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Abstract: Japanese encephalitis virus (JEV), a neurotropic flavivirus, annually causes over
30,000 Japanese Encephalitis (JE) cases in East and Southeast Asia. Histone deacetylases (HDACs)
modulate lysine acetylation of histones and non-histone proteins, regulating many processes
including inflammation and antiviral immune response. This study investigated antiviral activity of
pan- and selective-HDAC inhibitors as host-targeting agents against JEV. Among HDAC inhibitors,
selective HDAC6 inhibitors (tubastatin-A (TBSA) and tubacin) concentration-dependently inhibited
JEV-induced cytopathic effect and apoptosis, as well as reduced virus yield in human cerebellar
medulloblastoma cells. The 50% inhibitory concentration (IC50) values of virus yield was 0.26 µM for
tubacin and 1.75 µM for TBSA, respectively. Tubacin (IC50 of 1.52 µM), but not TBSA, meaningfully
blocked the production of intracellular infectious virus particles. In time-of-addition assays, the
greatest potency of antiviral activity was observed in the mode of pre-treatment with tubacin (IC50
of 1.89 µM) compared to simultaneous (IC50 of 4.88 µM) and post-treatment (IC50 of 2.05 µM)
modes. Interestingly, tubacin induced the hyperacetylation of a HDAC6 substrate Hsp90 and reduced
the interaction of Hsp90 with JEV NS5 protein. Novobiocin, an Hsp90 inhibitor, diminished the
NS5 protein amount and virus replication in JEV-infected cells. Meantime, tubacin suppressed the
NS5 expression and antisense RNA genome synthesis in infected cells. Tubacin-induced Hsp90
hyperacetylation was suggested to influence the NS5 activity in JEV replication. Therefore, tubacin
had a high potential of a host-targeting agent against JEV, exhibiting preventive and therapeutic
activities against JEV infection.
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1. Introduction

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes Japanese Encephalitis
(JE) with poliomyelitis-like paralysis, aseptic meningitis, and encephalitis. Over 30,000 JE cases,
that included 10,000 deaths, are reported annually in East and Southeast Asia, along with northern
Australia due to the humid climate and transmission vectors [1–3]. JEV antigens and genomes are
identified in the thalamus, basal ganglia, brainstem, cerebellum, cerebral cortex, and spinal cord from
JE patients [4,5]. JEV contains a single strain positive sense RNA genome with a single, long ORF that
encodes a polyprotein divided into three structural proteins (capsid (C), membrane (prM/M), and
envelope (E)) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5) [6,7].
Viral NS2B-NS3 protease mediates the proteolytic processing of this large polyprotein [8]. NS5 consists
of a multifunctional protein containing RNA-dependent RNA polymerase and methyltransferase that
are involved in viral RNA replication [9]. Non-structural proteins, like NS3 and NS5, are involved
in forming viral replication complexes along with host factors [10]. Like the hepatitis C virus (HCV),
NS5A interacts with heat shock protein 90 (Hsp90) and the FK506-binding protein FKBP8 to form the
viral replication complexes in the RNA replication [11].

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) modulate acetylation of
lysine residues in histones and non-histone proteins [12]. HATs transfer the acetyl group via acetyl-CoA
and HDACs/SIRTs deacetylate ε-N-acetylated lysine residues using Zn2+ (HDACs) or NAD+ (SIRTs)
as cofactors [13]. Class I HDACs (HDAC1, 2, 3, and 8) are ubiquitously expressed HDACs; classes
IIa (HDAC4, 5, 7, and 9) and IIb (HDAC6, and 10) are limitedly expressed in certain cell types [14,15].
Among HDACs, HDACA6 is mainly in the cytoplasm. Acetylation of non-histone proteins alters
the binding affinity of host proteins, such as chaperones (Hsp90 and cyclophilin A) to the client
proteins, and is also involved in the regulation of protein stability and DNA binding activity, for
example p53, p73, Smad7, and c-Myc [16]. Recently, HDAC6 has been demonstrated to remove
the acetylation of retinoic acid-inducible gene-I (RIG-I) during acute RNA virus infection, and is
involved in RIG-I-dependent innate antiviral immune response [17]. In addition, HDAC inhibitors
exhibit therapeutic potential to viral infection [18–23]. Pan-HDAC inhibitors such trichostatin A
(TSA), suberoylanilide hydroxamic acid (SAHA), and valproic acid (VPA) block the zinc-containing
catalytic domain of HDACs [18,19]. TSA reduces the number of viral genomes in Herpes Simplex
Virus-1 infected cells [20]. SAHA activates HIV-I from latency period [21]. Tubastatin-A (TBSA), an
HDAC6-selective inhibitor, decreases in viral RNA concentration in hepatocyte cell infected with HCV
replicon [22]. SIRT1 inhibitor sirtinol reduces the DNA replicative intermediate and 3.5-kb mRNA
during hepatitis B virus (HBV) replication [23]. Therefore, modulating the acetylation of histones and
non-histone proteins plays a crucial role in viral replication.

