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Abstract: Aberrant O-glycans expressed at the surface of cancer cells consist of membrane-tethered
glycoproteins (T and Tn antigens) and glycolipids (Lewis a, Lewis x and Forssman antigens). All of
these O-glycans have been identified as glyco-markers of interest for the diagnosis and the prognosis
of cancer diseases. These epitopes are specifically detected using T/Tn-specific lectins isolated from
various plants such as jacalin from Artocarpus integrifola, and fungi such as the Agaricus bisporus lectin.
These lectins accommodate T/Tn antigens at the monosaccharide-binding site; residues located
in the surrounding extended binding-site of the lectins often participate in the binding of more
extended epitopes. Depending on the shape and size of the extended carbohydrate-binding site, their
fine sugar-binding specificity towards complex O-glycans readily differs from one lectin to another,
resulting in a great diversity in their sugar-recognition capacity. T/Tn-specific lectins have been
extensively used for the histochemical detection of cancer cells in biopsies and for the follow up of the
cancer progression and evolution. T/Tn-specific lectins also induce a caspase-dependent apoptosis in
cancer cells, often associated with a more or less severe inhibition of proliferation. Moreover, they
provide another potential source of molecules adapted to the building of photosensitizer-conjugates
allowing a specific targeting to cancer cells, for the photodynamic treatment of tumors.
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1. Introduction

The malignant transformation is accompanied by profound alterations in both the N- and
O-glycosylation processes in healthy cells [1–3]. In cancer cells, the aberrant O-glycans expressed at
the cancer cell surface occur as saccharide components of membrane-bound N-acetyl galactosamine
(O-GalNAc) glycoproteins (T and Tn antigen) and glycolipids (Lewis a and Lewis x). The occasional
sialylation of the ultimate sugar of the glycan chain introduces an additional diversity in the O-glycan
repertoire expressed by cancer cells [4–12]. In addition, mucin, a heavily O-GalNAc glycosylated
protein, is overexpressed and subsequently secreted by cancer cells, essentially at the last stages of
the malignant progression [13,14]. All of these aberrant O-glycans may serve as potential targets to
improve the diagnosis and the treatment of tumors, provided the molecular probes are available for
their specific recognition [15–17]. In this respect, monoclonal antibodies that specifically recognize
both the sialylated and non-sialylated Tn and T antigens have been widely used to detect malignant
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cells [18–22]. Lectins and, especially, plant and fungal lectins that display a T/Tn-specificity, consist
of another source of potential molecular probes available for the specific recognition of tumor cell
O-glycans [23]. During the last decade, the list of T/Tn-specific lectins isolated and characterized from
plants and fungi, has increased tremendously, making new lectins available as potential molecular
probes for the recognition of cancer cells (see Table 1). In parallel, new insights have been obtained on
the immunotoxicity of plant lectins toward cancer cells and their role in the reinforcement of the innate
(anti-cancer) immunity (see [24] for a review), which assign plant and fungal lectins as valuable tools
for the diagnosis and treatment of cancer. Here, we present an updated review on the potential use of
plant and fungal lectins as probes for both the diagnosis, the prognosis, and the treatment of cancer.

2. Altered O-Glycan Patterns Expressed by Cancer Cells

Alterations to surface properties of cancer cells account for their aptitude to aggregate and, thus,
improve the invasive and metastatic capacity of many tumors. Changes of the surface properties of
cancer cells essentially depend on the overexpression of aberrant O- and N-glycans, which occur as
membrane-associated glycoproteins and glycolipids exposed at the cell surface [1]. Due to their high
occurrence in most cancer cells, alterations of the O-glycosylation have been deeply investigated since
the characterization of the so-called T antigen (Thomsen–Friedenreich) and Tn antigen [4]. The most
frequent aberrant O-glycans expressed at the surface of cancer cells consist of Tn antigen (α1→Ser/Thr),
T antigen (Galβ1→3GalNAcα1→Ser/Thr), Lewis a (Galβ1→3[Fucα1→4]GlcNAcβ1→R) and
Lewis x (Galβ1→4[Fucα1→3]GlcNAcβ1→R) antigens, and an oncofetal glycotope, the Forssman
pentasaccharide antigen (GalNAcα1→3GalNAcβ1→3Galα1→4Galβ1→4Glc) [1–3] (Figure 1). All
of these glycotopes also exist as sialylated forms, with Neu5Acα2→3-linked to the ultimate Gal
(T antigen, Lewis a and Lewis x antigen) or GalNAc residue (Tn antigen) (Figure 1). Except for the
Forssman antigen, other antigens relate to the blood group antigen precursors, MN antigens for Tn
and T antigen, ABH antigens for Lewis a and Lewis x antigen. Finally, malignancy is often associated
with the overproduction of secreted and membrane-tethered mucins [25], glycoproteins which consist
of tandemly repeated Tn antigen units (PDB code 2MK7) (Figure 2).

All of these membrane-associated O-glycans aberrantly expressed in cancer cells represent cancer
glyco-markers that may be recognized using specific monoclonal antibodies or T/Tn-specific lectins as
probes. In this respect, plant and fungal lectins displaying a functional T/Tn-specificity mimic the
galectins, which innately occur in humans and other mammal organisms as endogenous recognition
factors for the aberrant O-glycans exposed at the tumor cell surface [26]. However, beyond this
apparently functional similarity, exogenous plant lectins and endogenous galectins readily differ from
the monoclonal antibodies used as O-glycan probes by the topography and the molecular mechanism
occurring at their O-glycan-binding sites.
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Figure 1. Molecular structure of the O-glycans expressed on the cancer cell surface. T antigen also 
occurs as a component of the soluble mucin excreted by both healthy and cancer cells. GlcNAc, N-
acetyl D-glucosamine; GalNAc, N-acetyl D-galactosamine; Gal, D-galactose; Neu5Ac, sialic acid; Fuc, 
L-fucose. 

Figure 1. Molecular structure of the O-glycans expressed on the cancer cell surface. T antigen also
occurs as a component of the soluble mucin excreted by both healthy and cancer cells. GlcNAc, N-acetyl
D-glucosamine; GalNAc, N-acetyl D-galactosamine; Gal, D-galactose; Neu5Ac, sialic acid; Fuc, L-fucose.
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Figure 2. Cartoon showing the clustering of Tn antigens along the peptide chain of the tetra-O-
GalNAc glycosylated mucin sequence of the human α-dystroglycan mucin domain peptide (residues 
419-PPTTTTKKP-427) (PDB code 2MK7; Borgert A, Foley L, Live D). Cartoon drawn with Chimera 
[27]. 

