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Abstract: Hepatic cholestasis is associated with a significant suppression of the hypothalamus-
pituitary-adrenal axis (HPA). In the present study, we tested the hypothesis that activation of the
HPA axis by corticosterone treatment can reverse liver inflammation and fibrosis in a multidrug
resistance protein 2 knockout (MDR2KO) transgenic mouse model of hepatic cholestasis. Friend
Virus B NIH-Jackson (FVBN) control and MDR2KO male and female mice were treated with vehicle
or corticosterone for two weeks, then serum and liver analyses of hepatic cholestasis markers were
performed. Indicators of inflammation, such as increased numbers of macrophages, were determined.
MDR2KO mice had lower corticotropin releasing hormone and corticosterone levels than FVBN
controls in the serum. There was a large accumulation of CD68 and F4/80 macrophages in MDR2KO
mice livers, which indicated greater inflammation compared to FVBNs, an effect reversed by
corticosterone treatment. Intrahepatic biliary duct mass, collagen deposition and alpha smooth muscle
actin (αSMA) were found to be much higher in livers of MDR2KO mice than in controls; corticosterone
treatment significantly decreased these fibrosis markers. When looking at the gender-specific response
to corticosterone treatment, male MDR2KO mice tended to have a more pronounced reversal of liver
fibrosis than females treated with corticosterone.

Keywords: hypothalamic-pituitary-adrenal (HPA) axis; corticosterone; glucocorticoid receptor;
hepatic cholestasis; liver fibrosis; cholangiocytes

1. Introduction

The hypothalamus-pituitary-adrenal (HPA) axis consists of a complex set of signaling pathways at
the neuroendocrine level, with roles in regulating physiological activities of various parts of the body
for maintaining metabolic homeostasis in response to changes or stressors in the environment [1–3].
In clinical studies, an association of liver dysfunction, such as cirrhosis and obstructive jaundice,
was found with adrenal insufficiency [4–6]. Furthermore, in experimental models of cholestasis,
such as after bile duct ligation (BDL) in rats, the HPA axis was significantly dysregulated [7–9].
We have previously demonstrated that experimental suppression of the HPA axis in rats resulted in
a similar increase in cholangiocyte proliferation as that observed after BDL and conversely, strategies
to reactivate the HPA axis attenuated the biliary hyperplasia observed after BDL [9]. The suppression
in the HPA axis during cholestasis has been partially attributed to the activation of the glucocorticoid
receptor in the hypothalamus by aberrant bile acid signaling to suppress corticotropin releasing
hormone [10].
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An important step in HPA axis signaling is played by glucocorticoids and glucocorticoid receptors
(GR), which mediate the signals from the adrenal glands to the tissues which are regulated by the
HPA axis [11]. Interestingly, in animal studies, a gender-biased function of GR has been reported,
e.g., in mouse liver GR differentially regulates inflammatory gene expression in males and females [12].
Another study in a sepsis model of systemic inflammation, specific genes had altered expression in
response to glucocorticoids in both sexes but in opposite directions [13]. Gender-dependent differences
of GR expression and function were demonstrated in the brain and liver of rats when exposed to
stress [14,15]. Heat shock proteins (HSP) can bind to hepatic GR, thus preventing GR from binding
DNA; in rats treated with antidepressants, HSP–GR binding was reduced in females but increased in
males [14,15]. However, whether there is gender disparity in response to glucocorticoids in cholestatic
liver diseases is unknown.

Based on our previous observations that the HPA axis, and especially hypothalamic function,
was suppressed in rat models of hepatic cholestasis, we set out to determine (i) if the suppression
of the HPA axis can also be found in other models of cholestatic liver disease; (ii) if treatment with
glucocorticoids can attenuate liver cholestasis and subsequent biliary fibrosis; and (iii) if there is
any gender disparity in the liver pathology or response to glucocorticoid therapy in a mouse model
of cholestasis.

The MDR2KO mouse provides a model for studying hepatic cholestasis, liver fibrosis and
hepatocarcinogenesis in the context of chronic inflammation [16]. The ablation of AbcB4 gene encoding
the MDR2 protein, a protein with function in phospholipid transport from hepatocytes into the
biliary ducts, causes accumulation of toxic bile in the liver and subsequently hepatic cholestasis.
Although the mechanism of pathogenesis in MDR2KO mice is not completely understood, several
studies have demonstrated that mice lacking MDR2 protein develop a chronic inflammatory condition
characterized by periductal inflammatory cell infiltration and periportal fibrosis [16–18]. In the present
study, we treated male and female control (FVBN) and MDR2KO mice with vehicle (DMSO) or
corticosterone. We tested markers of liver inflammation and fibrosis and found significant differences
between males and females in the corticosterone-induced response.

