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Abstract: In this review, we describe the current knowledge on calcium signaling pathways in
interstitial cells with a special focus on interstitial cells of Cajal (ICCs), interstitial Cajal-like cells
(ICLCs), and telocytes. In detail, we present the generation of Ca2+ oscillations, the inositol
triphosphate (IP3)/Ca2+ signaling pathway and modulation exerted by cytokines and vasoactive
agents on calcium signaling in interstitial cells. We discuss the physiology and alterations of calcium
signaling in interstitial cells, and in particular in telocytes. We describe the physiological contribution
of calcium signaling in interstitial cells to the pacemaking activity (e.g., intestinal, urinary, uterine
or vascular pacemaking activity) and to the reproductive function. We also present the pathological
contribution of calcium signaling in interstitial cells to the aortic valve calcification or intestinal
inflammation. Moreover, we summarize the current knowledge of the role played by calcium
signaling in telocytes in the uterine, cardiac and urinary physiology, and also in various pathologies,
including immune response, uterine and cardiac pathologies.
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1. Introduction

1.1. Definition and Nomenclature for Interstitial Cells

Interstitial cells are defined as cells pertaining to or situated between parts or in the interspaces of
a tissue. These cells are located in the connective tissue and under the umbrella of this terminology we
find reunited cells such as the interstitial cells of Cajal (ICCs), the testosterone-secreting cells of the
testis (Leydig cells), the cells in the medulla and cortex of the kidney, the cells found in the connective
tissue of the ovary, the aortic valve interstitial cells, etc. [1–4]. As one can perceive, all these cells differ
as to origin and phenotype. Moreover, histologists consider that the usually described cells of the
connective tissue might also be viewed as interstitial cells, e.g., fibroblasts, mast cells, macrophages and
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blood-derived immune cells (plasma cells, neutrophils, eosinophils, and lymphocytes). From the point
of view of pathologists, all cells expressing vimentin can be identified as interstitial cells [5]. This review
describes calcium signaling in interstitial cells with a special focus on ICCs in the gastrointestinal tract,
on interstitial Cajal-like cells (ICLCs) in the extra-digestive organs and on telocytes (TCs), a novel type
of interstitial cells. Several other interstitial types are reached in our discussion because the signaling
through calcium oscillations is significant in their case although these cells differ in origin.

1.2. Interstitial Cells of Cajal (ICCs)

ICCs were described in 1892, by the Spanish neuroanatomist, histologist and pathologist, Santiago
Ramon y Cajal, as primitive neurons in the intestinal wall [6]. There are many attempts to classify the
ICCs as different subtypes, most of them based on their location in various organs of the digestive tract
wall [7]. During the twentieth century, ICCs were described morphologically in the gastrointestinal
tract as frequently forming networks around the myenteric plexus (Auerbach’s plexus) and along the
whole digestive tube in the submucosa, in the connective tissue septa of the muscularis and in the
subserosa. These classifications are not subject to this review.

1.2.1. Ultrastructural Features of ICCs

In the mid-1970s, the ultrastructural features of ICCs were described for the first time by an
Italian electron-microscopist Faussone-Pellegrini, who also resumed the first functional hypothesis
postulated by Tiegs regarding the role of ICCs in triggering, propagating and coordinating the rhythmic
intestinal contractile activity [8]. Since the publishing of the first guide to the identification of ICCs,
it was emphasized that these cells might be classified in species- and location-dependent types [9].
ICCs are characterized by small cell bodies and several narrow, rounded, or only slightly flattened
cytoplasmic extensions. The ultrastructural criteria for ICCs’ differential and positive diagnosis include:
(a) the presence of a discontinuous basal lamina; (b) numerous plasmalemmal caveolae; (c) numerous
mitochondria and abundant intermediate filaments, moderately developed Golgi apparatus, and rough
and smooth endoplasmic reticulum cisternae and tubules in the cytoplasm; and (d) close contacts
established with nerve endings and the realization of numerous gap junctions, both with each other,
and with smooth muscle in the muscularis of the enteric wall [10].

1.2.2. Immunophenotype of ICCs

Today, in the “omics” era, electron microscopy remains the only reliable method of identification
of ICCs. Different histological techniques, starting with the ones described by Cajal himself, were
shown to have their limitations in ICCs identification [11]. This fact represented a challenge for
immunohistochemistry which still struggles to identify an appropriate marker for the identification of
interstitial cells. In the early 2000s, antibodies to c-Kit were considered as useful to the identification of
ICCs [12,13] even more as the lack of expression of proto-oncogene c-kit appeared to be closely
correlated with the loss of mechanical rhythmicity of the gut [14,15]. In the late 2000s, Ano1,
a Ca2+-activated Cl− channel, was demonstrated to be a highly specific marker for studying the
distribution of ICCs in the gastrointestinal tract, being able to label all classes of ICCs [16,17].

1.2.3. Roles of ICCs

The acknowledged physiological roles of ICCs are: (a) to provide pacemaker activity in the
gastrointestinal smooth muscles; and (b) to act as transducers of inputs from motor neurons, and
stretch receptors [18]. These functions are Ca2+ dependent [19] since the release of Ca2+ from internal
stores activates Ca2+-dependent Cl− channels and participates in the regenerative potentials [20,21].
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1.3. Interstitial Cajal-Like Cells (ICLCs)