3. Plant Lectins Specific for T and Tn Antigens 

Thus far, up to forty-six lectins isolated from different families of plants and fungi have been 
characterized as T/Tn-specific lectins (Table 1). Plant lectins have originated from species belonging 
to a few predominant families such as Fabaceae (BPA from Bauhinia purpurea, Gs I-A4 from Griffonia 
simplicifolia, PNA from peanut, SBA from soybean, VVA B4 from Vicia villosa, WBL from the winged 
bean Psophocarpus tetragonolobus, and WFA from Wisteria floribunda), Caprifoliaceae (SNA-I, SNA-II 
and SNA-IV from Sambucus nigra), Lamiaceae (SSA from Salvia sclarea, SHA from S. hominum, and 
SbA from S. bogotensis), Euphorbiaceae (ricin and RCA-I from Ricinus communis) and Moraceae 
(jacalin and the jacalin-related lectin MPA from Maclura pomifera). A few T/Tn-specific lectins such as 
SNA-I and SNA-V from the elderberry Sambucus nigra, BGSL from the bitter gourd (Momordica 
charantia), and the galactose-specific lectin and ricin from the castor bean (Ricinus communis) 
correspond to chimerolectins composed of a toxic A-chain covalently linked to a B-chain displaying 
the T/Tn-specificity [28]. Fungal lectins (ABL from Agaricus bisporus, AAL from Agrocybe aegerita and 
XCL from Xerocomus chrysenteron) with a T/Tn-specificity belong exclusively to the group of 
Basidiomycota mushrooms. Although most of the so-called T/Tn-specific lectins readily react with 
both T and Tn antigens, T and Tn consist of very distinct antigens that arise by different mechanisms 
and in different cancerous tissues. In addition, plant lectins specific for T and/or Tn antigens also 
interact with α-D-Gal and the Gal-specificity of some T/Tn-specific lectins such as jacalin from 
Artocarpus integrifolia seeds is as potent and even stronger than that displayed for both T and Tn 
antigens [29,30]. This stronger interaction with α-D-Gal depends on its fixation to the primary binding 
site of the lectin via a dense network of nine hydrogen bonds, as shown from the crystallographic 
complex of jacalin with galactose (PDB code 1UGW) [31]. 

The carbohydrate-binding site (CBS) of plant and fungal lectins consists of a carbohydrate-
binding pocket, the so-called monosaccharide-binding site, responsible for the binding of simple 
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The area surrounding the monosaccharide-binding site delineates an extended carbohydrate-binding 
site, which also participates in the binding of more complex glycans by creating additional H-bonds 
and stacking interactions with other sugar units of the glycan chain. In fact, the CBS consists of a 
monosaccharide-binding site embedded in a more extended binding area forming the extended 
glycan-binding site. Due to the extreme variation in the shape and size of the extended CBS from one 
lectin to another, the tight association of the monosaccharide-binding site and extended binding site, 
offers to plant and fungal lectins an extremely versatile tool for the specific recognition of complex 
O-glycan chains. Such a versatility explains why different lectins displaying the same broad sugar 
specificity, i.e., the recognition of a unique simple sugar such as Gal, GalNAc or Man, often differ by 

Figure 2. Cartoon showing the clustering of Tn antigens along the peptide chain of the tetra-O-GalNAc
glycosylated mucin sequence of the human α-dystroglycan mucin domain peptide (residues
419-PPTTTTKKP-427) (PDB code 2MK7; Borgert A, Foley L, Live D). Cartoon drawn with Chimera [27].

3. Plant Lectins Specific for T and Tn Antigens

Thus far, up to forty-six lectins isolated from different families of plants and fungi have
been characterized as T/Tn-specific lectins (Table 1). Plant lectins have originated from species
belonging to a few predominant families such as Fabaceae (BPA from Bauhinia purpurea, Gs I-A4

from Griffonia simplicifolia, PNA from peanut, SBA from soybean, VVA B4 from Vicia villosa, WBL
from the winged bean Psophocarpus tetragonolobus, and WFA from Wisteria floribunda), Caprifoliaceae
(SNA-I, SNA-II and SNA-IV from Sambucus nigra), Lamiaceae (SSA from Salvia sclarea, SHA from
S. hominum, and SbA from S. bogotensis), Euphorbiaceae (ricin and RCA-I from Ricinus communis) and
Moraceae (jacalin and the jacalin-related lectin MPA from Maclura pomifera). A few T/Tn-specific
lectins such as SNA-I and SNA-V from the elderberry Sambucus nigra, BGSL from the bitter gourd
(Momordica charantia), and the galactose-specific lectin and ricin from the castor bean (Ricinus communis)
correspond to chimerolectins composed of a toxic A-chain covalently linked to a B-chain displaying the
T/Tn-specificity [28]. Fungal lectins (ABL from Agaricus bisporus, AAL from Agrocybe aegerita and XCL
from Xerocomus chrysenteron) with a T/Tn-specificity belong exclusively to the group of Basidiomycota
mushrooms. Although most of the so-called T/Tn-specific lectins readily react with both T and Tn
antigens, T and Tn consist of very distinct antigens that arise by different mechanisms and in different
cancerous tissues. In addition, plant lectins specific for T and/or Tn antigens also interact with α-D-Gal
and the Gal-specificity of some T/Tn-specific lectins such as jacalin from Artocarpus integrifolia seeds
is as potent and even stronger than that displayed for both T and Tn antigens [29,30]. This stronger
interaction with α-D-Gal depends on its fixation to the primary binding site of the lectin via a dense
network of nine hydrogen bonds, as shown from the crystallographic complex of jacalin with galactose
(PDB code 1UGW) [31].

The carbohydrate-binding site (CBS) of plant and fungal lectins consists of a carbohydrate-binding
pocket, the so-called monosaccharide-binding site, responsible for the binding of simple sugars via a
network of hydrogen bonds linking the sugar to a few polar residues forming the binding pocket [23].
Usually, additional non-polar stacking interactions with aromatic residues located in the close vicinity
of the monosaccharide-binding site, complete the anchorage of simple sugars to the site. The area
surrounding the monosaccharide-binding site delineates an extended carbohydrate-binding site,
which also participates in the binding of more complex glycans by creating additional H-bonds
and stacking interactions with other sugar units of the glycan chain. In fact, the CBS consists of
a monosaccharide-binding site embedded in a more extended binding area forming the extended
glycan-binding site. Due to the extreme variation in the shape and size of the extended CBS from one
lectin to another, the tight association of the monosaccharide-binding site and extended binding site,
offers to plant and fungal lectins an extremely versatile tool for the specific recognition of complex
O-glycan chains. Such a versatility explains why different lectins displaying the same broad sugar
specificity, i.e., the recognition of a unique simple sugar such as Gal, GalNAc or Man, often differ by
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their ability to specifically recognize more complex glycans, depending on different shape and size of
their extended CBS [23].

Table 1. List of the plant (P) and fungal (F) Tn/T-specific lectins.

Plant/Fungus Lectin Specificity References

Abrus precatorius (P) APA T [32]
Agaricus bisporus (F) ABL T [33,34]
Agrocybe aegerita (F) AAL ST/T [35]
Agropyrum repens (P) ARL T [36]

Amaranthus caudatus (P) Amaranthin T/Tn [37,38]
Amaranthus leucocarpus (P) ALL T/Tn [39]

Arachis hypogaea (P) PNA ST > T > Tn [38,40,41]
Artocarpus incisa (P) Frutalin T [42]

Artocarpus integrifolia (P) Jacalin ST/T/Tn [43]
Champedak GBL Tn of O-mucin [44]

Artocarpus lakoocha (P) ALL T/Tn cluster [45]
Bauhinia forficata (P) BfL Tn [46]
Bauhinia purpurea (P) BPA T/Tn cluster [47]

Caragana arborescens (P) CAA ST, Forssman [48]
Codium fragile (alga) CFA T/Tn, Forssman [49]
Dolichos biflorus (P) Tn Tn [50]

Glechoma hederacea (P) Gleheda T/Tn [51]
Glycine max (P) SBA Tn, mucin [52]

Griffonia (Bandeirea) simplicifolia (P) Gs I-A4 Tn [53,54]
Lactarius deliciosus (F) LDL T [55]
Lactarius deterrimus (F) LDetL T [56]

Laelia autumnalis (P) LAL T/Tn [57]
Maclura pomifera (P) MPA T/Tn [58,59]
Moluccella laevis (P) MLL Tn, Forssman [60,61]