2. Results

2.1. The HPA Axis Is Suppressed in MDR2KO Mice in Both Males and Females

To test the possibility that hepatic cholestasis in the MDR2KO mouse model is associated with
changes in HPA axis function, we measured the level of corticosterone and corticotropin-releasing
hormone (CRH) in serum of male and female control and cholestatic MDR2KO mice by enzyme
immunoassay (EIA). As shown in Figure 1A, serum corticosterone concentrations were significantly
lower in MDR2KO male and female mice as compared to FVBN control mice. Data also suggest that
the decrease in corticosterone is more pronounced in male MDR2KO mice than in female. To determine
if this suppression of glucocorticoid levels could be attributed to a dysregulation in hypothalamic
signaling, circulating CRH levels were assessed. Concentrations of circulating CRH were significantly
lower in MDR2KO males versus FVBN male mice, while in females there was the same trend even
though it did not reach significance (Figure 1B). Thus, these results support a suppression of HPA axis
in the MDR2KO mouse model of hepatic cholestasis with a higher degree of suppression in males than
in females.

2.2. Liver GR Was Equally Expressed in Male and Female MDR2KO and FVBN Mice

Based on the observation that the corticosterone levels were strongly reduced in MDR2KO mice
as compared to controls, we hypothesized that treating MDR2KO mice with corticosterone may result
in a reversal of HPA axis suppression and consequently a reversal of liver cholestasis. Since the main
mediator of corticosterone signaling is GR, we assessed GR expression in the liver of MDR2KO mice
and compared to controls treated with vehicle or corticosterone. Thus, GR expression was assessed by
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RT-qPCR and immunohistochemistry (IHC). GR mRNA was equally expressed in male and female
FVBN and MDR2KO mice treated with either vehicle or corticosterone (Figure 2A). GR protein was
abundantly expressed and concentrated in nuclei of hepatocytes and cholangiocytes in male and
female FVBN control and MDR2KO mice (Figure 2B–D). These data suggest that GR is expressed in
male and female MDR2KO mice at the same level as in FVBN counterparts.
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Figure 1. HPA axis markers in serum of male and female Friend Virus B NIH-Jackson (FVBN)
control mice and MDR2KO mice. Corticosterone (A) and corticotropin-releasing hormone (CRH, (B))
concentrations were determined by enzyme immunoassay (EIA). The serum was collected from
two-month-old male and female FVBN and MDR2KO mice. * MDR2KO versus FVBN. # females versus
males; p < 0.05, n = 3.
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Figure 2. Glucocorticoid receptor (GR) expression in the liver of male and female FVBN and MDR2KO
mice. (A) Results of RT-qPCR for GR performed with RNA isolated from livers of male and female
FVBN and MDR2KO mice treated with vehicle or corticosterone; (B) The IHC images were analyzed
and the percent areas of GR-stained pixels per field were estimated for each treatment group. n = 3,
p < 0.05; (C,D) Representative IHC pictures of GR protein in liver sections from males and females
FVBN and MDR2KO mice treated with vehicle or corticosterone. Scale Bar, 100 µm.
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2.3. Serum Chemistry of Male and Female MDR2KO Mice as Compared to FVBN Controls

Liver damage indicators such as aspartate aminotransferase (AST), alanine aminotransferase (ALT)
and total bilirubin (TBIL) were assayed in the serum of male and female MDR2KO mice and FVBN
controls treated with vehicle or corticosterone. The results are shown in Figure 3, and demonstrate
that ALT and AST were increased in sera of MDR2KO mice of both genders as compared with
FVBN controls. Corticosterone treatment reduced serum AST and ALT to normal values in male
MDR2KO mice but not in females. Interestingly, bilirubin which was significantly higher than normal
in MDR2KO mice males and females and its levels were reduced to FVBN values by corticosterone
treatment in both male and female MDR2KO mice.
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Figure 3. Serum chemistry of male and female FVBN and MDR2KO mice when treated with
vehicle or corticosterone. Alanine aminotransferase (ALT), aspartate aminotransferase (AST) and
total bilirubin (TBIL) were determined as described in Methods; n = 3, p < 0.05. * MDR2KO versus
FVBN. # corticosterone versus DMSO.

