–192]. In the broad literature regarding this type of EFA (omega-3,
omega-6, and omega-3/omega-6 ratio) and its relationship to cancer progression, several underlying
mechanisms have been hypothesized. One of the most established mechanisms is an association
between inflammatory pathways and the function of omega-3 and omega-6 FAs on the action of
cyclooxygenase-2 (COX-2) in prostate cancer [134–136]. On the contrary, Gao et al. [193] demonstrated
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that palmitate, a saturated FA, up-regulated COX-2 via NF-κB-dependent mechanism; consequently,
COX-2-associated oxidative stress weakened endothelium-dependent relaxations in the mouse aortas.
However, metabolic characteristics of these EFAs are completely conflicting. The COX-2 enzyme can
convert omega-6 FAs into prostaglandin E2, a pro-inflammatory cytokine, which enables angiogenesis
and cell proliferation, whereas prostaglandin E3 is produced from omega-3 FAs with the help of COX-2,
which does not facilitate mitogenic characteristics [194].

This proposal could elucidate the results achieved by assessing the impact of the omega-3/omega-6
ratio on melanoma [195], and the effects of DHA- and EPA-rich fish oil on colorectal [196] or prostate
cancer, where the diversity of results leads to contradictory conclusions [197,198].

3.4. Fiber

Consumption of whole grain cereals, vegetables, and fruits provides the fibers necessary for
our health, with the recommended intake being approximately 21–38 g/day. The protective action
of fibers is not only associated with colorectal cancer, but also with other cancer types. A study
showed an 11% decrease in breast cancer risk in individuals consuming a fiber-rich diet versus that in
individuals consuming the lowest amount of fiber [142]. This association is dose-dependent; cancer
risk decreased 7% with each 10 g/day of fiber intake, which is not dependent on the ethnic group,
region, or menopausal status [142]. Moreover, the WCRF assessment board concluded an inadequate
level of data regarding the relationship between dietary fiber and breast cancer risk [90]. Similarly, an
organized review and meta-analysis of potential studies presented a significant inverse relationship
between nutritional fiber intake and breast cancer risk [143]. In addition, the recent epidemiological
proof is not convincing regarding the ability of fiber intake to decrease colorectal cancer risk. Some
studies have shown significant results, with up to a 25% reduction in cancer risk by ingesting around
12.6–33.1 g/day of fiber, or 17% reduction by consuming fiber three times a day, though some studies
have not found any beneficial effects [144,199].

3.5. Flavonoids

Cancer initiation and progression have been associated with oxidative stress by enhancing DNA
mutations or increasing DNA damage, genome variability, and cell proliferation, and hence antioxidant
agents could intervene with carcinogenesis [200]. Among the antioxidant compounds, isoflavones are
the most well-known compounds that possess well-characterized anti-estrogenic activity (antagonistic
for the β-estrogen receptor); functions in intracellular steroid metabolism (inhibiting the enzyme
that transforms androgen to estrogen); and anti-angiogenic, anti-proliferative, and pro-apoptotic
activities in various tumor cells [149–151]. Other flavonoid compounds, polyphenols, have anticancer
activity both in humans and animal models [201,202]. Currently, increasing attention is directed
towards the role of natural antioxidant agents on modulating intracellular ROS levels resulting into
epigenetic alterations of essential genes in tumorigenesis [202]. Several flavonoids were confirmed to
disrupt the enzymes leading to epigenetic modifications, which regulate the inflammation process
that might oscillate in cancer [202]. Excessive ROS generation may lead to tissue injury that may
induce inflammatory process [203], the inflammatory mediators may be involved in various chronic
diseases, including CVD, neurological disease, and carcinogenesis [204]. Although in vitro studies
depict a positive outcome, case-control results and phase III clinical trials afford unconvincing data
for certain kinds of tumors, such as breast or prostate neoplasms [151,205]. A study on Asian
women revealed that isoflavone consumption of 20 mg/day can decrease breast cancer risk by
29% as compared to that after consumption of 5 mg/day [152]. On the contrary, according to a
meta-analysis, no association was found in western women, even though these women ingested 0.8 mg
of isoflavones per day [151]. Previously, studies have stated that Asian men consume high amounts of
isoflavone-containing foods, while western counterparts consume mostly red meat-containing foods
with minimal isoflavones [206–208]. This variation in results can be caused by numerous factors,
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including dose and type of isoflavones, type of cancer, or even diverse enzymatic polymorphisms
between subjects [209].