Momordica charantia (P) BGSL T [62]
Morus nigra (P) Morniga-G Tn/T cluster [63]

Myrsine coriacea (P) McL Tn [64]
Psophocarpus tetragonolobus (P) WBL Tn [65]

Ricinus communis (P)
Ricin T/Tn [66]

RCA-I T [67]
Salvia bogotensis (P) SBL Tn [68]

Salvia sclarea (P) SSL Tn [69–71]
Salvia hominum (P) SHL Tn [72]

Sambucus nigra (P)
SNA Tn cluster [73]

SNA-II Tn [74]
SNA-IV Tn Unpublished

Sclerotium rolfsii (F) SRL Tn cluster [75]
Sophora japonica (P) SJL T [76]
Triticum vulgare (P) WGA Tn cluster [77,78]

Vateirea macrocarpa (P) VML T/Tn [79]
Vicia graminea (P) VguL T [80]

Vicia villosa (P) VVA B4 Tn [81]
Viscum album (P) ML-I T [82]

Wisteria floribunda (P) WFA Tn [83]
Xerocomus chrysenteron (F) XCL Tn [84]

Ximenia americana (P) Riproximin Tn cluster [85]

All of the T/Tn-specific lectins consist of dimeric or tetrameric structures built up from the
non-covalent association of identical monomers, except for the B-chain lectins of type 2 RIPs (abrin
and ricin) which consist of a single polypeptide chain arranged in two domains. Plant and fungal
Tn-specific lectins accommodate the Tn antigen in the monosaccharide-binding site, which consists
of a shallow pocket located at the top of each lectin monomer or domain. The binding of Tn antigen
is achieved by a network of hydrogen bonds between the oxhydryls of the GalNAc residue and a
few hydrophilic amino acids. Stacking interactions between the GalNAc ring and aromatic residues
located in the vicinity of the monosaccharide-binding site, complete and reinforce the binding of
Tn antigen to the lectins (Figure 3). Depending on the lectins, hydrogen bonds can occur between
the amino acid moiety of the Tn antigen and the CBS of the lectin (Figure 3A). Although the amino
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acid residues forming the monosaccharide-binding site of Tn-specific lectins markedly differ from
one lectin to another, the binding scheme of Tn antigen to the lectins remains very similar with
O3, O4, O6 and O7 of GalNAc systematically involved in H-bonds with the amino acids of the
site. However, some discrepancy can occur with the number of hydrogen bonds that link the Tn
antigen to the monosaccharide-binding pocket, which varies from 7 to 10, depending on the lectin
(Figure 3A,C,E,G). Accordingly, the affinity toward the Tn antigen should slightly differ among the
different Tn-specific lectins of plant and fungal origin. In this respect, an interesting observation was
reported by Osinaga et al. [86], who showed that VVL-B4, the Tn-specific Vicia villosa lectin, binds a
single Tn epitope in surface plasmon resonance spectroscopy experiments, whereas the anti-Tn moAbs
83D4 and MLS128 only recognize two consecutive Tn epitopes. These results point out the importance
of Tn clusters for the correct binding of moAbs and suggest a very different Tn recognition pattern for
VVLB4 and the anti-Tn moAbs. Moreover, the recent observation by [87], that some selectivity in the
binding of lectins to Tn antigen depends on the nature of the amino acid residue (Ser or Thr) linked to
α-O-GalNAc, brings an additional complexity to the glycan-binding mechanisms of plant lectins.

The binding of the Thomsen–Friedenreich T-antigen (Galβ1→3GalNAcα1→Ser/Thr) to the plant
and fungal T-specific lectins looks very similar to the binding of Tn antigen (Figure 4). The disaccharide
becomes anchored to the CBS of the lectins through a network of hydrogen bonds associated with
non-polar stacking interactions with aromatic residues. Most of the H-bonds occur with the GalNAc
residue, which occupies the carbohydrate-binding pocket of the lectins. Usually, the ultimate Gal
residue of the disaccharide remains unbonded and protrudes out of the extended CBS. However, in
some lectins such as the mushroom Agaricus bisporus lectin ABL (Figure 4D) and the bitter gourd
(Momordica charantia) galactose-specific lectin BGSL (Figure 4H), a very limited number of H-bonds
can occur between the Gal residue and amino acid residues of the extended CBS. With the exception of
these few lectins, the role played by the extended CBS in the binding of the disaccharidic O-glycans is
apparently negligible.

Obviously, the binding of T and Tn antigen is restricted to the carbohydrate-binding pocket
of the plant and fungal T/Tn-specific lectins. The surface area located in the neighbor of the
CBS, which forms the extended carbohydrate-binding site of the lectins, does not participate in
the binding of both antigens. However, the extended CBS participates in the binding of more extended
O-saccharides, e.g., trisaccharides such as the Lewis a (Galβ1→3[Fucα1→4]GlcNAcβ1→R), and Lewis
x (Galβ1→4[Fucα1→3]GlcNAcβ1→R) antigen, as shown from the crystallographic complex of GS4
lectin of Griffonia simplicifolia with the methyl-glycoside of the Lewis b blood group determinant
(Figure 6) [88]. Up to 18 hydrogen bonds anchor the three sugar residues of Lewis b to the extended
CBS of the lectin, in association with extensive non-polar stacking interactions with five aromatic
residues (Y105, F108, W133, W138, and Y223). The ultimate Gal residue of the trisaccharide binds to
the carbohydrate-binding pocket via four H-bonds, whereas the remaining 14 H-bonds serve to anchor
the Fuc and GlcNAc residues of the trisaccharide to amino acids located in the extended CBS. The
shape and size of the extended CBS thus appears as a determinant structural feature for the recognition
of extended O-glycans by plant lectins. In this respect, plant lectins readily differ from monoclonal
antibodies used as probes for targeting the complex O-glycans (≥3 sugar residues) of cancer cells,
which usually recognize a limited portion of the O-glycan chain.
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Figure 3. (A,C,E,G) Network of hydrogen bonds and stacking interactions anchoring Tn antigen (Tn) 
to the monosaccharide-binding site of: Bauhinia forficata BfL lectin (A) (PDB code 5T5J) [46]; soybean 
lectin SBA (C) (PDB code 4D69) [89]; Sambucus nigra SNA-II lectin (E) (PDB code 3CA6) [74]; and Vicia 
villosa VVA-B4 lectin (G) (PDB code 1N47) [90]. Amino acid residues involved in stacking interactions 
with the disaccharide are colored orange; (B,D,F,H) Docking of Tn antigen to the monosaccharide-
binding cavity (green dashed circle) of: Bauhinia forficata BfL lectin (B); soybean lectin SBA (D); 
Sambucus nigra SNA-II lectin (F); and Vicia villosa VVA-B4 lectin (H). The white dashed lines delineate 
the extended binding sites at the molecular surface of the different lectins. Cartoons drawn with 
Chimera [91]. 