2.4. The Increased Intrahepatic Bile Duct Mass (IBDM) of MDR2KO Mice Was Reversed by
Corticosterone Treatment

There was a marked increase in cholangiocyte number per field, as demonstrated by cytokeratin 19
(CK19) immunoreactivity, in both MDR2KO male and female mice when compared to FVBNs although
this effect was more pronounced in female mice (Figure 4). Furthermore, treatment with corticosterone
resulted in an attenuation of the increased IBDM observed in MDR2KO mice with a stronger effect
in males compared to females (a 56% reduction in males compared to a 20% reduction in females;
Figure 4). These results indicate that corticosterone was able to reverse the massive accumulation of
cholangiocytes in the MDR2KO mouse model of cholestasis, and this reversal is gender-dependent
with corticosterone being more effective in males than in females.
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Figure 4. Intrahepatic bile duct mass (IBDM) is reduced by corticosterone in both male and female
MDR2KO mice. Immunohistochemistry (IHC) images of cytokeratin 19 (CK19)-immunolabeled
cholangiocytes in liver from male (A) and female (B) FVBN and MDR2KO mice treated with DMSO
or corticosterone; (C) Percent area per field of CK19 staining in livers from male and female FVBN
and MDR2KO mice treated with vehicle or corticosterone. * MDR2KO versus FVBN. # corticosterone
versus DMSO treatment. @ females versus males; n = 3, p < 0.05. Scale bar, 100 µm.

In order to determine whether the inhibitory effect of corticosterone on IBDM in MDR2KO mice
was due to increased cholangiocyte apoptosis or decreased proliferation of these cells, we assessed
the apoptosis as well as the colocalization of proliferating cell nuclear antigen (PCNA), marker of cell
proliferation, with the cholangiocyte marker CK19 in the liver of male and female FVBN and MDR2KO
mice treated with vehicle or corticosterone.

Apoptotic activity was higher than normal in livers of female MDR2KO mice treated with
corticosterone, but not in male MDR2KO mice undergoing the same corticosterone treatment
(Figure 5A–C). The percentage of cholangiocytes (CK19-positive cells, Figure 5D–F) expressing PCNA
was also determined in the liver of male and female MDR2KO and FVBN control mice. These data
show that corticosterone reduced the number of proliferating cholangiocytes from 27% to 3% (normal
level of FVBN mice) in male MDR2KO mice. In female MDR2KO mice, there was a higher percentage
of proliferative cholangiocytes compared to male MDR2KO mice, and corticosterone treatment did not
decrease cholangiocyte proliferation in female MDR2KO mice. Thus, it can be concluded that increased
IBDM in female compared to male MDR2KO mice is due to a higher cholangiocyte proliferation rate
in females. Furthermore, there is a gender-dependent mechanism for the reduction in IBDM observed
after corticosterone treatment with an induction in apoptosis prevalent in females and the reduction in
proliferation predominant in males.