3.6. Proteins

In a nutritional diet, protein is the most important element for human health. Proteins contain
no nutritional value until they are digested by protease and peptidase enzymes. Excessive protein
consumption can induce amino acid oxidation and urea synthesis [210], and impair the nutritional
efficacy of energy utilization [211]. An interesting study stated that high protein intake could obliterate
the stability of antioxidants and oxidation of amino acids in the digestive system of mice and promote
generation of ROS in the digestive gland [212]. A conceivable explanation is that ROS might be
generated after meat consumption during its metabolism [213]. Moreover, high-protein ingestion can
result in oxidative stress, inducing risk for long-term diseases, including carcinogenesis [214–216].
In patients with cancer, protein consumption is decreased tremendously due to reduced digestion, low
food intake, and augmented catabolism [217]. Recently, an epidemiological study showed that intake
of protein-rich food (especially animal protein) could be associated with a higher risk of cancer [157].
Moreover, a few epidemiological studies have discovered an association between intake of animal
protein (e.g., red meats) and several diseases (e.g., hypertension and colon cancer) [218,219]. There are
no particular enduring clinical trials analyzing meatless diets for children or adults. Similarly, there is
little evidence indicating that colorectal cancer progression occurs upon satisfactory consumption of
animal protein [158]. Recent studies from large cohorts, such as the Health Professional Follow-up
Study, the Nurse’s Health Study, and the Multiethnic Cohort, depicted insignificant or inverse
correlations between ingestion of unrefined red meat and colon cancer [218,220]. Together, research
from the interference studies on cancer and diet, including the Polyp Prevention Trial and the Women’s
Health Initiative, found that a reduction in dietary consumption of animal protein (e.g., processed
meat and red meat) did not decrease the risk of colon cancer and/or had no outcome on adenoma
relapse in the large bowel [221–223].

3.7. Vitamins

Recent epidemiological studies have been conducted to discover the association between vitamin
consumption and the risk of cancer diagnosis. According to previous studies, numerous vitamins,
including vitamin A, B, C, D, and E, have been implicated in the risk of cancer occurrence [161–165].
Vitamins C, D, and E and selenium share fundamental antioxidant properties and all protect against
oxidative stress and its harmful effects in our body that lead to carcinogenesis. However, oxidative
stress is a natural process with positive outcomes, such as improved immune response [224]. Previous
studies stated that high-dose vitamin C killed cancer cells by playing a role as a pro-drug, which
provides hydrogen peroxide (H2O2) [225–227]. Vitamin C-induced elevated levels of ROS, including
H2O2, are considered to play a vital role in carcinogenesis [226]. Previous studies also reported that
vitamin C administration promoted cytotoxicity by ATP reduction in some cancer cells [227–229].
A case-control study involving women from Klang Valley and Selangor, Malaysia, demonstrated
that a good antioxidant consumption, including vitamins A and E, can reduce oxidative stress and
subsequently prevent breast cancer risk [230]. The relationships between breast cancer and B vitamins
have been broadly studied and these relationships are complex. From questionnaires, epidemiological
studies have estimated an association between folate consumption and the risk of breast cancer with
conflicting results [231]. On the contrary, preventive effects have been witnessed in individuals with
low folate consumption and occasional vitamin intake [232]. Moreover, there are questionable findings
for vitamin B in prostate cancer [233], for vitamins C and E in liver [234] and prostate cancers [235],
and for folic acid and vitamin D in pancreatic cancer [236,237].
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4. The Association between Oxidative Stress and Cancer Progression