The mid-2000s were marked by the discovery of c-kit positive cells in organs capable of peristaltic
movements, e.g., the upper urinary tract, bladder, and vas deferens [22–24]. Their role was discussed
extensively in reviews at that time and it still is nowadays [25–28]. Gradually, such cells were described
in several extra-digestive organs: uterus, fallopian tube, vagina, pancreas, prostate, mammary gland
and blood vessels [29–35]. These cells, which resemble, by ultrastructural appearance, the canonical
ICCs, were found at that time under different names: ICC-like cells, interstitial Cajal-like cells
(ICLC), platelet-derived growth factor receptor alpha (PDGFRα) positive cells, etc. In their attempt
to characterize these cells, researchers found that the interstitial cells located in the above-mentioned
organs might express different immunophenotypes depending on their location in organs and on
species [36,37]. In fact, while some of these cells might share morphological, immunophenotypical and
functional similarities with ICCs, others share the same characteristics with TCs [38]. In a set of reports,
Vannucchi and collaborators [1,38,39] solved the controversy regarding the existence of a different
population of interstitial Cajal-like cells in the gut. These cells, expressing cluster of differentiation
34 (CD34) and PDGFRα in the gut, were shown to be involved in regulating motility by interaction
with ICCs [39]. As shown in Figure 1, authors demonstrated that all cells expressing CD34 are also
positive for PDGFRα, and therefore these cells could not be interpreted as ICCs which are diagnosed
by their c-kit immunophenotype. At present, there is still controversy regarding the various classes
of interstitial cells, however, the presence of PDGFRα positive cells in the gut is admitted by many
groups as reviewed by Sanders et al. [40].
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Figure 1. (A,B,F) PDGFRα-immunoreactivity; (C) CD34-immunoreactivity; and (D,E) PDGFRα/CD34 
double labeling. (A) Immunohistochemistry, hematoxylin counterstain; (B–F) Immunofluorescence. 
(A–D) Submucosa (stomach). PDGFRα-positive cells (A,B) and CD34-positive cells (C) form a 3-D 
network. All the PDGFRα-positive cells are also CD34-positive (D). (E) Myenteric plexus region (large 
intestine). PDGFRα/CD34-positive cells surround a ganglion (left side, MP) and form networks in the 
intergangliar region (right side, asterisk). (F) Circular muscle layer (small intestine). PDGFRα-positive 
cells form networks among the smooth muscle cells. CM: circular muscle layer; LM: longitudinal 
muscle layer. Scale bars are indicated in each panel. Reproduced from [39], published under the 
Creative Commons license. 

Figure 1. (A,B,F) PDGFRα-immunoreactivity; (C) CD34-immunoreactivity; and (D,E) PDGFRα/CD34
double labeling. (A) Immunohistochemistry, hematoxylin counterstain; (B–F) Immunofluorescence.
(A–D) Submucosa (stomach). PDGFRα-positive cells (A,B) and CD34-positive cells (C) form a 3-D
network. All the PDGFRα-positive cells are also CD34-positive (D). (E) Myenteric plexus region (large
intestine). PDGFRα/CD34-positive cells surround a ganglion (left side, MP) and form networks in the
intergangliar region (right side, asterisk). (F) Circular muscle layer (small intestine). PDGFRα-positive
cells form networks among the smooth muscle cells. CM: circular muscle layer; LM: longitudinal
muscle layer. Scale bars are indicated in each panel. Reproduced from [39], published under the
Creative Commons license.
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1.4. TCs

1.4.1. Discovery, Definition and Ultrastructural Features

TCs were described as a new type of interstitial (stromal) cells in 2010 by Popescu’s team. They
had started to search for ICCs in the extra-digestive organs and stopped when they realized that what
they observed was, in fact, a distinct cell type [41]. TCs are shortly defined as cells with telopodes.
Telopodes is the name used to describe the extremely long (tens to hundreds of micrometers) and thin
(between 0.05 and 0.2 micrometers) cytoplasmic extensions emitted from the cell body [42]. In addition,
telopodes are made up of a succession of thin, fibrillar segments called podomers (~75–80 nm) and the
dilated, cistern-like regions called podoms (250–300 nm) [43,44]. Podoms accommodate functional
units consisting of caveolae, mitochondria, and endoplasmic reticulum, possibly involved in calcium
uptake/release [45]. Cytoplasmic organelles are limited, e.g., mitochondria 5%, endoplasmic reticulum
1%–2%, and caveolae 2%–3% of cell volume [41]. TCs are able to release extracellular vesicles and
therefore are considered as important players in intercellular communication (for review see [46]).
Telopodes are building up a 3D network by interacting with each other by homocellular junctions [45].
In addition, TCs contact, by their telopodes, numerous surrounding cells or structures. Figure 2 is
relevant for such heterocellular contacts between a TC and some immune cells [44].
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Figure 2. Rat jejunum mucosa: (A) A telocyte (blue) telopode is engaged in different types of synapses
with a plasma cell, and two plain synapses (PC1 and PC2) and one multicontact synapse (MC) are seen;
(B) region magnified from (A). Scale bar: (A): 5 µm, (B): 2 µm. Reproduced with permission from [44].

There is a growing body of evidence highlighting that TCs are different from ICCs, fibroblasts
(as shown in Figure 3) and mesenchymal stem cells, not only by morphology [44] but also by their
genomic and proteomic characteristics [47].
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externa. Note the large cell body which extends a slender and relatively short connection towards the 
nerve endings (green); (B) Digitally colored TEM image showing a fibroblast (garnet) and a telocyte 
(blue) in the lamina propria; (C) Transmission electron micrograph (TEM) of a tangential section 
through a fibroblast cell. The internal structure can be seen, including the dilated rough endoplasmic 
reticulum responsible for synthesizing collagen. Reproduced with permission from [44]. 