2.5. Corticosterone Treatment Reduced the Excess Inflammatory Hepatic Cells in MDR2KO Mice

To further investigate the role of inflammation in the development of cholestasis in MDR2KO
mice, we looked first at recruited monocytes/macrophages expressing CD68 and F4/80, which are
known to be present in cholestatic liver [19–21] using IHC (Figure 6). It can be noted that there was
a robust increase of CD68+ and F4/80+ macrophage numbers in male and female MDR2KO mice
(Figure 6). In MDR2KO males, CD68+ cells were increased by six fold as compared to FVBN males
and corticosterone treatment reduced the number of these inflammatory cells to 70% of MDR2KO
mice treated with vehicle alone. In female MDR2KO mice there was a 6.5-fold increase in the number
of CD68+ cells as compared to female FVBN mice, and treatment with corticosterone decreased this
accumulation of CD68+ cells to approximately 30% of female MDR2KO mice treated with vehicle.
Similarly, when measuring the changes in the number of monocytes/macrophages expressing F4/80
in liver of MDR2KO mice compared to FVBN mice, a three-fold increase in MDR2KO males was
determined and this was reduced to 49% of vehicle with corticosterone treatment. In MDR2KO females,
the hepatic F4/80+ cells were 4.1 fold more numerous than in FVBN females, and corticosterone
treatment resulted in a 70% reduction of these cells as compared to vehicle-treated female MDR2KO
mice (Figure 6).
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Figure 5. Effect of corticosterone treatment on apoptosis and cholangiocyte proliferation in the
liver of MDR2KO mice. The extent of apoptosis in cholangiocytes was tested by TUNEL staining
(terminal deoxynucleotidyl transferase dUTP nick-end labeling) in male (A) and female (B) FVBN and
MDR2KO mice. Apoptotic cells appear in brown while the cells are counterstained with methyl blue.
Cholangiocytes can be readily recognized by their characteristic shape (i.e., epithelial cells forming
ducts, as indicated by red arrows). Black arrows demarcate apoptotic cholangiocytes. Colocalization
of PCNA (proliferating cell nuclear antigen) and CK19 (marker of cholangiocytes) was tested by IF
confocal microscopy of liver sections of male (D) and female (E) FVBN/MDR2KO mice when treated
with vehicle or corticosterone. Representative images are shown in green being CK19 and in red,
PCNA. The yellow arrows point to PCNA when present within cholangiocytes. Plots of apoptotic
cholangiocytes as assessed through TUNEL images (C) and IF colocalization (F) of PCNA and CK19;
n = 3, p < 0.05. * MDR2KO versus FVBN controls. # corticosterone versus DMSO. Scale bar, 100 µm.

IHC of C-type lectin domain family 4 member F (Clec4f), a marker of resident Kupffer cells,
and C-C motif chemokine receptor 2 (Ccr2), a marker of recruited macrophages, were also measured
in liver sections of male and female FVBN and MDR2KO mice treated with vehicle or corticosterone
(Figure 7). Clec4f-immunolabeled cells were more abundant in MDR2KO than FVBN control mice of
both genders (Figure 7A–C). Corticosterone treatment resulted in significant reduction of Kupffer cells
in male, but not in female MDR2KO mice. In contrast, Ccr2-immunolabeled cells were increased in
female MDR2KO mice but not in MDR2KO males compared to controls, and corticosterone treatment
significantly reduced the accumulation of these cells in MDR2KO female mice livers (Figure 7D–F).

In summary, MDR2KO mice exhibited more than normal accumulation of monocytes/
macrophages expressing CD68 or F4/80, with no difference between genders, and this immune
response was reversed by corticosterone treatment. The amount of Clec4f+ Kupffer cells was also
increased in both male and female MDR2KO mice and reversed by corticosterone treatment. However,
Ccr2+ cells were increased only in female MDR2KO mice and corticosterone treatment did not reduce
the amount of these cells. Because Ccr2 is the receptor for the CCL2 chemokine, these results suggest
that in female MDR2KO mice, CCL2 may be secreted in response to MDR2KO-caused liver injury,
inducing the migration and accumulation of monocytes/macrophages and other immune cells that
express Ccr2 receptor on their surface.
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Figure 6. Corticosterone reduces liver inflammatory cells of male and female MDR2KO mice.
IHC images of CD68+ cells in the liver of FVBN and MDR2KO mice, males and females, respectively
(A,B). Plot of percent CD68+ cells per field quantified as percent area in the liver of male and female
FVBN and MDR2KO mice (C). IHC images of F4/80+ cells in FVBN and MDR2KO mice, males and
females, respectively (D,E). Plot of F4/80+ cells per field quantified in FVBN and MDR2KO mice,
males and females (F). * MDR2KO versus FVBN mice. # corticosterone versus vehicle treatment.
@ females versus males; p < 0.05, n = 3. Scale bar, 100 µm.
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Figure 7. The effect of corticosterone treatment on Clec4f+ and Ccr2+ macrophages in liver of MDR2KO
mice as compared to controls. Liver sections from male and female FVBN and MDR2KO mice which
had been treated with vehicle or corticosterone were immunostained for Clec4f expressing cells
(resident macrophages) and Ccr2 expressing cells (recruited macrophages). The IHC images were
quantified and the results plotted. Pictures of Clec4f+ cells in liver of males (A) and females (B) FVBN
and MDR2KO mice are shown. The plot of quantifications is in (C). Images of Ccr2-immunolabeled
cells of male (D) and female (E) FVBN and MDR2KO mice were also quantified and the results are
shown in (F); n = 3, p < 0.05. *, MDR2KO versus FVBN. # corticosterone versus vehicle. Scale bar,
100 µm.
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2.6. Corticosterone Treatment Reduces Proinflammatory Cytokines in MDR2KO Mice