Figure 3. (A,C,E,G) Network of hydrogen bonds and stacking interactions anchoring Tn antigen (Tn) to
the monosaccharide-binding site of: Bauhinia forficata BfL lectin (A) (PDB code 5T5J) [46]; soybean lectin
SBA (C) (PDB code 4D69) [89]; Sambucus nigra SNA-II lectin (E) (PDB code 3CA6) [74]; and Vicia villosa
VVA-B4 lectin (G) (PDB code 1N47) [90]. Amino acid residues involved in stacking interactions with
the disaccharide are colored orange; (B,D,F,H) Docking of Tn antigen to the monosaccharide-binding
cavity (green dashed circle) of: Bauhinia forficata BfL lectin (B); soybean lectin SBA (D); Sambucus nigra
SNA-II lectin (F); and Vicia villosa VVA-B4 lectin (H). The white dashed lines delineate the extended
binding sites at the molecular surface of the different lectins. Cartoons drawn with Chimera [91].
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Figure 4. Monosaccharide-binding sites (green dashed circles) and extended binding sites (yellow 
dashed lines) of: jacalin (Artocarpus integrifolia) (PDB code 1M26) [92] (A); the mushroom Agaricus 
bisporus lectin ABL (PDB code 1Y2V) [34] (C); the Osage orange (Maclura pomifera) lectin MPA (PDB 
code 1JOT) [58] (E); and the bitter gourd (Momordica charantia) galactose-specific lectin BGSL (PDB 
code 4ZGR) [62] (G), in complex with T-antigen (Galβ1→3GalNAcα1→Ser/Thr). Network of 
hydrogen bonds (dashed lines) anchoring T-antigen (colored cyan) to the amino acid residues of the 
extended binding site of: jacalin (B); ABL (D); MPA (F); and BGSL (H). Amino acid residues involved 
in non-polar stacking interactions with the disaccharide are colored orange. Cartoons drawn with 
Chimera [91]. 

Figure 4. Monosaccharide-binding sites (green dashed circles) and extended binding sites
(yellow dashed lines) of: jacalin (Artocarpus integrifolia) (PDB code 1M26) [92] (A); the mushroom
Agaricus bisporus lectin ABL (PDB code 1Y2V) [34] (C); the Osage orange (Maclura pomifera) lectin MPA
(PDB code 1JOT) [58] (E); and the bitter gourd (Momordica charantia) galactose-specific lectin BGSL
(PDB code 4ZGR) [62] (G), in complex with T-antigen (Galβ1→3GalNAcα1→Ser/Thr). Network of
hydrogen bonds (dashed lines) anchoring T-antigen (colored cyan) to the amino acid residues of the
extended binding site of: jacalin (B); ABL (D); MPA (F); and BGSL (H). Amino acid residues involved
in non-polar stacking interactions with the disaccharide are colored orange. Cartoons drawn with
Chimera [91].

A similar binding pattern was shown to occur in galectin-9 complexed to the Forssman antigen
(PDB code 2EAL) [93]. A network of 17 H-bonds anchors the trisaccharide moiety of the Forssman
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antigen to the carbohydrate-recognition domain of galectin-9 and seven H-bonds serve to anchor the
penultimate GalNAc residue of the Forssman antigen, which occupies the monosaccharide-binding
site of the galectin (Figure 5C,D). Two non-polar stacking interactions with two aromatic residues
(Y71,W82) of the extended CBS complete the binding of the Forssman antigen to the lectin. According
to their capacity to accommodate extended O-glycan chains, both galectins and plant lectins similarly
differ from monoclonal antibodies used as probes, which usually recognize a more limited portion of
the O-glycan chain.
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Figure 5. (A) Network of hydrogen bonds (dashed lines) anchoring Lewis b tetrasaccharide (colored
cyan) to the amino acid residues of the monosaccharide-binding site (red dashed circle) of Gs I-A4

(Griffonia simplicifolia) (PDB code 1LED) [88]. Amino acid residues involved in stacking interactions
with the trisaccharide are colored orange. The Gal residue (Gal) of the Lewis b antigen occupies
the monosaccharide-binding pocket of the lectin; (B) Molecular surface of Gs I-A4 showing the
monosaccharide-binding site (red dashed circle) and the extended binding site (yellow dashed lines)
complexed to the Lewis b trisaccharide. The Gal residue (Gal) of the Lewis b antigen occupies the
monosaccharide-binding pocket of the lectin; (C) Network of hydrogen bonds (dashed lines) anchoring
the Forssman trisaccharide (colored cyan) to the amino acid residues of the carbohydrate-recognition
domain of galectin-9 (PDB code 2EAL) [93]. Amino acid residues involved in stacking interactions with
the trisaccharide are colored orange. The red dashed circle delineates the monosaccharide-binding
site of the lectin; and (D) Molecular surface of galectin-9 showing the monosaccharide-binding pocket
(red dashed circle) and the extended binding site (yellow dashed lines) complexed to the Forssman
trisaccharide. The penultimate GalNAc residue (GalNAc) of the Forssman antigen occupies the
monosaccharide-binding pocket of the lectin. Cartoons drawn with Chimera [91].

4. Tn/T-Specific Lectins for Cancer Diagnosis/Prognosis

Lectin histochemistry using T/Tn-specific lectins was previously investigated for the screening
of the glycosylation changes occurring at the surface of cancer cells. Targeting of T and Tn markers
by lectins proved to be an efficient tool for both the detection and prognosis of many cancers [94–96].
Especially, lectin binding pattern of peanut (PNA) and horse gram (DBA from Dolichos biflorus)
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agglutinins, were used as histochemical probes to determine the malignant status of both oral and
colonic mucosa [97–102]. Moreover, the density of Tn antigen at the cell surface appeared as a
good predictor of the aggressiveness in primary breast carcinoma [103]. The increase of T antigen
occurrence in cancer cells often correlates with cancer progression and metastasis development [104].
Peanut lectin PNA strongly reacted with follicular carcinoma cells, whereas soybean agglutinin SBA,
Griffonia simplicifolia lectin GSL and Vicia villosa agglutinin VVA reacted with cells lining the papillary
structures in papillary carcinomas of the thyroid gland [105]. Around one third of breast cancer tumors
displayed a strong binding of the mistletoe (Viscum album) lectin ML-I (VVA-1) and statistics indicated
an inverse correlation between disease outcome and lectin binding [106]. Changes in O-glycosylation at
different stages of differentiation of cervical intraepithelial dysplasia were investigated using different
lectins [107]. The Amaranthus caudatus T/Tn-specific amaranthin, showed an increased reactivity
towards dysplasia cells at stage II whereas SBA (Tn-specific soybean lectin) and GS4 (Tn-specific
Griffonia simplicifolia lectin), did not discriminate among the different stages of dysplasia cells and
normal tissue cells. The epithelial mesenchymal transition of HGF-treated Huh7 hepatocellular
carcinoma cells is associated with a decreased affinity for a panel of T/Tn-specific lectins including ACL
(Amaranthus caudatus), BPL (Bauhinia purpurea), jacalin, SBA (soybean) and SNA (Sambucus nigra) [108].
These results imply that glycan structures containing T and Tn antigens exposed at the cell surface of
hepatocellular carcinoma cells are drastically reduced during the epithelial mesenchymal transitions
of the cells, suggesting a pivotal role for the cell surface O-glycan transformations in tumor metastasis.

The use of plant and fungal lectins as cancer biomarkers has been greatly improved by the
recent introduction of the glycoprotein-microarray and lectin-microarray technologies [109–116].
Glycoprotein-microarray technology consists of glycan structures isolated from the tumor cell
surface, arrayed on micro-slides, and subsequently probed with individual lectins (Figure 6A). In the
lectin-microarray technology, a set of different lectins is spotted on micro-slides and subsequently
probed with membrane glycoproteins isolated from the tumors (Figure 6B). In both technologies,
a fluorescently labeled antibody allows the recognition of the molecules used as probes. Both
approaches allow screening of a number of tumor samples and may be used for the early diagnosis of
cancer, and the follow up of tumor progression and their recurrence [115].
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Figure 6. (A) Glycoprotein-microarray technology showing the spotted tumor glycoprotein (TGP)
recognized by the lectin probe (L) and visualized by a fluorescent-labeled anti-lectin antibody (FLAB).
(B) Lectin-microarray technology showing the spotted lectin (L) recognized by the tumor glycoprotein
probe (TGP) and visualized by a fluorescent-labeled anti-glycoprotein antibody (FLAB) (adapted
from [114]).