  

Figure 3. Rat jejunum: (A) Photomicrograph of an interstitial cell of Cajal (violet) in muscularis externa.
Note the large cell body which extends a slender and relatively short connection towards the nerve
endings (green); (B) Digitally colored TEM image showing a fibroblast (garnet) and a telocyte (blue)
in the lamina propria; (C) Transmission electron micrograph (TEM) of a tangential section through a
fibroblast cell. The internal structure can be seen, including the dilated rough endoplasmic reticulum
responsible for synthesizing collagen. Reproduced with permission from [44].
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1.4.2. Immunophenotype of TCs

Several experiments performed by many research groups in their attempt to find a specific
immunohistochemical marker illustrate that the most appropriate way to differentiate between
TCs and other interstitial cells is the double-positive immunostaining with CD34/PDGFR (α or β).
Additionally, TCs positive for the alpha smooth muscle antibody (αSMA) or for calreticulin
antibody (calret) have also beenconsidered in this classification. Thus, in his articles Vannucchi and
collaborators [1,38,39] describe in the bladder, three subtypes of TCs: the first subtype located beneath
urothelium was PDGFRα/calret-positive and αSMA/CD34/c-Kit-negative; the second subtype in
the deep suburothelium is PDGFRα/calret/αSMA-positive and CD34/c-Kit-negative; and a third TC
subtype, PDGFRα/αSMA/c-Kit-negative and CD34/calret-positive, is in the submucosa and detrusor.
Díaz-Flores et al. emitted the hypothesis that TCs have progenitor capacity and are a source of αSMA+
cells during repair [37].

1.4.3. Roles of TCs

TCs were very well characterized during previous years regarding their genomic and proteomic
profiles [48–52]. TCs are not fibroblasts or mesenchymal stem cells [53,54]. Among the most important
functions of the TCs, we can mention that of integrators of many intercellular signaling processes
(for details see our latest review [55]).

2. Calcium Signaling in Interstitial Cells

2.1. Main Calcium Signaling Pathways in Interstitial Cells

RT-PCR based studies proved the presence in ICCs of some specific neurotransmitter receptors
assuring the functional connection of these cells to adjacent neurons. In ICCs isolated from the
murine gastrointestinal tract the expression of muscarinic acetylcholine receptors (M2 and M3) and
of substance P receptors were evidenced [56]. In addition, the purinergic receptor P2X (P2X2 and
P2X5 subtypes) has been found by immunofluorescence in the ICCs of guinea pigs intestines [57].
Among the calcium permeant membrane channels, the transient receptor potential melastin channels,
particularly TRPM7, were identified in the ICCs from the human gastro-intestinal tract [58]. Moreover,
the calcium oscillations are dependent on the presence of the calcium concentration outside of the ICCs
from rabbit urethra [59]. These findings clearly indicate the presence in ICCs of the most common
calcium signaling pathways: the IP3 path and the store operated membrane calcium channels path.
Actually, the description of the mechanism of the oscillations is based on these two basic cytosolic Ca2+

control modalities.
The IP3/Ca2+ signaling pathway was described to be involved in multiple cellular processes,

including metabolism, contraction, fertilization, exocytosis, proliferation, fluid secretion, neuronal
synaptic plasticity, aggregation, ion channel opening, aldosterone secretion, differentiation,
proliferation, etc. [60,61]. The IP3/Ca2+ oscillatory mechanism controls the rhythmic contractions of
vascular, lymphatic, airway and corpus cavernosum smooth muscle cells [62], and was also proposed
to be active in pacemaking cells such as ICCs [61,63]. Ca2+ signaling mechanisms in ICCs involve both
ryanodine receptors (RyR) and inositol triphosphate receptors (InsP3R). The interdependence between
RyR and InsP3R in the generation of Ca2+ transients, and the dominant transcripts expression of Itpr1
and Ryr2 in ICCs were demonstrated [64].

A very important aspect should be highlighted: isolated ICCs present differences in Ca2+ signaling
mechanisms with respect to the cells in intact muscles. To date, it was suggested that release of Ca2+

from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICCs [65].
Another important calcium signaling pathway, based on the calcium ions influx from outside of

the cells, involves the presence of the plasma membrane channels permeable for calcium. As already
mentioned, TRPM7 channels have been identified by immunofluorescence in human small intestine
and colon and colocalized with c-KIT, proving that ICCs have this type of calcium permeant channels
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in the membrane [58]. The ability of non-specific calcium influx blockers La+3 and Cd2+ to abolish the
calcium oscillations in ICCs from rabbit urethra proves the involvement of the store-operated channels
path in maintaining the pacemaking activity of ICCs [59]. However, other membrane channels, such
as voltage-gated calcium channels [66] and calcium-activated chloride channels including ANO1 [67],
are players in the calcium oscillation generation and maintenance mechanism.

Little is known about these mechanisms in telocytes. However, the T and L subtypes voltage-gated
calcium channels have been found in the telocytes from human myometrium [68].

2.2. Ca2+ Oscillations in Interstitial Cells

The ICCs and ICLCs are considered as electrical pacemaker cells and this role was documented
for some organs like gastrointestinal tract, urinary tract and male genital organs [63,69,70]. It is
also considered that ICLCs might intermediate the signal transduction between nervous and muscle
cells [71]. These types of activity are accompanied by the generation of calcium waves of specific
amplitude and frequency. The calcium signaling mechanisms involved in the generation of these waves
are poorly characterized but include the basic pathways involving the release of calcium from the
internal stores and the subsequent calcium operated membrane channels opening [71–76]. For some
particular tissues, a model describing the Ca2+ oscillations in ICCs was proposed. It follows the general
ideas of calcium waves generation in cardiac pacemaker cells using the main Ca2+ controlling paths
mentioned in the previous section [77], but the model has to be verified for a larger range of ICCs,
particularly for TCs.

As an important issue, these Ca2+ signals present ubiquitous temporal characteristics depending
on species and tissues and have greater amplitude but lower frequency in comparison with the signals
in the neighboring smooth muscle cells [70].