This study investigates the antiviral activity and related mechanisms of pan- and selective-HDAC
inhibitors against JEV. Pan- (TSA and VPA) and selective-HDAC (TBSA and tubacin) inhibitors were
initiated to their inhibitory action on JEV-induced cytopathic effect (CPE) and apoptosis in human
cerebellar medulloblastoma TE671 cells. Antiviral activity of pan- and selective-HDAC inhibitors was
evaluated by their inhibitory effect on JEV-induced cytopathic effect (CPE) and apoptosis, virus yields
in cultured supernatants, and intracellular virus titers. The antiviral mechanism(s) of HDAC inhibitors
were determined using attachment, time-of-addition, and viral RNA synthesis assays.

2. Results

2.1. Antiviral Activity of Pan- and Selective-HDAC Inhibitors Against JEV

Cytotoxicity of TSA, VPA, TBSA, and tubacin was firstly evaluated using MTT assays
(Figure S1A–D), then the optimal test concentration of these four HDAC inhibitors with less
cytotoxicity was used for subsequent antiviral assays, including cytopathic effect inhibition,
apoptosis reduction, virus yield, and intracellular infectious viral particle tests. In cytopathic effect
inhibition assay, microscopic photography indicated tubacin and TBSA, but not VPA and TSA,
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concentration-dependently reduced cytopathic effect of JEV infection at an MOI of 0.1 36 h post
infection (Figure 1). Meanwhile, apoptotic cell fraction of infected cells in the presence or absence
of HDAC inhibitors was measured using propidium iodide flow cytometric assay (Figure 2). JEV
infection at an MOI of 0.1 caused the appearance of a sub-G1 (apoptotic) fraction. Tubacin and TBSA
significantly diminished cell apoptosis post infection (Figure 2A,B). The inhibitory activity of tubacin
and TBSA on JEV-induced cytopathic effect (CPE) was associated with the reduction of apoptosis of
infected cells in a concentration-dependent manner. Moreover, supernatant virus yield determined
using the plaque assay demonstrated that tubacin and TBSA, markedly inhibited JEV production in
human cerebellar medulloblastoma cells (Figure 3A,B). The 50% inhibitory concentration (IC50) values
on virus yield were 0.26 µM for tubacin and 1.75 µM for TBSA, respectively. Notably, tubacin, but not
TBSA, meaningfully blocked the intracellular production of infectious virus particles (Figure 3C,D).
The IC50 value of tubacin on intracellular infectious virus titers was 1.52 µM. Among these HDAC
inhibitors, tubacin showed the highest antiviral potency against JEV.
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Figure 1. Reduction of Japanese encephalitis virus (JEV)-induced cytopathic effects by histone 
deacetylase (HDAC) inhibitors. TE671 cells were infected with JEV at an multiplicity of infection 
(MOI) of 0.1, and immediately treated with VPA (A), TSA (B), tubacin (C), and Tubastatin-A (TBSA) 
(D), respectively. Virus-induced cytopathic effect was photographed 36 h post treatment by light 
microscopy. Scale bar = 200 μm. 

Figure 1. Reduction of Japanese encephalitis virus (JEV)-induced cytopathic effects by histone
deacetylase (HDAC) inhibitors. TE671 cells were infected with JEV at an multiplicity of infection (MOI)
of 0.1, and immediately treated with VPA (A), TSA (B), tubacin (C), and Tubastatin-A (TBSA) (D),
respectively. Virus-induced cytopathic effect was photographed 36 h post treatment by light microscopy.
Scale bar = 200 µm.
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Figure 2. Inhibition of JEV-induced apoptosis by tubacin and TBSA. Cells were infected with JEV 
(MOI of 0.1), and immediately treated with tubacin (A) and TBSA (B). After 36 h incubation, cells were 
harvested, stained by PI dye, and then analyzed using flow cytometry. The percentage of sub-G1 phase 
in infected cells was presented. *** p value < 0.001 compared with mock-treated infected cells. 

0

25

50

75

100

V
ir

u
s 

yi
el

d
  (

%
)

JEV (MOI=0.1) + + + +

TBSA (μM) 0 1 5 10

0

20

40

60

80

100

120

In
tr

ac
el

lu
la

r 
ti

te
r 

(%
)

JEV (MOI=0.1) + + + +

TBSA(µM) 0 1 5 10

B. D.

0

25

50

75

100

V
ir

u
s 

yi
el

d
 (

%
)

JEV (MOI=0.1) + + + +

Tubacin (μM) 0 1 5 10

0

20

40

60

80

100

120

In
tr

ac
el

lu
la

r 
ti

te
r 

(%
)

JEV (MOI=0.1) + + + +

Tubacin(µM) 0 1 5 10

A. C.

***

***

***

** **
***

**

***

***

**

 
Figure 3. Suppression of virus yield and intracellular virion production by tubacin and TBSA. Cells 
were infected with JEV and immediately treated with indicated concentration of tubacin and TBSA. 
Virus yield in supernatant from infected cells treated with or without tubacin (A) and TBSA (B) was 
measured by plaque assay 36 h post infection. In intracellular virion production assay, the infected 
cells treated with or without tubacin (C) and TBSA (D) were lysed by three freeze-thaw cycles. The 
titer of intracellular infectious particles was determined by plaque assay. ** p value < 0.01; *** p value 
< 0.001 compared with untreated infected cells. 