Several proinflammatory cytokines were assessed in livers of male and female MDR2KO mice as
compared with FVBN control mice when treated with vehicle or corticosterone. As shown in Figure 8,
RT-qPCR results indicated that interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) were
upregulated in male, but not female, MDR2KO mice as compared to FVBN controls and returned to
normal expression levels by corticosterone treatment. C chemokine ligand 2 (CCL2) mRNA however
was upregulated in female MDR2KO mice but not in males, and corticosterone treatment was less
effective in reducing the expression of this proinflammatory chemokine.
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Figure 8. Proinflammatory cytokines are affected differently in females versus males MDR2KO mice
when treated with corticosterone. The expression of several proinflammatory cytokines at RNA level
was assessed by RT-qPCR, in RNA isolated from liver of males and females FVBN and MDR2KO mice
which had been treated with vehicle or corticosterone. RT-qPCR was performed for IL-6 (A), TNFα (B)
and CCL2 (C). n = 3–4, p < 0.05. * MDR2KO versus FVBN, # corticosterone versus DMSO, @ females
versus males.

2.7. Corticosterone Reverses Liver Fibrosis in MDR2KO Mice

The extent of liver fibrosis in male and female MDR2KO mice as compared to FVBN control mice
when treated with vehicle or corticosterone, was further assessed. The expression levels of several
hepatic fibrosis markers such as alpha smooth muscle actin (αSMA), collagen type 1 alpha 1 chain
(Col1A1), fibronectin 1 (FN1), PCNA and tissue inhibitor of metalloprotease 1 (TIMP1) were tested by
RT-qPCR (Figure 9). The results indicate that αSMA and TIMP1, which were two-fold upregulated
in both male and female MDR2KO mice as compared to controls, were reduced to normal levels in
males and only slightly decreased in females by corticosterone treatment. Col1A1, FN1 and PCNA
mRNAs were upregulated in male and female MDR2KO mice, and corticosterone treatment resulted
in decreased expression of these fibrosis markers in male, but not female, MDR2KO mice.

We further assessed the degree of hepatic fibrosis in MDR2KO mice by Sirius Red staining of
collagen in liver sections. As illustrated in Figure 10, panels A–B, Sirius Red staining was very extensive
in the liver of all MDR2KO mice males and females as compared to FVBNs. Corticosterone treatment
caused a strong reduction in collagen in the liver of male and female MDR2KO mice. The effect
of corticosterone in reducing the hepatic deposits of collagen was greater in males than females,
since Sirius Red staining was diminished by more than 50% in males, compared to 30% in females
(Figure 10C). These results suggest that corticosterone is able to diminish the fibrosis process in liver of
MDR2KO male and female mice, but it has a stronger effect in males than in females.

It is well-documented that a definitive marker of liver fibrosis is αSMA, which becomes increased
in cholestasis due to activation of hepatic stellate cells (HSC) which largely contribute to producing
increased levels of fibrillary collagen and αSMA during the fibrosis process [22,23]. In the present
study, αSMA staining analyses demonstrated that αSMA protein was more abundant in the livers
of MDR2KO mice than in controls (Figure 10D,E), in both males and females. Thus, there was
2.3-fold more hepatic αSMA in MDR2KO males than in FVBN control males, and a 60% reduction of
αSMA staining in MDR2KO mice with corticosterone treatment. In MDR2KO females, corticosterone
treatment reduced αSMA expression levels significantly, but to less of an extent than in MDR2KO
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males. These results suggest that there was an excess of αSMA protein in livers of MDR2KO mice as
compared to FVBN mice, with females expressing more αSMA than males. Corticosterone treatment
decreases αSMA accumulation in the liver of MDR2KO mice of both genders, but it has a greater effect
in males than in females.
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Figure 9. Corticosterone treatment reduces the expression of liver fibrosis markers to a greater degree
in male compared to female MDR2KO mice. Total RNA was isolated from liver of male and female
FVBN and MDR2KO mice treated with vehicle or corticosterone. RT-qPCR was performed for αSMA
(A), Col1A1 (B), FN1(C), PCNA (D), and TIMP1 (E). n = 3–4, p < 0.05. * MDR2KO versus FVBN.
# corticosterone versus DMSO.
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Figure 10. Corticosterone treatment reduces liver fibrosis in male and female MDR2KO mice. (A,B),
Images of Sirius Red staining in liver sections from male (A) and female (B) FVBN and MDR2KO mice
treated with DMSO or corticosterone. Plot of percent area of Sirius Red staining in livers from male
and female FVBN and MDR2KO mice when treated with DMSO or corticosterone (C). αSMA IHC in
the liver of male and female FVBN and MDR2KO mice in the absence and presence of corticosterone
(D,E). Plot of αSMA IHC quantifications (F). * MDR2KO versus FVBN mice; # corticosterone versus
DMSO treatment. @ females versus males; p < 0.05, n = 3–4. Scale bar, 100 µm.
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3. Discussion