For the ICCs in the gastrointestinal tract a complex calcium-dependent signaling mechanism
in several steps was proposed: (i) release of Ca2+ through both IP3 and ryanodine receptors in the
endoplasmic reticulum membrane; (ii) activation of ANO1 channels from the plasma membrane;
(iii) current flux through ANO1 channels; (iv) spontaneous transient inward currents determine
the generation of spontaneous transient depolarizations; (v) the Ca2+ influx is driven through
T-type voltage-dependent Ca2+ channels; (vi) the Ca2+ influx promotes further Ca2+ release through
subcellular IP3 and ryanodine receptors; (vii) the enhanced release of Ca2+ from the ER synchronizes
the opening of additional ANO1 channels; (viii) a slow wave current that spreads to adjacent smooth
muscle cells via gap junction proteins is generated; (ix) the slow wave current causes the smooth muscle
depolarization; and, finally, (x) the contraction of the gastrointestinal wall is triggered [71,78,79].

2.3. Cytokines and Vasoactive agents Modulate Calcium Signaling in Interstitial Cells

Interleukin-9 (IL-9) was shown to promote proliferation of ICCs and to enhance cholecystokinin-
8-induced Ca2+ transients [80]. Moreover, in murine gastric antral tissues, IL-9 receptor and
cholecystokinin-1 receptor were co-localized with c-kit immunoreactivities [80]. It was also proved
that IL-9 had a proliferative effect on ICCs inside tissue explants and that injured ICCs establish
membrane-to-membrane contacts with mast cells in correlation with piecemeal degranulation at the
ultrastructural level [81,82]. Additionally, mast cells were demonstrated to secrete IL-6 that modulated
ICCs growth and repair [81].

Bone morphogenetic protein 2 (BMP-2) and tumor growth factor beta 1 (TGF-β1) were described
to be responsible for biglycan-induced pro-osteogenic reprogramming in human aortic valve interstitial
cells, to upregulate the expression of osteogenic biomarkers and consequently to stimulate calcium
deposition in these cells [83]. Additionally, TNF-α accelerated the calcification of human aortic
valve interstitial cells obtained from patients with calcific aortic valve stenosis via the BMP2-Dlx5
pathway [84]. Vasoactive agents, e.g., serotonin and angiotensin II, were described to elicit maximal
intracellular Ca2+ transients in cultured human valve interstitial cells [85].
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Moreover, bradykinin was identified to modulate the pacemaker activity in cultured ICCs through
bradykinin B2 receptor activation by external Ca2+ influx and internal Ca2+ release via PKC- or
cyclooxygenase-independent mechanism [86]. Histamine was also shown to act on ICCs and to
modulate the pacemaker activity through H1 receptor-mediated pathways via external Ca2+ influx
and Ca2+ release from internal stores [87].

We may conclude that, additionally to neurotransmitters, some cytokines and vasoactive
molecules are involved in controlling/mediating the ICCs function.

3. Physiology and Alterations of Calcium Signaling in Interstitial Cells

Calcium signaling pathways have been described in various subtypes of interstitial cells
(Table 1), including ICCs, ICLCs, TCs, valve interstitial cells or Leydig cells, and the main anatomical
systems have been targeted (e.g., urinary, cardiovascular, gastrointestinal, reproductive system, etc.).
This exhaustive analysis revealed the contribution of the interstitial cells to the physiology and
pathology of these systems. Besides the importance of calcium signaling in interstitial cells to the
pacemaking activity (Figure 4), it should be emphasized that the intracellular Ca2+ fluctuations are
also contributing to a wide range of physiological and pathological roles played by interstitial cells,
including reproductive function, tissue remodeling, immune signaling, mechanical sensing, etc.

3.1. Physiological Role of Calcium Signaling in Interstitial Cells

3.1.1. Calcium Signaling in Gastrointestinal Interstitial Cells

The intestinal ICCs have been described to be electrically coupled to smooth muscle cells [18,88]
and to contribute to the pacemaking activity by affecting the resting membrane potential of the smooth
muscle cells [89]. Recent studies have described the Ca2+-associated mechanisms in the intestinal
ICCs that are contributing to the intestinal pacemaker activity. To date, the gastrointestinal distension
(e.g., hypotonic stress) induces sustained inward holding current via actin microfilaments and the
process is mediated by alteration of intracellular basal Ca2+ concentration and Ca2+ oscillations in
murine cultured intestinal ICCs [90]. Ca2+ oscillations in gastrointestinal ICCs were described to
depend on Ca2+ influx mediated by transient receptor potential-like channel 4 (TRP4) in caveolae [91].

Although ICCs have been generally accepted as being able to tune the luminal chemical
environment, that prepares the membrane potential of smooth muscle cells (SMCs) for depolarizing
or hyperpolarizing response, recent studies provide evidence for the non-contribution of ICCs to the
enteric inhibitory neuromuscular neurotransmission [92].

3.1.2. Calcium Signaling in the Interstitial Cells of the Urinary Tract

ICCs act as pacemakers in the urinary tract [93]. ICCs were identified both in the upper
and lower urinary tract, and voltage clamp recordings indicated that these cells present abundant
calcium-activated chloride currents and spontaneous transient inward currents blocked by chloride
channel antagonists [93]. Depending on the segment of the urinary tract, ICCs may act or not as
pacemaker cells. In the urethra, ICCs have been considered as “loose pacemakers” that provide
multiple and randomly modulatory inputs to the smooth muscle cells, while in the bladder or the
renal pelvis, these cells are only modulators of the smooth muscle activity [94]. Other studies indicated
that ICCs from the urethra are specialized pacemakers involved in the generation of urethral tone and
in the maintenance of urinary continence, and there is an important contribution of intracellular Ca2+

stores and Ca2+ influx to these pacemaking mechanisms [74].
Stimuli, e.g., caffeine, muscarinic or purinergic agonists, elicit intracellular calcium concentration