Figure 2. Inhibition of JEV-induced apoptosis by tubacin and TBSA. Cells were infected with JEV
(MOI of 0.1), and immediately treated with tubacin (A) and TBSA (B). After 36 h incubation, cells were
harvested, stained by PI dye, and then analyzed using flow cytometry. The percentage of sub-G1 phase
in infected cells was presented. *** p value < 0.001 compared with mock-treated infected cells.
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Figure 2. Inhibition of JEV-induced apoptosis by tubacin and TBSA. Cells were infected with JEV 
(MOI of 0.1), and immediately treated with tubacin (A) and TBSA (B). After 36 h incubation, cells were 
harvested, stained by PI dye, and then analyzed using flow cytometry. The percentage of sub-G1 phase 
in infected cells was presented. *** p value < 0.001 compared with mock-treated infected cells. 
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Figure 3. Suppression of virus yield and intracellular virion production by tubacin and TBSA. Cells 
were infected with JEV and immediately treated with indicated concentration of tubacin and TBSA. 
Virus yield in supernatant from infected cells treated with or without tubacin (A) and TBSA (B) was 
measured by plaque assay 36 h post infection. In intracellular virion production assay, the infected 
cells treated with or without tubacin (C) and TBSA (D) were lysed by three freeze-thaw cycles. The 
titer of intracellular infectious particles was determined by plaque assay. ** p value < 0.01; *** p value 
< 0.001 compared with untreated infected cells. 

Figure 3. Suppression of virus yield and intracellular virion production by tubacin and TBSA. Cells
were infected with JEV and immediately treated with indicated concentration of tubacin and TBSA.
Virus yield in supernatant from infected cells treated with or without tubacin (A) and TBSA (B) was
measured by plaque assay 36 h post infection. In intracellular virion production assay, the infected cells
treated with or without tubacin (C) and TBSA (D) were lysed by three freeze-thaw cycles. The titer of
intracellular infectious particles was determined by plaque assay. ** p value < 0.01; *** p value < 0.001
compared with untreated infected cells.
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2.2. Preventive and Therapeutic Activities of Tubacin against JEV Infection

To ascertain antiviral mechanism(s) of tubacin, the mode of inhibitory action by tubacin was
examined using attachment inhibition and time-of-addition assays (Figures 4 and 5; Figures S2 and S3).
In attachment inhibition assays, the TE671 cell monolayer was pre-incubated at 4 ◦C for 10 min, and
then reacted with JEV SRIPs (50 TCID50) or virions (50 pfu) plus tubacin (0, 0.1, 5, 10, and 20 µM) at
4 ◦C for allowing attachment alone. After one hour of incubation, cell monolayer was washed with
PBS; residual infectivity of SRIPs and virions was determined using immunofluorescence microscopy
and plaque assay, respectively. Real-time fluorescence imaging of SRIP-infected cells indicated that the
green fluorescence intensity of SRIP-driven EGFP reporter was very similar between tubacin-treated
and mock-treated groups (Figure 4). In addition, the plaque assay for residual infectivity of JEV virions
indicated that tubacin had no significant inhibitory effect on residual infectivity compared to controls
in the attachment assay (Figure S2). The result of viral attachment assay indicated tubacin did not
directly interfere on JEV attachment at early stage of viral replication.

Antiviral mechanism(s) of tubacin against JEV was further evaluated using time-of-addition
assays with JEV SRIPs and virions, including (1) pre-treatment (one hour prior to infection),
(2) simultaneous treatment (at the same time as infection), and (3) post treatment (one hour post
infection) (Figure 5 and Figure S3). The greatest degree of antiviral activity was observed in the mode
of pre-treatment with tubacin compared to simultaneous- and post-treatment modes. According to
the green fluorescence intensity of SRIP-driven EGFP reporter, IC50 value of tubacin was 1.89 µM
in a pre-treatment assay, 4.88 µM in a simultaneous-treatment test, and 2.05 µM in a post-treatment
experiment, respectively (Figure 5). Interestingly, post-treatment with tubacin was also very effective
in inhibiting the late stage of JEV replication. Therefore, the results indicated that tubacin exhibited
preventive and therapeutic activities against JEV infection, implying tubacin as a host-targeting agent
to affect the involvement of cellular factors in JEV replication.