These technologies also apply to the detection of serum cancer biomarkers and have been used
widely for the serum glycoprotein profiling for colorectal cancer [117,118], pancreatic cancer [119], and
also for breast cancer using the related approach of multilectin affinity chromatography coupled
to HPLC-tandem mass spectrometry [120]. A lectin/glyco-antibody microarray performed on
sera from 22 pancreatic cancer sera, discriminated cancer patients from other diseases (35 chronic
pancreatitis, 37 diabetes) and normal controls (89 controls), by a 70% increase inthe response of serum



Int. J. Mol. Sci. 2017, 18, 1232 11 of 30

α1β-glycoprotein to SNA (Sambucus nigra agglutinin) [121]. Using a 45-immobilized lectin microarray,
the cell surface glycan changes occurring during the malignant transformation of endometrium, were
investigated [122]. Depending on the glycan profile for six lectins including the T/Tn-specific lectins
SNA (Sambucus nigra), ACA (Amaranthus caudatus) and BPL (Bauhinia purpurea), the different stages
identified in the malignant transformation could be distinguished. Interestingly, cell lines exhibiting
the higher anticancer drug-resistance displayed the stronger binding to three lectins (ACA, BPL and
the Dolichos biflorus lectin DBL), whereas drug-sensitive cell lines had almost no activity for the lectins.
Accordingly, glycan profiling with an adapted lectin-microarray should allow the lectin-microarray
technology to predict the success of chemotherapy with selected anticancer drugs. Using a panel
of 37 lectins immobilized on a lectin microarray, the normalized fluorescence intensity measured
with T/Tn-specific lectins (jacalin, MPL from Maclura pomifera, DBA from Dolichos biflorus, ACA
from Amaranthus caudatus and VVA from Vicia villosa) measured for Cy3-labeled gastric cancer cell
glycoproteins was stronger compared to the fluorescent intensity measured for Cy3-labeled gastric
ulcer cell glycoproteins [123]. Similar results were obtained upon staining of paraffin-embedded
gastric cancer and gastric ulcer tissues with MPL and VVA. Similarly changes in the glycan
profile of sialylated MUC1 in cholangiocarcinoma were investigated using a 43-lectin-immobilized
microarray [124]. Interaction with immobilized WFA (Wisteria floribunda agglutinin) alone proved
to be sufficient to discriminate between cholangiocarcinoma and hepatholithiasis. A lectin-based
microarray analysis discriminated between healthy patients and patients with colorectal cancer due
to the higher degree a α2,6-sialylation and the higher content in high mannose N-glycans in serum
α2-macroglobulin [125]. Glycosylation profiling of fibronectin performed with a lectin-microarray,
showed that PNA distinguishes between two distinct types of non-small cell lung carcinomas, lung
adenocarcinoma and large cell lung carcinoma [126]. In a lectin-microarray analysis including the
T/Tn-specific lectins ACA (Amaranthus caudatus), ACG (Agrocybe cylindracea), BPL (Bauhinia purpurea),
and SNA (Sambucus nigra), a decreased lectin-binding activity was observed for Tn antigen from
formalin-fixed human choriocarcinoma tissues [24]. Using a panel of 17 lectins including T/Tn-specific
lectins (ACA, PNA, SNA, VVL, and WFA) immobilized on a microarray integrated on a microfluidic
lab-on-a-chip platform, distinct signature glycoprofiles were established for sera and tissue samples
from gastritis and gastric cancer patients [127]. A lectin microarray approach using a number of
immobilized T/Tn-specific lectins including jacalin, ABL (Agaricus bisporus), BPL (Bauhinia purpurea),
GSA (Griffonia simplicifolia), MPA (Maclura pomifera), SBA (soybean), RCA120 (castor bean), VVA
(Vicia villosa) and WFL (Wisteria floribunda), was successfully applied to formaline-fixed tumor
samples to identify the metastasis-associated changes in glycosylation profiling of breast cancer
cells [128,129]. Using a lectin microarray and LC-MS/MS approach, PNA (Arachis hypogaea) interacted
with HSR-GBM1 and U373 glioblastoma cell lines and was used to capture and characterize the
corresponding PNA-binding glycoproteins [130].

The prognostic value of the lectin histochemistry was investigated in various cancer diseases.
Expression of the Tn antigen in different types of breast cancer detected by VVA-B4 lectin, developed
very early, before any differentiation and destructive changes become detectable [131]. The binding of
VVA-B4 to primary cancer cells was attributed to the Tn-antigen-bearing MUC1 protein in primary
breast cancer in relation to lymphatic metastasis [132]. Binding of PNA (peanut agglutinin) to a CD44
variant glycoprotein receptor in HT29 colon cancer cells, correlated with an increased metastatic
potential [133]. A positive PNA binding to lung adenocarcinoma cells in both the primary tumor
and the nodal lesions, was associated with a significantly higher survival rate of patients [134]. Low
binding of BPL, the T/Tn-specific Bauhinia purpurea lectin, was identified as a predictive factor for
the recurrence of gastric cancer in gastrectomized patients (n = 60), in association to lymph node
metastasis [135]. An attenuated VVA (Vicia villosa agglutinin) binding to metastatic lymph node cells
was also observed in advanced gastric cancer as compared to the strong recognition of the lectin by
primary advanced gastric cancer cells [136]. In addition, the histological type of advanced gastric
cancer was strongly associated with the binding of soybean lectin (SBA) and Bauhinia purpurea lectin
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(BPL), except for the p53 mutations which correlate well with the Griffonia simplicifolia lectin II (GSA).
Conversely, a lower histochemical binding of AAL, the sialyl T-specific lectin from the mushroom
Agrocybe aegerita, has been identified as a significant favorable prognostic factor for the free survival in
colorectal cancer [137]. In triple-negative breast cancer, tissue microarray showed that binding of RCA-I,
the castor bean (Ricinus communis) lectin, to cancer cells correlated with the TNM grades, suggesting
that RCA-I-specific glycoproteins of cell surface play a critical role in metastasis [138]. A strong
RCA-I binding was associated with a strong incidence of developing metastases in triple-negative
breast cancer patients. A lower binding of ACA, the Amaranthus caudatus lectin, to gastric cancer
cells correlated with poorer patient prognosis in integrated lectin-microarray and mass sprectrometry
analyses [139]. Higher values of serum Wisteria floribunda agglutinin-positive Mac-2 binding protein
(WFA+-M2BP) were associated with the risk for development of hepatocellular carcinoma among
patients with chronic hepatitis C after sustained virological response by interferon treatment [140].

5. Toxic Effects of Tn/T-Specific Lectins on Cancer Cells

The non-exhaustive Table 2 shows the extreme diversity of cancer cell lines that have
been addressed to probe the in vitro toxicity of plant and fungal T/Tn-specific lectins towards
transformed cells.