increases in isolated c-kit positive cells from the suburothelial layer [74,95]. Moreover, experiments
with neurogenic electrical field stimulation of guinea-pig bladder tissue samples indicated that all
subtypes of ICCs and smooth muscle cells displayed in situ spontaneous Ca2+ transients that were
tetrodotoxin-sensitive [96].
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In mouse preparations of the ureteropelvic junction, membrane depolarization of stellate ICLCs
evoked a slowly developing outward current that did not arise from the opening of transient
outward current or large conductance Ca2+-activated K+ currents [97]. Whole-cell current-clamp
recordings on ICLCs showed random fluctuations of membrane potential and occasionally large,
long-lasting depolarizations, while voltage-clamp recordings showed high-frequency spontaneous
transient inward currents, and the authors concluded that ICLCs could contribute to the ureteropelvic
junction pacemaking in the absence of a pacemaker drive [97]. ICLCs from the lower urinary tract
have been described to generate and propagate intracellular transient Ca2+ events [71].

However, the details of this Ca2+ spikes occurrence are still not well described, and a possible role
of neuronal triggering can be considered since the ICCs react by means of calcium responses to the
presence of external neurotransmitters.

3.1.3. Calcium Signaling in Interstitial Cells of the Female Reproductive System

Oxytocin-induced [Ca2+]i oscillations have been demonstrated in primary cultures of human
uterine myocytes [98,99], but data recorded in intact cells residing within the myometrium are
limited. However, a recent study on organotypic slices from human myometrium indicated that
oxytocin-induced [Ca2+]i oscillations occurred only in a proportion of cells and were not relevant
for the acute regulation of myometrial contractility, but the authors suggested the involvement of
[Ca2+]i oscillations in long-term regulatory processes, e.g., gene expression triggering [100]. These
cells were identified to be ICCs or ICLCs and described to be morphologically and phenotypically
distinct by SMCs.

To date, the contribution of ICCs and/or ICLCs to the pacemaking activity was analyzed in
different segments of the reproductive system. In murine oviducts, ICCs were described as pacemakers
being responsible for generating slow waves underlying myosalpinx contractions that are critical for
egg transport [101]. Additionally, calcium imaging of live tissue slices from myometrium show that
ICLCs located on the edge of the smooth muscle bundles initiate the contractile wave [43]. Moreover,
ICLCs from myometrium exhibit in vitro spontaneous electrical activity characterized by membrane
potentials of 62.4 ± 7.22 mV, and short duration: 1.197 ± 0.04 ms [29]. More systematic experiments
are necessary to confirm a detailed picture of calcium activity in the reproductive system ICCs.

3.1.4. Calcium Signaling in Interstitial Cells of the Male Reproductive System

Leydig cells are a subtype of interstitial cells that have been described in the seminiferous tubules
of the testicles. BKCa channels were characterized to be activated by the increase of the intracellular
Ca2+ and to determine the cell membrane hyperpolarization. In Leydig cells, the hyperpolarization
induced by the BKCa channels was speculated to activate a series of events that limits testosterone
production [102]. Oppositely, hormones might regulate the intracellular Ca2+ concentration in Leydig
cells. To date, the luteinizing hormone was shown to modulate the T-type calcium channels and
the intracellular Ca2+ transients through PKC and PKA signaling pathways, and thus, these kinases,
besides the direct action to promote testosterone synthesis, also act on the overall calcium dynamics
in Leydig cells [103]. Mibefradil was shown to inhibit T-type calcium channels in Leydig cells and
steroidogenesis is linked to the Ca2+ entry through the T-type Ca2+ channel [104].

Exposure of Leydig cells to polychlorinated naphthalenes increased the intracellular Ca2+

concentration, the sex steroids production and the mRNA expression of estrogen-related receptors
α, β and γ [105]. Several studies pointed out that the Ca2+ molecular pathways are essential for
steroidogenesis in Leydig cells and that the transcriptional cascade involving the nuclear receptor
NR4A1 regulates steroidogenesis [106,107].
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3.1.5. Calcium Signaling in Interstitial Cells from the Vascular System

Vascular interstitial cells from the portal vein were shown to play an important role in the
rhythmic vascular activity that contributes to the vascular tone [108]. In particular, mitochondrial Ca2+

is essential for the generation of the rhythmic Ca2+ waves in vascular interstitial cells [108].
Vascular interstitial cells were discussed to be similar to the previously described ICCs and

ICLCs [35,109,110] and were characterized in a large variety of blood vessels preparations (e.g., rabbit
portal vein and mesenteric and cerebral arteries; rat portal vein, aorta and pulmonary, mesenteric,
kidney, coronary and cerebral arteries; mouse aorta, mesenteric and cerebral arteries; guinea pig
cerebral, portal vein, mesenteric and kidney arteries; and human mesenteric and gastro-omental
arteries) [35,111–116]. It should be emphasized that in primary vascular cell cultures, vascular
interstitial cells display slow rhythmical changes of the intracellular Ca2+ concentration, while
contractile vascular smooth muscle cells present faster Ca2+ sparks [109], and that both subtypes of
Ca2+ signals are generated close to the apposition between the perinuclear Ca2+ store and endoplasmic
reticulum network [110,117].

3.2. Pathological Role of Calcium Signaling in Interstitial Cells

3.2.1. Modulation of Calcium Signaling Pathways in Interstitial Cells as a Therapeutic Strategy against
Aortic Valve Calcification and Aortic Stenosis

Valve interstitial cells have been extensively studied. The comparison between the transcriptional
profiles and cellular functions of the human aortic valve interstitial cells and mitral valve interstitial
cells indicated expression differences for seventy-eight genes, among those NKX2–5, TBX15, OGN,
OMD, and CDKN1C having a higher expression and TBX5, MMP1, and PCDH10 a lower expression in
aortic valve interstitial cells [118]. Interestingly, mitral interstitial cells proliferated more quickly and
showed more calcium deposition and alkaline phosphatase activity than aortic interstitial cells [118].