Int. J. Mol. Sci. 2017, 18, 954 5 of 13 

 

2.2. Preventive and Therapeutic Activities of Tubacin against JEV Infection 

To ascertain antiviral mechanism(s) of tubacin, the mode of inhibitory action by tubacin was 
examined using attachment inhibition and time-of-addition assays (Figures 4 and 5; Figures S2 and 
S3). In attachment inhibition assays, the TE671 cell monolayer was pre-incubated at 4 °C for 10 min, 
and then reacted with JEV SRIPs (50 TCID50) or virions (50 pfu) plus tubacin (0, 0.1, 5, 10, and 20 μM) 
at 4 °C for allowing attachment alone. After one hour of incubation, cell monolayer was washed with 
PBS; residual infectivity of SRIPs and virions was determined using immunofluorescence microscopy 
and plaque assay, respectively. Real-time fluorescence imaging of SRIP-infected cells indicated that 
the green fluorescence intensity of SRIP-driven EGFP reporter was very similar between tubacin-
treated and mock-treated groups (Figure 4). In addition, the plaque assay for residual infectivity of 
JEV virions indicated that tubacin had no significant inhibitory effect on residual infectivity 
compared to controls in the attachment assay (Figure S2). The result of viral attachment assay 
indicated tubacin did not directly interfere on JEV attachment at early stage of viral replication. 

Antiviral mechanism(s) of tubacin against JEV was further evaluated using time-of-addition 
assays with JEV SRIPs and virions, including (1) pre-treatment (one hour prior to infection),  
(2) simultaneous treatment (at the same time as infection), and (3) post treatment (one hour post 
infection) (Figure 5 and Figure S3). The greatest degree of antiviral activity was observed in the mode 
of pre-treatment with tubacin compared to simultaneous- and post-treatment modes. According to the 
green fluorescence intensity of SRIP-driven EGFP reporter, IC50 value of tubacin was 1.89 μM in a pre-
treatment assay, 4.88 μM in a simultaneous-treatment test, and 2.05 μM in a post-treatment experiment, 
respectively (Figure 5). Interestingly, post-treatment with tubacin was also very effective in inhibiting 
the late stage of JEV replication. Therefore, the results indicated that tubacin exhibited preventive and 
therapeutic activities against JEV infection, implying tubacin as a host-targeting agent to affect the 
involvement of cellular factors in JEV replication. 

 
Figure 4. Real-time fluorescence imaging of the JEV SRIP-driven EGFP reporter for analyzing 
attachment inhibition by tubacin. Cells were infected with JEV SRIPs (10 TCID50), and then immediately 
treated with or without 10 μM tubacin for 1 h at 4 °C. After washing twice with PBS, bright-field and 
fluorescence images of infected cells were taken 0, 6, 12, 24, 30, and 36 h post infection (left panel). The 
percentage of EGFP-positive cells indicating SRIP replication in vitro was also calculated (right 
panel). Scale bar = 50 μm. 

Figure 4. Real-time fluorescence imaging of the JEV SRIP-driven EGFP reporter for analyzing
attachment inhibition by tubacin. Cells were infected with JEV SRIPs (10 TCID50), and then
immediately treated with or without 10 µM tubacin for 1 h at 4 ◦C. After washing twice with
PBS, bright-field and fluorescence images of infected cells were taken 0, 6, 12, 24, 30, and 36 h post
infection (left panel). The percentage of EGFP-positive cells indicating SRIP replication in vitro was
also calculated (right panel). Scale bar = 50 µm.
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Figure 5. Time-of-addition assay for analyzing antiviral action of tubacin against JEV SRIPs. SRIP-infected cells 
were treated with tubacin 1 h prior (pre) (left), simultaneous (middle), or 1 h post (right) infection. Bright-field 
and fluorescence images of infected cells were taken 36 h post infection (upper). Green fluorescence intensity 
of SRIP-driven EGFP reporter in infected cells was quantified using Image J, and then relative intensity was 
normalized by the total of cells (bottom). * p value < 0.05; ** p value < 0.01; *** p value < 0.001 compared with 
untreated infected cells. Scale bar = 50 μm. 
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by anti-Hsp90 antibodies (Figure 6A, lane 4 vs. lane 2), revealing that the Hsp90-NS5 interaction 
might be involved in the JEV replication complex. Hsp90 hyperacetylation via inactivation of HDAC6 
causes the loss of chaperone for its binding with Hsp90 client proteins [26,27]. Thus, the interaction 
of Hsp90 with JEV NS5 as well as Hsp90 acetylation levels in mock and infected cells treated with or 
without tubacin were also examined using immunoprecipitation assays (Figure 6B). Western blotting 
analysis indicated that Hsp90 was immunoprecipitated in all samples, and Hsp90 hyperacetylation, 
with various amounts of acetyl group, was detected in tubacin-treated cells (Figure 6B, lanes 3–6), 
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Figure 5. Time-of-addition assay for analyzing antiviral action of tubacin against JEV SRIPs.
SRIP-infected cells were treated with tubacin 1 h prior (pre) (left), simultaneous (middle), or 1 h post
(right) infection. Bright-field and fluorescence images of infected cells were taken 36 h post infection
(upper). Green fluorescence intensity of SRIP-driven EGFP reporter in infected cells was quantified
using Image J, and then relative intensity was normalized by the total of cells (bottom). * p value < 0.05;
** p value < 0.01; *** p value < 0.001 compared with untreated infected cells. Scale bar = 50 µm.