An association between oxidative stress and cellular alteration was first recognized in 1981
when it was identified that insulin raised intracellular H2O2 levels and augmented tumor cell
proliferation [238]. After more than three decades, the function of ROS in cancer progression
remains conflicting. Oxidative stress is involved in various diseases, including neurodegenerative
diseases [239,240], chronic inflammation [241,242], metabolic disorders [243,244], and extensively in
various cancers [245–249]. The rise in ROS levels from oxidative stress, as a consequence of oncogene
signaling pathways, may exploit underlying mutagenesis and genomic variability in cancer cells to
stimulate cancer progression. Cancer cells require high levels of ATP because it acts as “fuel” for
aberrant cell proliferation. However, the effect of this excess energy generation is the accumulation
of ROS, which needs to be prevented by scavenging actions to ensure cell survival [250]. To prevent
these possibly toxic effects of ROS, numerous oncogenes also augment the expression of nuclear factor
erythroid 2-related factor 2 (NRF2), which diminishes ROS levels and stimulates tumorigenesis [251].
Similarly, NRF2 not only offers protection against chemical carcinogens, but also augments cancer
progression by defending cancer cells from ROS and DNA damage [252–258]. In contrast, NRF2
deletion in pancreatic cancer cells augmented DNA damage and inhibited carcinogenesis [251].

Several studies have assessed ROS levels and generation under numerous conditions with the
aim of determining when ROS are carcinogenic and when they are cancer suppressive [259]. At low
or endurable levels, ROS may aid cancer progression either by playing as signaling elements or by
stimulating alterations in genomic DNA or DNA damage. For example, ROS can promote expression of
cyclin D1, phosphorylation of extracellular signal-regulated kinase (ERK) and JUN N-terminal kinase
(JNK), and activation of mitogen-activated protein kinase (MAPK), all of which are connected to cancer
progression and survival [260–265]. Moreover, ROS have been found to inversely incapacitate tumor
suppressors, including protein tyrosine phosphatases (PTPs) and phosphatase and tensin homolog
(PTEN), due to the existence of the redox-sensitive cysteine residues that exist in their catalytic
sites [266–268]. Remarkably, PTPs can also control signaling pathways to induce the expression
of antioxidant enzymes and diminish ROS levels [269]. Additionally, normal stem cell renewal
and differentiation are controlled by ROS levels [270]; while cancer stem cells (CSCs) share similar
properties with normal stem cells, comparatively little is known regarding their association with redox
status. Recently, studies have shown that the liver and breast cancer stem cells tend to have low ROS
levels, leading to the augmented expression of ROS-scavenging signaling proteins [270]. If CSC growth
is vital for tumor initiation, then retaining low ROS levels in CSCs may be essential for the endurance
of pre-neoplastic foci. Hence, although chemotherapy and radiotherapy prompt ROS generation,
they are beneficial for abolishing most cancer cells, yet may be unable to cure the patient, leading
to the greater capability of CSCs to endure in circumstances of high ROS by increasing antioxidants
levels [250]. As ROS are debatable mediators of the adverse effects of some anticancer drugs and
ionizing radiation, CSCs may be favorably released and aggressively selected by actions that depend
on increased ROS levels. Furthermore, the supplementary oxidative stress prompted by these actions
may cause further mutations and DNA damage, resulting in the expansion of drug-resistant cancer
cells (Figure 5).

At elevated levels, ROS stimulate cell death and harmful cellular damage. In this case, cancer
cells must overcome increased levels of ROS, particularly at initial stages of cancer progression.
A recent study found that circumstances that enhance oxidative stress also raise the specific pressure
on pre-neoplastic cells to induce influential antioxidant mechanisms [271]. Increased levels of ROS are
also prompted by dissipation from the cell matrix [272]. This feature is relevant during metastasis of
cancer cells that need to survive upon migration to distant organs. Thus, cancer cells typically have a
high antioxidant capability that controls ROS levels and are attuned with biological functions of the
cell, but are quite higher than the antioxidant capacity of normal cells. Moreover, increased ROS levels
by endogenous antioxidants are unfavorable to cancer cells as well as cancer progression. We consider
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that targeting these enriched antioxidant protective mechanisms may represent an approach that can
precisely destroy cancer cells, including CSCs, while sparing normal cells.Int. J. Mol. Sci. 2017, 18, 1544 16 of 30 
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Figure 5. A schematic diagram of overall signaling pathways of cancer progression induced by
oxidative stress. SOD: superoxide dismutases; Mito-ETC: mitochondrial electron transport chain, GSH:
glutathione; GR: glutathione reductase; GPX: glutathione peroxidase; GRXo, glutaredoxin (oxidized);
GRXr: glutaredoxin (reduced); GSHr: glutathione (reduced); TRXo, thioredoxin (oxidized); TRXr:
thioredoxin (reduced). Black arrows represent activation and T bar represent inhibition, red colored
arrows represent upregulation/downregulation. (Adapted from [273]).