Calcific aortic valve disease is a slowly progressive disorder that ranges from aortic sclerosis
to severe calcification, with multiple microscopic characteristics, including endothelial damage and
lipid deposition. Valvular interstitial cells are thought to be involved in tissue remodeling and repair
during the cyclic movement and mechanical stress of aortic valves [119]. Valvular interstitial cells are
located on the internal side of the heart valves, being different between the three cusps, and only a
subpopulation of these cells are predisposed to calcification [120].
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Table 1. Calcium signaling in interstitial cells. Calcium signaling mechanisms in interstitial cells are described and their contribution to the pacemaking activity
is indicated. The main interstitial cells involved in the pacemaking activity of different anatomical systems are ICCs and ICLCs, while TCs are not able to act as
pacemakers. Other subtypes of interstitial cells (e.g., valve interstitial cells or Leydig cells) have not been described to play a role in pacemaking activity.

Anatomical
Localization of the

Interstitial Cells

Subtype of
Interstitial Cells Calcium Signaling Mechanisms Contribution to the

Pacemaking Activity Reference

Gastrointestinal
system ICCs

• ICCs are coupled with SMCs and affect their resting membrane potential; gastrointestinal distension induces
sustained inward holding current via actin microfilaments and the process is mediated by changes in the
intracellular basal Ca2+ concentration and Ca2+ oscillations in ICCs

Yes [63,90]

Urinary system

ICCs
• ICCs present abundant calcium-activated chloride currents; ICCs contribute to the urethral tone and the

maintenance of urinary continence, and there is an important contribution of intracellular Ca2+ stores and Ca2+

influx to these mechanisms; ICC and SMCs display in situ spontaneous tetrodotoxin-sensitive Ca2+ transients

Yes/No (Depending
on the segment of the

urinary tract)
[74,93,96]

ICLCs
• membrane depolarization of ICLCs evokes slowly developing outward current but not the opening of

transient outward current or large conductance Ca2+-activated K+ currents; ICLCs from the lower urinary
tract have been described to generate and propagate intracellular transient Ca2+ events

Yes [71,97]

Reproductive system

ICCs • oviduct ICCs generate slow waves underlying myosalpinx contractions that are critical for egg transport Yes [101]

ICLCs • myometrial contractile signaling, associated with Ca2+ intracellular transients, starts on the borders of smooth
muscle bundles where ICLC are located; myometrial ICLCs present in vitro spontaneous electrical activity

Yes [29,43]

TCs
• TCs do not express key pacemaker genes (e.g., Kit, Ano1); T-type calcium channels were described to

contribute to the mechanical sensing of TCs; hyperpolarization-activated chloride inward currents with
calcium dependence and small-conductance calcium-activated potassium currents were described in TCs

No [68,121–123]

Leydig cells • the hyperpolarization induced by the BKCa channels was speculated to activate a series of events that limits
testosterone production; steroidogenesis is linked to the Ca2+ entry through the T-type Ca2+ channel

N/A [102–104,106,107]

Cardiovascular
system

Vascular interstitial
cells

• vascular interstitial cells (similar to ICCs/ICLCs) display slow rhythmical changes of the intracellular Ca2+

concentration that imply both the contribution of the perinuclear Ca2+ store and endoplasmic
reticulum network

Yes [110,113,117]

TCs • vascular TCs express large conductance BKCa and inwardly rectifying K+ currents Probably yes [124]

Valve interstitial
cells

• valve interstitial cells are involved in tissue remodeling and repair during the cyclic movement and
mechanical stress of aortic valves, but in pathological conditions are predisposed to calcification

N/A [120]
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In aortic valve interstitial cells, rapamycin, a commonly used immunosuppressant, was described
to inhibit Toll-like receptor 4 (TLR4)-induced osteogenic responses by activation of signal transducer
and activator of transcription 3 (Stat3) through Akt, and to alleviate the inflammation-induced initiation
and progression of calcific aortic valve disease [125].

Denosumab, a human monoclonal antibody that binds the receptor activator of nuclear factor
κ-β ligand, was shown to reduce calcium deposition in the aorta [126], but the mechanism by which it
affects ectopic calcification was poorly understood in the last decade. A recent study highlighted that
denosumab may act as an in vitro inhibitor of valvular interstitial cells calcification [127].

3.2.2. Interstitial Cells Dysfunction during Intestinal Inflammation

ICCs play an important role in the gastrointestinal inflammation. Inflammation-induced
alterations in the network of ICCs from the small intestine associated with Auerbach’s plexus lead to
gastrointestinal motility disturbances [128]. Recently, it was demonstrated that during the intestinal
inflammation, nitric oxide-induced oxidative stress impaired the pacemaking function of murine
ICCs [129]. Indeed, treatment of ICCs with interferon-γ and lipopolysaccharides for 24 h reduced the
frequency and the amplitude of calcium oscillations in these cells [129]. However, the possibility of a
direct action of cytokines on ICCs during the inflammatory process could be another explanation.

4. Calcium Signaling in TCs

TCs are ubiquitous cells localized in the various mammalian anatomical structures, e.g.,
cardiovascular, respiratory, digestive, reproductive, urinary, musculoskeletal, integumentary, visual,
nervous, and hematopoietic systems [130]. However, the study of calcium signaling in TCs is a
recently opened research direction. The pioneering studies done so far have been rather focused on
the description of calcium channels at the plasma membrane level by immunohistochemistry and
electrophysiology techniques. This topic has many uncovered aspects to be further investigated.
Actually, there are no papers reporting direct evidence of calcium transients in TCs. In the following
paragraphs, we review the very little information reported until now on this topic.