Depending on the lectins, the toxic effect of T/Tn-lectins on cancer cells results in cell death,
primarily via apoptosis induction or more or less severe inhibition of the proliferative capacity of
cancer cells, or both [17,35,141–145]. Autophagy was also incriminated as a toxic effect of T/Tn-lectins
on cancer cells [146]. In addition, the mechanism(s) underlying the cytotoxicity of T/Tn-specific lectins
belonging to the type 2 Ribosome-Inactivation Proteins (RIPs), e.g., ricin, abrin and the mistletoe
(Viscum album) lectins, partly differ from that of hololectins by the occurrence of a toxic A-chain
acting as a potent protein biosynthesis inhibitor, which inhibits the ribosomal protein biosynthesis
by depurinating the adenine base at position 2543 of the rRNA 28S [147]. The inhibition of protein
synthesis due to the abrin-A chain, thus appears as the major determinant for the cytotoxicity of
type 2 RIPs [148], the abrin-B lectin chain allowing the recognition of abrin by the target cell via
a specific interaction with membrane O-glycoproteins resulting in the subsequent internalization
of the toxic A-chain into the cell. However, recent results comparing the toxic effects of different
elderberry (Sambucus nigra) type 2 RIPs (SNA-I, SNA-V, and SNRLP) and non-RIP lectins (SNA-II and
SNA-IV), point toward a toxic effect of the B-chain lectin that most probably involves an autophagy
induction-pathway, in addition to the toxic effect of A-chain on protein biosynthesis [146].

Following their recognition by the cancer cell membrane receptors, T/Tn-lectins can regulate
a number of signaling pathways responsible for the apoptotic, anti-proliferative and autophagic
effects on the cancer cells in vitro and in vivo. Table 3 summarizes some of these pathways used
by T/Tn-lectins to induce apoptotic and autophagic effects, and inhibition of the proliferation on
cancer cells.

Recent investigations using proteomic approaches including network construction, hub protein
identification, targeted microRNA prediction and microarray analyses, pointed out the occurrence of
the extreme diversity of signaling pathways associated to apoptosis and DNA modifications in the
lectin-treated cancer cells. The Chinese mistletoe lectin-I CMI induced apoptosis in colorectal cancer
cells CLY and HT-29 by down-regulating miR-135a&b expression and up-regulating expression of their
APC (Adenomatous Polyposis Coli) target gene [149]. Nine autophagic hub proteins and 13 tumor
suppressive miRNA were identified in plant lectin-treated breast carcinoma MCF-7 cells [150]. Using
mRNA- and miRNA-microarrays, the SRL (T/Tn-specific Sclerotum rolfsii lectin) treatment of HT29
colon cancer cells resulted in the altered expression of several hundred proteins including MAPK,
c-JUN, apoptosis-associated and DNA replication-associated signaling molecules [151]. More recently,
up to 22 apoptotic hub proteins were identified in the global human protein-protein interaction network
built up for lectin-treated mesothelioma cells according to their different microarray expression,
together with the miRNA predicted to negatively regulate these hub proteins [152].
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Table 2. In vitro cytotoxicity and inhibition of proliferation of cancer cell lines by T/Tn-specific lectins (ABL: Agaricus bisporus lectin; AAL: Agrocybe aegerita lectin; BfL:
Bauhinia forficata lectin; GSA-IA4: Griffonia simplicifolia lectin; jacalin (Artocarpus integrifolia lectin); McL: Myrsine coriacea lectin; MCL: Momordica charantia lectin; ML-I,
ML-II, ML-III: Mistletoe (Viscum album) lectins; PNA: peanut (Arachis hypogaea) agglutinin; ricin: Ricinus communis lectin; SBA: soybean (Glycine max) agglutinin; SRL:
Sclerotium rolfsii lectin; riproximin (Ximenia americana).

Cancer Cell Line (H: Human, M: Mouse, R: Rat, Hamster: h) Lectin Toxicity Proliferation Inhibition Ref.

HT29 colon (H), MCF-7 breast (H) ABL - + [153]
HeLa (H), SW480 lymph node metastasis (H); SGC-7901, BGC-823 AAL + (M) + [35]
gastric cancer (H); MGC80-3 gastric adeno-carcinoma (H); HL-60
leukemia (H); S-180 sarcoma (M)
NCI-60 tumor cell line panel (H), LOX IMVI melanoma (H) BfL - + [46]
SK-MEL-28 melanoma (H), HT-144 melanoma (H), C32 melanoma GSA-IA4 + + [54,154]
(H), LS174t, SW1116 colon cancer (H)
A431 epidermoid carcinoma (H); HT29 colorectal carcinoma (H) Jacalin, PNA + + [155,156]
JAr choriocarcinoma (H); H3B hepato-carcinoma (H); B16
melanoma (M)
EAC Ehrlich ascites carcinoma; A549 lung carcinoma (H); CNE-1 MCL + + [157–159]
CNE-2 nasopharyngeal carcinoma (H)
BT20, BT549, MCF7, HS578T, HBL100, T47D breast cancer (H) ML-I, -II, -III + [141,160]
SK-Hep-1, SK-Hep-3B hepatocarcinoma (H)
HT-29 colon (H) McL + + [64]
G-361 melanoma (H); HepG2 hepatoma (H); SKGIIIa cervical Ricin + + [161,162]
carcinoma (H)
Raji, Daudi lymphoma cell lines (H); JAr choriocarcinoma (H); SBA + - [155,163]
H3B hepato-carcinoma (H); B16 melanoma (M)
HT-29 colon (H) SRL + + [164]
MCF7, MDA-MB231 breast carcinoma (H); U87-MG brain tumor (H) Riproximin + - [85]
HEp2 larynx (H); NCI-H460 lung (H); HT29 colon (H); PC3
prostate (H); SKW3, K562, BV173 leukemia (H)
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Table 3. Mechanisms involved in the cytotoxic effects of lectins on cancer cells.

Lectin Mechanism Ref.

(Abrus precatorius) Abrin Abrin (type II RIP) induced the caspase 3-dependent but caspase 8-independent apoptotic pathway, mitochondrial membrane
potential damage and production of ROS in Jurkat cells.

[165]

(Abrus precatorius) A. p. lectin Peptides from A. p. lectin induced drastic loss of mitochondrial membrane potential and increase in ROS, leading to symptoms
of early apoptosis through a deregulation of Akt and activation of both JNK, MAPK, p53 and autophagy in HeLa cells.

[166]

(Abrus precatorius) Abrin P2 Abrin P2 suppressed the proliferation of colon HCT-8 cell line and provoked a cell cycle arrest at the S and G2/M phases. Abrin
P2 inhibited cell proliferation via the down-regulation of cyclin B1 and the nuclear antigen Ki67, and the up-regulation of P21.
The abrin P2-induced apoptosis was dose- and time-dependent.

[167]

(Abrus precatorius) agglutinin AGG AGG administered to human breast xenografted athymic nude mice mediated anti-tumorigenic effects through induction of
extrinsic apoptosis via Akt-dependent ROS generation, and inhibition of angiogenesis via inhibition of expression of the
pro-angiogenic factor IGFBP2 in an AKT-dependent manner.

[168]

(Agrocybe aegerita) lectin AAL AAL inhibited the growth of different tumor cell lines HeLa, SW480, SGC-7901, MGC80-3, BGC-823 and HL-60 and induced
apoptosis in HeLa cells. It also displayed DNAse activity.

[35]

(Arachis hypogaea) peanut agglutinin PNA PNA induced autophagy and apoptotic cell death in HeLa cells, associated to a concomitant increase in ROS. [169]

(Artocarpus integrifolia) jacalin Rounding of A431 (epidermoid carcinoma) and HT29 (colorectal carcinoma) cells due to the stress-induced phosphorylation of
caveolin-1 and p38 and down-regulation of EGFr.

[155]

(Bauhinia forficata) lectin BfL BfL inhibited the adhesion of breast cancer MCF7 cells on laminin, collagen I and fibronectin, decreased the α1, α6 and β1
integrin subunit expression and increased the α5 subunit expression. BfL caused necrosis of MCF7 cells with caspase-9
inhibition, DNA fragmentation and cell cycle arrest in the G2/M phase.