2.3. Tubacin-Induced Hsp90 Hyperacetylation Was Associated with the Reduction of NS5 RNA
Polymerase Activity

HDAC6, a cytoplasmic deacetylase, deacetylates several substrates, such as tubulin, Hsp90,
β-catenin, and cortactin [24]. Since Hsp90 is suggested as the key chaperone universally required for
the homeostasis of viral replication complexes, particular viral RNA-dependent RNA polymerase [25],
the protein-protein interaction between host Hsp90 and JEV NS5 RNA polymerase was analyzed with
co-immunoprecipitation assays (Figure 6A). Western blotting analysis of co-immunoprecipitates
with anti-Hsp90 antibodies demonstrated that JEV NS5 protein in infected cell lysate was
co-immunoprecipitated by anti-Hsp90 antibodies (Figure 6A, lane 4 vs. lane 2), revealing that the
Hsp90-NS5 interaction might be involved in the JEV replication complex. Hsp90 hyperacetylation via
inactivation of HDAC6 causes the loss of chaperone for its binding with Hsp90 client proteins [26,27].
Thus, the interaction of Hsp90 with JEV NS5 as well as Hsp90 acetylation levels in mock and
infected cells treated with or without tubacin were also examined using immunoprecipitation assays
(Figure 6B). Western blotting analysis indicated that Hsp90 was immunoprecipitated in all samples, and
Hsp90 hyperacetylation, with various amounts of acetyl group, was detected in tubacin-treated cells
(Figure 6B, lanes 3–6), but mock and infected cells (Figure 6B, lanes 1 and 2). By contrast, the quantity
of un-acetylated hsp90 protein decreased post tubacin-treatment (Figure 6B, lanes 3–6). Importantly,
the binding ability of Hsp90 to JEV NS5 concentration-dependently decreased post tubacin treatment
(Figure 6B, lanes 2–4). Novobiocin, an Hsp90 inhibitor, was used to evaluate the role of Hsp90 in the
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stability of JEV NS5 protein and virus yield (Figure 6C,D). Novobiocin treatment caused a marked
decrease in the amounts of NS5 protein in infected cells (Figure 6C, lane 3 vs. lane 2), as well as reduced
JEV yields in a concentration dependent manner (Figure 6D). The results indicated that tubacin induced
Hsp90 hyperacetylation and reduced the binding activity of Hsp90 to JEV NS5 in infected cells. The
Hsp90 inhibitor, novobiocin, affected the amount of NS5 protein and the JEV production in infected
cells. The finding implied that tubacin-induced Hsp90 hyperacetylation might alter the binding
interaction of Hsp90 with JEV NS5 which is involved in JEV replication. Subsequently, the protein
amount of NS5 and the synthesis of antisense RNA genome in JEV infected cells were determined 36 h
post treatment with tubacin using immunofluorescent staining and real-time RT-PCR, respectively
(Figure 7). Immunofluorescent staining with anti-JEV NS5 antibodies indicated that tubacin at 5 and
10 µM significantly decreased the protein amount of NS5 in JEV-infected cells (Figure 7A). Meantime,
tubacin concentration-dependently reduced NS5-mediated synthesis of JEV antisense RNA genomes
in infected cells (Figure 7B). The overall results illustrated that tubacin significantly repressed the
functional activity of JEV NS5 in vitro replication.
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Figure 6. Protein-protein interaction, acetylation level, and function analysis of Hsp90 in JEV replication.
For examining the interaction of Hsp90 with JEV NS5, co-immunoprecipitation assay was performed
on the infected lysates. After centrifugation, lysate supernatants and precipitated pallets were further
analyzed by Western blotting with anti-NS5 and anti-Hsp90 antibodies (A); For verifying the acetylation
level of Hsp90, JEV infected cells treated with or without tubacin were harvested 36 h post infection;
the lysate was accomplished using immunoprecipitation assay with anti-Hsp90 antibodies and protein
A-Sepharose beads. The precipitates were examined by Western blotting with anti-NS5, anti-acetyled
lysine, and anti-Hsp90 antibodies (B); For evaluating JEV NS5 expression in response to novobiocin,
Western blotting analysis of infected cells was probed with anti-NS5 antibodies 36 h post infection (C);
For studying antiviral activity of novobiocin, virus yield in the supernatant of treated infected cells
was measured using plaque assays (D). * p value < 0.05; ** p value < 0.01 compared with untreated
infected cells.
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Figure 7. Inhibitory effect of tubacin on the expression of NS5 protein and viral antisense RNA genome
in a JEV infected cell. For exploring the NS5 level, infected cells treated with or without tubacin were
washed and fixed 36 h post infection, then followed by immunofluorescent staining with anti-NS5
antibodies and Alexa Fluor 546-conjugated secondary antibodies (A); For quantitating antisense RNA
genomes, total RNAs from the infected cells in the presence and absence of tubacin were performed
using real time RT-PCR assay (B). * p value < 0.05; ** p value < 0.01; *** p value < 0.001 compared with
untreated infected cells. Scale bar = 100 µm.