4.1. Physiological Role of Calcium Signaling in TCs

4.1.1. Contribution of Calcium Signaling in TCs to the Uterine Physiology

A novel class of PDGFR-α(+) interstitial cells was described in mouse and monkey female
reproductive tracts. It is distinct from smooth muscle cells and ICCs, and was characterized to have a
variable gene expression between parts of the reproductive tract (e.g., ovary, oviduct, and uterus) or
between the tissue regions of the same organ (e.g., uterine myometrium vs. endometrium) [131]. These
cells are unlikely to provide pacemaker activity, as key pacemaker genes found in ICCs (e.g., Kit, and
Ano1) [121,132] were not detected to be expressed, while the Gja1 gene encoding for connexin 43 was
identified in high levels suggesting their possible involvement in forming gap junctions in between
and with the neighboring smooth muscle cells [131]. CD34 and PDGFRα are considered as reliable
markers to identify and separate TCs [47,133,134] and we might suppose that the newly identified
interstitial cells are corresponding to TCs.

Recent studies have described by immunohistochemistry and in vitro electrophysiology the
presence of T-type calcium channels in cultured human myometrial TCs [68,123]. Cretoiu et al.
reported difficulties in recording T-type calcium channels in human myometrial TCs by applying the
standard patch-clamp protocol consisting in step depolarization pulses from −90 to +40 mV of 100 ms
duration, 10-mV increment from a holding potential of −110 mV [68]. However, the authors succeeded
to activate T-type calcium currents in human myometrial TCs by applying a brief depolarizing ramp
protocol from −90 to +60 mV with a duration of 100 ms and steepness of 1.5 V/s [68]. Mibefradil,
a selective inhibitor of T-type calcium channels, was demonstrated to block these currents in uterine
TCs [68]. Additionally, acute (30 min) and chronic (24 h) exposure of TCs from pregnant myometrium
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to mibefradil determined a significant reduction in the low-level laser stimulation telopodal lateral
extension growth rate [123].

TCs are considered as mechanical sensors in human uterus, probably being involved in the
detection and translation of the stretch stimuli to the nuclear factors and in the activation of genes
encoding protein synthesis [135,136]. We might suppose that calcium signaling in uterine TCs
plays an important role in the mechanical sensing mechanism, as mibefradil was already shown
to distinctly modulate TCs sensitivities from nonpregnant and pregnant myometrium to low-level
laser stimulation [123]. As TCs from pregnant myometrium were more susceptible to deviate the
growth direction of telopodal lateral extension than those from nonpregnant myometrium when
exposed to low-laser laser stimulation [123], then these cells were proposed to play an important role
in the uterine contraction mechanism in a direct relationship with the pregnancy status [136].

The physiological role of calcium signaling in TCs should be considered in an extended perspective
as multiple ion channels are calcium-activated and/or calcium-dependent. In this context, previous
studies have also reported the functional expression of hyperpolarization-activated chloride inward
current with calcium dependence [122] and of small-conductance calcium-activated potassium (SK3)
channels [137] in cultivated TCs from human myometrium. Interestingly, uterine TCs, but not
uterine smooth muscle cells, were demonstrated to express SK3 channels, and that this expression
is higher in nonpregnant compared to pregnant myometrium [137]. Moreover, SK3 activators were
proposed to reduce contractility in human myometrium by modulating TCs function [137]. NS4591
(4,5-dichloro-1,3-diethyl-1,3-dihydro-benzoimidazol-2-one) is also a modulator of the calcium-activated
potassium channels and was demonstrated to exert a relaxant effect on the human myometrial
spontaneous contractility in vitro [138].

4.1.2. Contribution of Calcium Signaling in TCs to the Cardiac Physiology

Oppositely to the uterine TCs that do not express the pacemaker-related Kit and Ano1 genes [131],
cardiac TCs express CD34, CD29, vimentin, sca-1, c-kit, and Nanog, and are more likely to be involved
in the heart pacemaking activity [133,139,140]. Additionally, cardiac TCs were demonstrated to
functionally express large conductance Ca2+-activated K+ currents (BKCa) and inwardly rectifying K+

currents, but not transient outward K+ currents or ATP-sensitive potassium current [124]. The presence
of BKCa channels in cardiac TCs strongly supports the involvement of these cells in the cardiac
pacemaking activity, as previous studies have demonstrated that BKCa channels regulate sinoatrial
node firing rate and cardiac pacing in vivo [141].

4.1.3. Contribution of Calcium Signaling in TCs to the Urinary Physiology

Several subtypes of TCs have been described in the human urinary bladder: (i) TCs from
the sub-urothelium were PDGFRα/calret-positive and CD34/c-Kit-negative, being subdivided
in αSMA-negative if located immediately beneath the urothelium, and αSMA-positive when
located deeper and having a larger body; and (ii) TCs from the submucosa and detrusor were
PDGFRα/αSMA/c-Kit-negative and CD34/calret-positive [38]. The authors mentioned that no cell
possessing the ICCs features was detected, while TCs were organized in a thick multilayered area
parallel to the urothelial surface [38]. Despite the characterization of TCs in the urinary system or
the already described role of Ca2+ signaling contribution to the urethral tone and urinary continence
maintenance in ICCs and ICLCs [71,74,93,96,97], no studies have described so far the calcium signaling
mechanisms in TCs from different segments of the urinary system.