[170]

(Glycine max) soybean agglutinin SBL SBL-mediated autophagy, apoptosis and DNA damage in HeLa cells depend on the generation of ROS. Pre-treatment of HeLa
cells by the ROS scavenger N-acetylcysteine reduced both SBL-induced autophagy, apoptosis and DNA damage.

[171]

(Momordica charantia) lectin MCL MCL induced apoptosis, DNA fragmentation, G1 phase arrest and mitochondrial injury in nasopharyngeal carcinoma NPC cells
in vitro and in vivo, associated with regulation of p38 MAPK, NK and ERK phosphorylation and NO production. MCL
increased cytochrome c release in the cytosol, activated caspase-3, -8 and -9 and enhanced production of PARP.

[157]

(Momordica charantia) lectin MCL MCL treatment induced G2/M phase arrest, autophagy, DNA fragmentation, mitochondrial injury and apoptosis in HCC cells.
Activation of caspase and MAPK pathway was involved in the MCL-induced apoptosis. Up-regulation of truncated Bid (tBid)
was shown to occur during the MCL treatment.

[172]

(Momordica charantia) RIP MAP30 MAP30 from Momordica charantia promotes apoptosis in both Hep G2 cells (hepatocellular carcinoma) and Hep G2-bearing mice.
The contribution of both caspase-8 regulated extrinsic and caspase-9 intrinsic caspase cascades was evidenced.

[173]

(Momordica charantia) α-momorcharin and
MAP30

Both RIPs induced cell cycle arrest in S-phase, DNA fragmentation and apoptosis in A549 lung carcinoma cells. Inhibition of cell
proliferation was dose- and time-dependent.

[158]

(Sambucus nigra) agglutinin SNA SNA activates the signaling pathways of AKT and ERK1/2 in ovarian carcinoma cells. The mitochondrial outer membrane
permeabilization resulted in ROS generation and cytochrome c release in the cytosol. The perturbed mitochondrial respiration
resulted in the G2/M phase cell cycle arrest.

[174]

(Sclerotium rolfsii) lectin SRL SRL caused dose-dependent inhibition of proliferation of MCF-7 and ZR-75 breast cancer cells via induction of cellular
apoptosis. Inhibitors of caspase-3, -8 and -9 prevented the apoptosis to occur.

[164]
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Table 3. Cont.

Lectin Mechanism Ref.

(Viscum album) Korean mistletoe lectin VCA VCA elicited apoptosis in SK-Hep-1 p53-positive and Hep 3B p53-negative hepatocarcinoma cell lines by down-regulation of
Bcl-2 and up-regulation of Bax functioning upstream of caspase-3. Down-regulation of telomerase activity occurred in both
VCA-treated cells.

[141]

(Viscum album) Mistletoe lectin-1 ML-1 CM-1 induced apoptosis in colorectal cancer cells by down-regulating the miR-135a&b miRNAs expression. The expression of
β-catenin was up-regulated.

[149]

(Viscum album) Recombinant aviscumine The mechanism of aviscumin-mediated cell death on multiple cell types was solely induced by the toxic A-chain. The
mechanism is independent from the death receptor Fas and independent of the activity of the anti-apoptotic transcription factor
NFκB. Treatment with aviscumine inhibited growth in various metastases mouse models including C8 colon carcinoma, Lewis
lung sarcoma, Renca renal sarcoma, etc.

[175]

(Viscum album) Korean mistletoe lectin VCA Treatment of B16BL6 and B16F10 melanoma cells with VCA resulted in G0/G1 phase arrest and induced an increase in both
early and late apoptosis. Both VCA and mistletoe extracts increased activated multiple caspases (caspase-1, 3, 4, 5, 6, 7, 8 and 9)
and a decrease of procaspase 3 and 8.

[176]

(Ricinus communis) agglutinin RCA and ricin
A-chain

Treatment of cancer cells in vitro by ricin and ricin A-chain activates caspase 3 and caspase 8, but not caspase 9. In vivo, cell
death depends on the necrotic effect of the RIP.

[177]

(Ricinus communis) ricin Ricin inhibited the proliferation of HeLa cells by inducing apoptosis, chromatin condensation and nuclear fragmentation. [178]

(Ricinus communis) ricin and riproximin Unfolding protein response UPR to endoplasmic reticulum stress was induced in both HCT116 and MDA-MB-231 cells.
Apoptosis was induced by concentrations of RIPs-II at which the UPR-related genes are still translated.

[179]

(Viscum album) Korean mistletoe lectin-II Lectin-II induced the activation of caspase-3, -8 and -9 of myeloleukemic U937 cells in a time- and dose-dependent manner. [180]

(Viscum album) mistletoe lectin-II Apoptotic cell death of U937 cells was induced by the generation of pro-oxidants mediating the JNK/SAPK activation,
cytochrome c release, activation of caspase-9- and -3-like proteases, and PARP cleavage.

[181]

(Viscum album) Korean mistletoe lectin VCA Induction of apoptosis in A253 cells through activation of caspase-3 and inhibition of telomerase activity through transcriptional
down-regulation of hTERT. Inhibition of telomerase activity resulted from dephosphorylation of Akt.

[182]

(Viscum album) European mistletoe
lectin-containing extracts

In vitro and ex vivo treatment of Ewing sarcoma cells by mistletoe extracts inhibited proliferation and induced a dose-dependent
apoptosis via intrinsic and extrinsic apoptotic pathways, as evidenced by activation of both caspase-8 and caspase-9.

[183]

(Viscum album) European mistletoe
lectin-containing extracts

Treatment of Ewing sarcoma cells by mistletoe extracts impacted both gene and protein expression. Cell response to oxidative
stress induced the activation of the MAPK signaling pathway.

[184]

(Ximenia americana) riproximin Riproximin induced cytotoxic effects on breast cancer cell lines MDA-MB-231 and MCF-7. Riproximin treatment caused arrest in
S phase and nuclear fragmentation of the cell, induced cytokine IL24/MDA-7 and ER-stress-related GADD genes. An inhibition
of the genes involved in migration of colony was observed.

[185]
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Despite the cytotoxic effects on both healthy and malignant cells, some T/Tn-specific lectins
display a pronounced mitogenic effect susceptible to improve the proliferation of cancer cells. At low
concentrations, peanut lectin stimulates the proliferation of colon cancer cell lines (HT29, T84,
Caco2) due to the activation of the hepatocyte growth factor c-Met and the resulting activation
of MAPK [27]. The tumor growth of BALB/c mice fed with daily doses of Agaricus bisporus lectin ABL,
was significantly enhanced as compared with control mice, suggesting an immunomodulatory effect
of the lectin that reduces the innate and adaptive responses of the cells [186]. Upon fixation at the
cell surface, T/Tn-specific lectins can activate signaling pathways responsible for the production of
cytokines susceptible to induce an immune response against tumor cells. Mistletoe (Viscum album)
lectin ML-I induces the production by human PBMCs (Peripheral Blood Mononuclear Cells) of a
set of IL-6, IL-10, IL-12 and TNFα [187–189]. The Korean mistletoe lectin also induces the secretion
of IL-12 by human dendritic cells [190]. However, the immunomodulatory effects of plant and
fungal lectins do not rely on the T/Tn-binding specificity since many other lectins with different
carbohydrate-binding specificies, for example legume lectins such as PHA-L (Phaseolus vulgaris) [191]
or ArtiM from Artocarpus heterophyllus [192], also display immunomodulatory properties.