3. Discussion

Selective HDAC6 inhibitors (tubacin and TBSA), but not pan-HDAC inhibitors, exhibited potent
antiviral efficacy against JEV in this study. Tubacin and TBSA substantially reduced JEV-induced
cytopathic effect and apoptosis, and concentration-dependently lessened virus yields in human
cerebellar medulloblastoma cells (Figures 1–3). The pan-HDAC inhibitors, such as VPA and arginine
butyrate, effectively enhanced the sensitivity of Epstein-Barr virus (EBV)-positive lymphoma cells
to ganciclovir [28]. In addition, treatment with pan-HDAC inhibitors (TSA and SAHA) decreased
the replication of respiratory syncytial virus (RSV) in vivo [29]. Tubacin, HDAC6-specific inhibitor,
dose-dependently boosted the release of influenza A virus (IAV) progeny through the increase of
acetylated microtubules for the effective movement of viral components to the plasma membrane [30].
TBSA, a selective HDAC6 inhibitor, caused the acetylated α-tubulin accumulation in hepatocyte
cells which was associated with the decrease of hepatitis C virus (HCV) RNA genome synthesis in
hepatocyte cells [22]. Therefore, HDACs might be involved in the replication process of many viruses,
such EBV, IAV, RSV, and HCV. Moreover, virus-specific HDACs could be the targets for development
of virus-distinctive antiviral agents. The study proposed HDAC6 as a JEV-specific host target for
exploiting antiviral agents.
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Both tubacin and TBSA were selective HDAC6 inhibitors; however, tubacin (IC50 of 0.26 µM
in virus yield reduction) was a more potent inhibitor of JEV than TBSA (IC50 of 1.75 µM) (Figure 3).
Importantly, tubacin, but not TBSA, markedly reduced the intracellular production of JEV infectious
particles in human cerebellar medulloblastoma cells (Figure 3C vs. 3D). The result might be linked
with higher HDAC6 selectivity and inhibition potency of tubacin compared to TBSA [31]. Therefore,
antiviral activity of tubacin relies on its ability to target a host protein. In a time-of-addition assay,
fluorescence intensity of JEV SRIP-driven EGFP reporter and the number of JEV plaques clarified that
tubacin pre-treatment showed the highest anti-JEV activity compared to simultaneous treatment and
post-treatment (Figure 5, Figure S3). Notably, tubacin post-treatment also significantly suppressed the
JEV replication in concentration-dependent manners. The results explicated that a short-term treatment
of tubacin presented the potential of the host-targeting agent with preventive and therapeutic activities
against JEV infection. Tubacin might be combined with direct-acting antivirals for preventing and
treating JE which accomplishes complementary antiviral actions in a synergistic manner and reduces
the possibility of viral resistance during clinical therapy.

Hsp90 hyperacetylation induced by an inhibitor of HDAC6/8 MC1568 has been reported to
cause the decrease of IAV replication in lung epithelial cells [32]. In this study, JEV NS5 protein
was identified as one of the Hsp90 client proteins (Figure 6A). Co-immunoprecipitation indicated
that tubacin-treatment caused Hsp90 hyperacetylation and decreased the binding ability of Hsp90 to
JEV NS5 in infected cells in concentration-dependent manners (Figure 6B). Tubacin-induced Hsp90
hyperacetylation has been reported to induce the loss of chaperone activity of Hsp90 that resulted
in the functional deficiency of Hsp90 client protein glucocorticoid receptor, such ligand binding and
transcriptional activation [27]. Hsp90 inhibitor, novobiocin, decreased the protein amounts of NS5
and the virus production in JEV-infected cells (Figure 6C,D). The results indicated the importance of
Hsp90-NS5 interaction for JEV NS5-mediated replication. In addition, tubacin treatment caused the
diminution of NS5 protein and antisense RNA genome expression in infected cells (Figure 7). Therefore,
our results suggested that tubacin-induced Hsp90 hyperacetylation might influence the NS5 activity
in JEV replication, as one of the antiviral mechanisms of tubacin against JEV. Hsp90 has also been
demonstrated to interact with viral non-structural (except RNA polymerase) and structural proteins to
improve the structural folding and functional activity of those viral proteins [25]. Tubacin-induced
Hsp90 hyperacetylation could affect the interaction of Hsp90 with JEV proteins, except NS5, involved
in RNA translation and replication complex. Interestingly, microtubule acetylation modulated by
HDAC6 inhibitors affected the viral replication through interrupting viral components transportation
along microtubules [33]. Therefore, the involvement of tubacin-induced hyperacetylation of the other
HDAC6 substrates that assist viral translation and replication could not be excluded in the antiviral
mechanism(s) of tubacin against JEV.

In conclusion, HDAC6-selective inhibitors exhibited the potential of antiviral activity against
JEV. Particularly, tubacin presented the high-potent inhibition of JEV yield (IC50 of 0.26 µM)
and intracellular infectious virion production (IC50 of 1.52 µM). Tubacin was demonstrated as a
host-targeting agent with preventive and therapeutic activities against JEV. Tubacin treatment caused
the decrease of the Hsp90-NS5 interaction and the reduction of viral proteins and antisense RNA
genomes in infected cells. The combination of tubacin and direct-acting antiviral agents provides a
novel approach for prophylaxis and treatment against JEV infection.