5. Conclusions

In the human body, nutrition is one of the vital regulators of oxidative stress. Nutrient consumption
and the associated postprandial oxidative stress result in the accumulation of molecular alterations
in the crucial signaling pathways of several organs, critically changing the cellular milieu. However,
the particular pathophysiological roles of oxidative stress and nutrition are still elusive, with
targeted therapeutic modalities representing a puzzling field. Specifically, when the organs of
the gastrointestinal (GI) tract are exposed to the highest amount of dietary associated carcinogens,
the injurious effects of these components affect the whole body system. Over the past decades, extensive
studies have revealed that alterations in the cell metabolism play a vital role in the progression
of various types of cancer. In general, carcinogenesis as well as dietary carcinogen-associated
carcinogenesis, is significantly correlated with chronic and/or acute oxidative stress. The precise
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nature of the effect of oxidative stress on cancer development and/or response to treatment requires
further exploration. The association between nutrition and oxidative stress may have an important role
in cancer and CSC progression as well as therapy. To validate and confirm all of these above-mentioned
hypotheses, more detailed further investigations and research are required. Recently developed
technologies, including metabolomics and deep DNA sequencing, are imperative tools that would
support to define how the metabolism of cancer cells become accustomed and offers a buffer against
augmented oxidative stress. However, the pathophysiological relationship between carcinogenesis
and oxidative stress opens prospects for protective and even therapeutic use of beneficial, healthy
dietary compounds indicated as nutraceuticals. Therefore, this review details our understanding of the
correlation between nutrition, oxidative stress, and cancer development, and uncovers related crucial
therapeutic strategies.
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Abbreviations

8-OHdG 8-OH deoxyguanosine
AGE advanced glycation end product
ATP adenosine triphosphate
BMI body mass index
COX-2 cyclooxygenase 2
CPT-1 carnitine palmitoyltransferase-1
CRP C-reactive protein
CSC cancer stem cells
CVD cardiovascular disease
DAG diacylglycerols
DHA docosahexaenoic acid
EFA Essential fatty acids
EPA eicosapentaenoic acid
EPIC European Prospective Investigation into Cancer and Nutrition
ER: endoplasmic reticulum
ERK extracellular signal-regulated kinase
ETC: electron transport chain
FFA free fatty acids
FoxO1 Forkhead box protein O1
GI glycemic indexes
GLUT4 glucose transporter type 4
GPX glutathione peroxidase
GR glutathione reductase
GRXo glutaredoxin (oxidized)
GRXr glutaredoxin (reduced)
GSHr glutathione (reduced)
HDL high-density lipoproteins
IARC International Agency for Research on Cancer
IGT impaired glucose tolerance
IKKα IκB kinase α

IKKβ IκB kinase β

IL- 6 Interleukin 6
IκBα inhibitor κBα
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JNK c-Jun N-terminal kinase
MAPK mitogen-activated protein kinase
MCP-1 Monocyte chemoattractant protein-1
MDA malondialdehyde
Mito-ETC mitochondrial electron transport chain
MNC mononuclear cells
NADPH nicotinamide adenine dinucleotide phosphate
NF-κB nuclear factor κB
NO nitric oxide
NOX4 NADPH oxidase 4
NRF2 nuclear factor erythroid 2-related factor 2
PAI-1 plasminogen activator inhibitor-1
PCOS polycystic ovarian syndrome
PKC protein kinase C
PMNL polymorphonuclear leukocytes
PTEN phosphatase and tensin homolog
PTP protein tyrosine phosphatase
ROS reactive oxygen species
SOD superoxide dismutase
TAG triacylglycerol
TLR4: Toll-like receptor 4
TRXo thioredoxin (oxidized)
TRXr thioredoxin (reduced)
VLDL very low-density lipoproteins
WCRF World Cancer Research Fund
WHI Women’s Health Initiative
WHO World Health Organization
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