4.2. Pathological Role of Calcium Signaling in TCs

4.2.1. Contribution of Calcium Signaling in TCs to the Immune Response

Uterine TCs were described as functional players in the activation of peritoneal macrophages.
Macrophages exposed to TC conditioned media contained abundant pseudopodia and cytoplasmic
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secretory granules without cell viability changes, and had an increased release of TNF-α, IL1-R1, and
IL-10, but not TGF-β1, IL-1β, IL-23α, and IL-18 [142]. Based on the in vitro data, it was suggested
that TCs are involved in the immune response, being important actors in the immunoregulatory and
immunosurveillance processes [142].

Additionally to the already known involvement of the Langerhans cells, dermal dendritic
cells, inflammatory dendritic epidermal cells and plasmacytoid dendritic cells in the chronic skin
inflammatory process that characterizes psoriasis, recently, dermal TCs were described to be one of
the important triggers for the characteristic vascular pathology in psoriasis [143]. Previous studies in
psoriasis indicated alterations of the calcium metabolism in several cellular systems, and, consequently,
we might suppose that TCs, as part of the immune system activation, undergo significant changes
in calcium signaling changes. To date, cultured psoriatic keratinocytes present a down regulation
of the capacitive calcium influx and a defective calcium-mediated cell signaling [144]. In a model
of psoriasis-inflamed skin, it was proved that store-operated calcium entry proteins, e.g., stromal
interaction molecule (STIM1), contribute to neutrophil chemotaxis and infiltration [145]. Moreover,
there is a strong positive association between psoriasis and an increased coronary calcium score,
mainly in patients with severe psoriasis [146] and hypocalcemia is considered as a risk factor in this
pathology [147].

4.2.2. Correlations between Elements that Modulate TCs Migration and Various Pathologies

A recently proposed theoretical model described TCs migration in chemical, metabolic and heat
gradients [55]. Increased metabolism can be found in pathological cases such as tumors [148] or
infections [149], but also in tissues with increased metabolic activity, e.g., striated muscle [150], cardiac
muscle [151] or myometrium in different physiological [152] or pathological states [153].

Involvement of TCs signaling through calcium and increased metabolism limits the use of TCs
calcium channel modulators in the pathologies affecting the heart and uterine muscles, due to a
relatively uniform signaling pathway through calcium in these organs.

4.2.3. TCs and Possible Roles of Calcium Metabolism in Uterine Pathologies

Modulation of TCs’ growth by mechanical factors via calcium channels has a degree of mechanical
sensitivity [123] and correlates with the TCs’ ability to communicate through gap junctions [40,46],
the calcium involvement in myometrium proliferation [154,155] and contraction [100]. Therefore, we
propose the hypothesis that TCs contribute to smooth muscle growth in areas with high mechanical
forces. This signaling mechanism may be involved in the uniform growth of uterus thickness during
pregnancy by signaling the increase in thickness of the uterus in all areas with a thinner uterine
wall compared with adjacent areas. This uniform growth is also modulated by normal uterine
contractions. Promising therapeutic outputs include the prevention of uterine ruptures secondary to
uterine hypotrophy, by employing calcium channels modulators acting on TCs. Implantation of the
placenta leads to its development into the uterine wall thickness. This process decreases the thickness
of the myometrium in the area with the maximum development of the placenta. This increases the
mechanical forces generated by the mass of the fetus and myometrium physiological contractions in
these localized areas. TCs may be involved in these areas with a compensatory increase in the thickness
of the uterus, through the mechanism described above. It opens up new therapeutic opportunities for
the treatment of pathological implantation of the placenta.

4.2.4. TCs and Possible Roles of Calcium Metabolism in Cardiac Pathologies

Concentric muscle growth of the cavitary organs modulated by mechanical forces and calcium
through the mechanism described above could justify various forms of cardiac hypertrophy (concentric
and eccentric) by correlations between mechanical forces, the degree of local fibrosis that could decrease
the stimulation of TCs through stretching and the degree of perfusion that is needed to hypertrophy.
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This theoretical model explains the link between high cardiac fibrosis after myocardial infarction and
functional recovery [156].

5. Concluding Remarks and Perspectives

To summarize, comparing the role of calcium signaling mechanisms in different subtypes of
interstitial cells to the pacemaking activity (Figure 4), we conclude that while ICCs and ICLCs are
contributing to the initiation and propagation of the Ca2+ oscillations, TCs are not pacemakers but
modulate the activity of the surrounding cells. However, this conclusion has to be confirmed by future
reports on calcium signaling mechanisms, especially in the case of TCs.
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ICCs, ICLCs, and TCs. Knowledge about calcium signaling and related physiological processes are
highlighted. As expected, the ICCs are the best described and the TCs the poorest. One can observe
certain similarities between the ICLCs and the other two types of cells, explained by the fact that both
cell populations co-exist under this acronym. Insets reproduced with permission from [44,157].

Moreover, even if the role of ICCs to intermediate the information transmission from neurons to
surrounding muscles cells is largely accepted, the possibility that neurotransmitters (able to trigger
the cascades controlling Ca2+ in ICCs) are involved in the peacemaking activity is very little explored.
We consider that this hypothesis could be tested in future works.

Although the existence of TCs signaling mechanisms with neighboring cells using signaling
through calcium is incompletely understood, these cells open great therapeutic opportunities especially
for predominantly muscular organs, which have a high degree of uniformity in the response to calcium.
Muscle growth control mechanisms depending on TCs’ ability to respond to mechanical stimuli
mediated by calcium channels were highlighted. Targeting these channels of TCs can lead to the
development of innovative therapies for diseases with significant social and economic impacts, such as
uterine pathologies and abnormal implantation of the placenta, or cardiac pathologies like hypertrophy
and response to myocardial infarction. For this goal, it is necessary to develop viable ways for TCs’
separation from biological samples to allow calcium channel targeted overexpression, or expression of
calcium channels modified to respond to specific drugs. Such an approach would reduce potential
side effects of low specificity calcium channel modulators.
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