4. Methods and Materials

4.1. Cells and Virus

Human cerebellar medulloblastoma TE671 cells (kindly provided by Wen-Kuang Yang, China
Medical University, Taiwan) used this study were cultured in minimum essential medium (MEM,
GE Healthcare Life Sciences, Pittsburgh, PA, USA), 100 U/mL penicillin-streptomycin, and 5% fetal
bovine serum (FBS) (ThermoFisher, Waltham, MA, USA). TE671-CprME stable cell line generated
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in our laboratory is a packing cell line expressing JEV structure proteins (C, prM, and E) which was
described in our previous work [34]. TE671-CprME cells were culture in MEM, 5% FBS, and 500 µg/mL
G418 (Sigma, Saint Louis, MO, USA). Baby hamster kidney BHK-21 cells for JEV amplification and
plaque assay were also grown in in MEM, 5% FBS and 100 U/mL penicillin-streptomycin. All cells
were incubated at 37 ◦C in an atmosphere containing 5% carbon dioxide.

4.2. MTT Cytotoxicity Test

HDAC inhibitors TSA, VPA, and TBSA were purchased from Sigma-Aldrich Company; tubacin
was obtained from Cayman Chemical Company. Cytotoxicity of HDACi to TE671 and BHK-21 cells was
evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. 5 × 104 cells
per well were seeded in 96-well plates and then treated with the indicated concentration of each
HDACi. After 48-h of treatment, 25 µL of MTT solution (5 mg/mL) was added to each well and
incubated at 37 ◦C with 5% CO2 for 3 h. After three washings with phosphate buffer saline (PBS),
100 µL DMSO was added into each well for dissolving formazan crystals. OD570−630 was measured by
micro-ELISA reader and survival rate were calculated to indicate suppressive effects of each HDACi
on the survival of TE671 and BHK-21 cells. Survival rate (%) = ((Acontrol − Aexperiment)/Acontrol)
× 100%. 50% cytotoxic concentration (CC50) values were calculated by computer program (provided
by John Spouge, NCBI, NIH).

4.3. Inhibitory Assays of HDACi on JEV-Induced Cytopathic Effect and Apoptosis

TE671 cells cultured in 6-well plates were infected with JEV at a multiplicity of infection (MOI) of
0.1 and were treated simultaneously with VPA (1, 1000 µM), TSA (1, 50 µM), tubacin (1, 10 µM), and
TBSA (1, 10 µM), respectively. After 36-h of incubation, images of cytopathic effect in each condition
were photographed using a microscope. In addition, cells in each well were collected, fixed using 70%
ethanol at 4 ◦C overnight, and then re-suspended in PBS containing 50 µg/mL PI, 0.1 mg/mL RNase
and 0.1% Triton X-100. After 30-min of incubation at 37 ◦C in a darkroom, cell apoptosis (sub-G1 phase)
was measured by flow cytometry (Becton-Dickinson, San Jose, CA, USA) at excitation/emission
wavelength of 493/636 nm.

4.4. Quantitative Assays of Virus Yield and Intracellular Viral Titer

For determining anti-JEV activity of TBSA and tubacin on virus yield, JEV yield in a cultured
supernatant of infected cells at an MOI of 0.1 in the presence or absence of TBSA and tubacin was
measured using a plaque assay. Serial dilution of the supernatant was added onto BHK-21 cell
monolayer in 6-well plates, incubated at 37 ◦C in 5% CO2 for 1 h, and then overlaid with 2 mL MEM
medium containing 1.1% methylcellulose. After a 3-day incubation, the cell monolayer was stained
with naphthol blue-black dye; in which viral yields were calculated by the number of viral plaques
per mL. For measuring the inhibitory effect of TBSA and tubacin on intracellular viral titer, infected
cells were harvested after a 36 h treatment with TBSA and tubacin (0, 1, 5, and 10 µM), and then lysed
through three freeze-thaw cycles. The intracellular titer of infectious viruses in lysate was measured
by the plaque assay mentioned above.

4.5. Virus Attachment Assays with Single Run Infectious Particles (SRIPs) and Virions

JEV SRIPs were produced from CprME-expressing packaging cells transfected with JEV replicon
containing EGFP reporter [34]. In brief, TE671 cells grown to 90% confluence were transfected with
pFlag-CMV3-CprME using Lipofectamine LTX (Invitrogen, Carlsbad, CA, USA); a stable transfected
cell line was established after a 10-day-selection with 500 µg/mL of G418. Next, the packaging cells
were transfected with pBR322-JEV-EGFP replicon; JEV-EGFP SRIPs were released in cultured media
of transfected packaging cells. For the attachment assay, SRIP was mixed with or without tubacin
(10 µM), then immediately added to TE671 cell monolayer at 4 ◦C to allow viral attachment. After 1-h
incubation, cells were washed with cold PBS, then incubated with MEM containing 2% FBS at 37 ◦C in