6. Tn/T-Specific Lectins as Targeting Aids for the Photodynamic Treatment of Tumors

The local treatment of tumors using photodynamic therapy (PDT), uses photosensitizers which,
upon illumination at a specific wavelength, become activated and produce different forms of active
singlet oxygen known as ROS (Reactive Oxygen Species) that kill the tumor cells (Figure 7). Following
its injection in the bloodstream or directly into the tumor, the photosensitizer is equally absorbed
by healthy and tumor cells but it disappears faster from healthy cells, compared to tumor cells.
Accordingly, the laser lightening of the tumor is performed 48 to 72 h after the injection of the
photosensitizer, to ensure that cancer cells will be killed without harming the neighboring healthy cells.

Although most of the photosensitizing molecules used for PDT stay longer in cancer cells
compared to healthy cells, their combination with other molecules that specifically recognize the
receptors located at the cell surface, greatly enhances the targeting of photosensitizers to the
tumors. Due to the widespread distribution of aberrant O-glycans on the surface of most cancer
cells, T/Tn-specific lectins have been identified early as potential targeting molecules available for
PDT [193,194]. The non-covalent binding between porphyrins and different T/Tn-specific lectins
including jacalin from the Jackfruit (Artocarpus integrifolia) [195], the snake gourd (Trichosanthes
aguina) [196], and the bitter gourd (Momordica charantia) [197], was investigated. The binding of
lectins to porphyrin and phycobilin molecules was further extended to the T/Tn-specific lectin
PNA [198] and to other legume lectins such as the mannose-specific concanavalin A [199] and
the garden pea lectin [200]. The interaction of jacalin with phycobilin, another photosensitizing
molecule, was also studied [201]. However, all of these complexes resulting from the non covalent
interaction of lectins with porphyrins and phycobilins, exhibited a rather weak stability in in vitro
experiments performed with cancer cell lines, suggesting that T/Tn-specific lectins require to be
covalently bound to photosensitizing molecules to properly target the cancer cells [202]. In a series
of experiments, Poiroux et al. [203–205], showed the relevance of the covalent binding of Morniga
G, the T/Tn-specific lectin from the mulberry (Morus nigra), to porphyrins and phthalocyanines to
improve both the stability of the lectin-photosensitizer complexes and their efficacy to kill Jurkat
leukemia cells. A more sophisticated conjugation of targeting molecules (antibodies and lectins) to
photosensitizers using the drug carriers Zn-porphyrin-cyclodextrins was subsequently introduced
by Kejík et al. [206] as a versatile delivery system for anticancer drugs. Recently, another approach
based on the conjugation of jacalin to phthalocyanine-PEG gold nanoparticles (4 nm in diameter), was
developed by Obaid et al. [207,208], to selectively target and destroy the HT-29 human colon and the
SK-BR-3 human breast adenocarcinoma cells. The conjugates consist of gold nanoparticles covered by
a monolayer of Zn phthalocyanine and polyethylene glycol (PEG) further functionalized with jacalin
(ca. 6 jacalin molecules bound to each gold nanoparticle) (Figure 8).
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Figure 7. Mechanism of action of photosensitizers. Upon illumination at a selective wavelength (light),
the photosensitizer becomes excited (excited singlet state) and reaches, after relaxation, a steady-excited
state (excited triplet state) for a longer duration associated with the emission of fluorescence. Collisions
with O2 produce different forms of active oxygen (O2

−, ·OH, and H2O2) able to kill the cancer cells.

1 
 

 

Figure 8. Lectin conjugated phthalocyanine-PEG gold nanoparticle made of a gold nanoparticle (G)
covered with Zn phthalocyanine molecules (P) and polyethylene glycol (PEG) covalently linked to
jacalin molecules (J) (adapted from [207]).

The advantage is that this conjugation technique enables a higher concentration of photosensitizers
at the surface of the tumor cells, susceptible to improve the efficiency of PDT. Once anchored to the
cell surface by the lectin moiety, the conjugates are further endocytosed into the cells and produce
singlet oxygen forms upon illumination at the wavelength corresponding to the activation of Zn
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phthalocyanin. The possible use of lectin-coated nanoparticles to specifically target tumors and their
microvascular environment has recently been argued as new anticancer therapeutic opportunities [209].
Obviously, the ability of plant and fungal lectins to be endocytosed quickly following the specific
recognition of glycans at the cancer cell surface, make them good candidates to build photosensitizer
conjugates adapted to PDT. In this respect, FITC-labeled Morniga G, the T/Tn-specific lectin from
black elderberry Morus nigra, was shown to readily enter Jurkat cells within 5 min of incubation at
37 ◦C, upon fixation at the cell surface [210]. Recently, another approach based on the conjugation
of galactodendrimers to phthalocyanine was proposed by Pereira et al. [211], to specifically target
the carbohydrate-binding receptors occurring on the tumor cells, instead of the aberrant O-glycans
exposed at the tumor cell surface.

To date, PDT is restricted to the treatment of superficial skin tumors and tumors located in the
body cavities such as esophageal cancer or non-small cell lung cancer [212]. However, the progress
achieved in the photosensitizer efficacy and specificity towards cancer cells should expand the use of
PDT to other cancers, e.g., cancers of the peritoneal cavity, brain and prostate. The improvement of the
laser source equipment that delivers the activating light to the photosensitizing molecules absorbed
by the tumor is also of paramount importance in order to apply PDT to the treatment of deeper and
larger tumors [213,214]. In this respect, the use of new photosensitizer molecules activatable upon
illumination at red and infrared wavelengths greatly enhances the efficacy of the PDT due to a deeper
penetration of more efficient red and infrared wavelengths into the malignant cells.

7. Conclusions

Plant and fungal lectins displaying a T/Tn-specificity have been widely used as relevant probes for
the histochemical detection of aberrant O-glycan glycomarkers expressed at the surface of malignant
cells. With the aid of the fast-developing glycan- and lectin-microarray technologies, our increasing
knowledge on the fine carbohydrate-binding specificity of plant and fungal lectins has revealed
the extreme versatility of the lectin tool to specifically recognize discrete/subtle differences in
the expression of altered glycans by cancer cells. Depending on the lectins, the affinity towards
complex O-glycans and their chemical substitutions such as sialylation or sulfation can vary in a
large proportion. The ability of T/Tn-specific lectins to accommodate large O-glycans to the extended
carbohydrate-binding site via a complex network of hydrogen bonds and hydrophobic interactions,
accounts for such versatility. Variations in the shape and size of the extended carbohydrate-binding site
from one lectin to another, readily explain the discrepancies observed in the binding activity among
different T/Tn-specific lectins. Compared to monoclonal antibodies used as standard probes for the
detection of the O-glycosylation aberrations occurring at the cancer cell surface, plant and fungal
T/Tn-specific lectins consist of a complementary sugar-recognition domain that is equally performant,
if not more, in the recognition of complex O-glycans. Their flexibility in the recognition of complex
O-glycans, make T/Tn-specific lectins good candidates available for the specific targeting of aberrant
O-glycans in the photodynamic treatment of cancer. In vitro experiments performed with Morniga-G,
the T/Tn-specific lectin of elderberry (Morus nigra), demonstrated the feasibility to covalently attach a
plant lectin to photosensitizers, the subsequent specific recognition and engulfment by transformed
cells, and the selective killing of the sole transformed cells [203–205]. These stimulating results pave the
way for the use of carefully selected T/Tn-specific lectins as targeting molecules for the photodynamic
treatment of cancers.
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