Int. J. Mol. Sci. 2017, 18, 954 11 of 14

5% CO2. The green fluorescence of the EGFP reporter derived from the replication of JEV SRIPs was
detected by fluorescent microscopy at different time courses (0, 6, 12, 24, 30, and 36 h). In addition, the
attachment assay was performed with JEV virions, as described in our prior reports [35]. The TE671
cell monolayer in 6-well plates was incubated with the mixtures of JEV (50 pfu) and tubacin (0, 0.1,
5, 10 and 20 µM) at 4 ◦C for 1 h, the mixture was then removed, washed with cold PBS, and then
overlaid with MEM medium containing 1.1% methylcellulose. After a 3-day incubation at 37 ◦C in 5%
CO2, the cell monolayer was stained as described in the plaque assay. Residual plaques were counted;
the relative percentage of plaque formation was determined as the ratio of plaque number of each
tubacin-treated group to that of mock-treated control.

4.6. Time-of-Addition Assay

To examine the inhibitory effect of tubacin by time of addition on JEV replication, pretreatment (1 h
prior to JEV infection), simultaneous treatment (at the same time as JEV infection), and post treatment
(1 h after JEV entry) experiments were performed. For the pretreatment experiment, the TE671 cells
monolayer was pretreated with tubacin (0, 1, 5, and 10 µM) for 1 h, and then infected with 10 TCID50 of
JEV SRIPs or 100 p.f.u. of JEV virions at 37 ◦C in 5% CO2. The images of replicon-derived EGFP reporter
and virus-induced CPE in JEV SRIP-infected cells were taken by fluorescent and optical microscopies
36 h post infection. The fluorescent intensity of EGFP reporter in SRIP-infected cells was quantified
by Image J. In the assays with JEV virions, cell monolayers were overlaid with 2 mL MEM medium
containing 1.1% methylcellulose. After 72-h of incubation, viral plaques were counted after staining
with naphthol blue-black dye. In the simultaneous treatment experiment, cells were simultaneously
treated with tubacin and infected with SRIPs or virions. In the post treatment experiment, tubacin was
added into cell monolayers 1 h post infection with SRIPs or virions. The following procedures in both
these experiments were performed as the pre-treatment test. The photography of EGFP reporter and
CPE in SRIP-infected cells was taken using a microscope; plaque number in virion-infected cells was
counted after naphthol blue-black dye staining mentioned above.

4.7. Detection of Viral NS5 Expression Using Immnunofluorescence

TE671 cells were infected with JEV at an MOI of 0.1, and simultaneously treated with tubacin
(0, 1, 5, and 10 µM). Cells were rinsed once with PBS 36 h post infection, fixed with 4% formaldehyde
for 30 min, permeabilized with 0.1% Triton X-100, and blocked with 10% BSA in PBS for 1 h at room
temperature. Viral NS5 proteins were detected using rabbit polyclonal anti-JEV-NS5 (GeneTex, Inc.,
Irvine, CA, USA) and secondary AF546 goat anti-rabbit IgG (ThermoFisher). The image of fluorescent
signals in treated infected cells was photographed by fluorescent microscopy.

4.8. Quantification of Replicon RNA Expression Using RT-PCR

For examining the inhibitory effect of tubacin on the synthesis of viral antisense RNA genomes,
total RNAs of TE671 cells with JEV at an MOI of 0.1 were extracted using PureLink Mini Total RNA
Purification Kit (ThermoFisher) 36 h post treatment tubacin, reverse transcripted into cDNA with
antisense RNA-specific capture primer (5′-GCAGCAGAAGGAAAGACC GTGAT-3′), and followed by
measuring antisense RNA genomes using SYBR Green Master Mix kit with JEV-specific primer pairs
(5′-TCCACTTCCTCAACGCAATG-3′ at nucleotide 9724–9743 and 5′-CAGTCGTGCCAGCCATG-3
at nucleotide 9799–9783). The Real-time RT-PCR was performed by 7300 Realtime PCR system
(Applied Biosystems, Foster City, CA, USA), and then the corresponding threshold cycle value (Ct)
was measured. Relative levels of RNA genomes were normalized by the housekeeping gene GAPDH,
described in a prior report [26].

4.9. Co-Immunoprecipitation and Western Blotting Assays

Lysate from mock- and JEV-infected cells was incubated with the anti-Hsp90 antibodies
(Cell Signaling, Danvers, MA, USA) in a cool room overnight, followed by addition of protein
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A-Sepharose beads for an additional 4-h. The immunoprecipitate was collected after centrifugation,
and analyzed using Western blotting with the anti-JEV NS5 (GeneTex, Inc.), anti-acetyl lysine
(Cell Signaling), or anti-Hsp90 antibodies in a cool room overnight. After 4-h of incubation with
horseradish peroxidase-conjugated secondary antibodies, the immune-reactive complexes were
detected using enhanced chemiluminescence reaction (Amersham Pharmacia Biotech, Piscataway,
NJ, USA).

4.10. Statistical Analysis

Each data was shown as mean ± standard deviation (S.D.) of three independent experiments.
p value in each comparison was determined by Student-t test, in which the comparison was recognized
as a statistical significance if p value was lower than 0.05.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/5/954/s1.
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