In the present study we aimed to test the possibility of using glucocorticoids for the treatment of
hepatic cholestasis in the MDR2KO mouse model of cholestasis. The results of this study demonstrate
that the advanced biliary hyperplasia developed by MDR2KO mice of both genders by the age of two
months is reversed by corticosterone treatment with high efficiency in males and only a moderate
effect in females. We show that in addition to higher than normal cholangiocyte proliferation,
the MDR2KO mice exhibited hepatic inflammation as indicated by a large accumulation of CD68+ and
F4/80+ recruited monocytes/macrophages in livers of male and female MDR2KO mice. Interestingly,
the increase of both types of cells, especially CD68+ cells, was more pronounced in females than
males. The treatment with corticosterone lowered the number of these cells with no significant
differences between males and females. Clec4f+ Kupffer cells were also equally increased in male and
female MDR2KO mice as compared to controls, and this was reversed by corticosterone treatment.
However, in liver of female, but not male, MDR2KO mice, the Ccr2+ cells were greatly increased as
a result of significantly much higher secretion of CCL2 chemokine in female than male MDR2KO mice.
Our data also demonstrate that MDR2KO mice exhibited liver fibrosis and this was more extensive
in females than males. The assessment of corticosterone treatment on hepatic fibrosis showed that
there was a significant reduction in collagen deposition and αSMA expression in the liver of MDR2KO
mice of both genders. However, due to male MDR2KO mice displaying less fibrosis compared to
female MDR2KO mice, corticosterone treatment allowed for male MDR2KO mice to have fibrosis
measures closer to FVBN control levels compared to female MDR2KO mice. These data indicate that
corticosterone treatment of hepatic cholestasis and fibrosis in MDR2KO mice resulted in a significant
reversal of biliary hyperplasia, inflammation and fibrosis.

Many reports demonstrate that in MDR2KO mice, the ablation of the AbcB4 gene, encoding
the MDR2 protein, a hepatocyte membrane protein with function in phospholipid transport into
the biliary ducts, results in hepatic cholestasis due to toxic bile accumulation [24,25]. This mouse
model allows mechanistic studies at the cellular and molecular levels, providing data useful in finding
treatments of human hepatic cholestasis caused by mutations in the MDR3 gene, the human homolog
for mouse MDR2. More than 30 mutations in MDR3 have been reported [26], which are associated with
biliary diseases such as intrahepatic cholestasis of pregnancy, low phospholipid-associated cholestasis
and anicteric cholestasis [27–29]. In our study, MDR2KO mice exhibited cholangiocyte hyperplasia,
increased hepatic inflammation and liver fibrosis compared to FVBN controls, which is in agreement
with published data on these mice [16,17]. Our results also agreed with clinical observations in patients
exhibiting low phospholipid-associated cholestasis, gallbladder cholesterol cholelithiasis, cirrhosis and
other diseases caused by loss of function mutations of MDR3, the human homolog of the AbcB4 mouse
gene [27,28].

Analysis of changes in markers of biliary hyperplasia, hepatic inflammation and fibrogenesis
in male and female MDR2KO mice suggested that there are strong differences between genders in
regard to the extent of biliary cholestasis in this experimental model. Our data clearly demonstrate
more advanced cholestasis and fibrosis in females as compared to males in MDR2KO mice, and this is
consistent with previous reports which have also demonstrated gender-specific differences in hepatic
injury in the MDR2KO mouse model [16,17,25,26]. Lammert et al., described spontaneous cholecysto-
and hepatolithiasis in MDR2KO mice, with female mice displaying a higher gallstone-susceptibility [25].
Recently, Li et al. [30] described a role of the long noncoding RNA H19 in the mechanism of
these gender-biased differences. Our data demonstrating that inflammatory hepatic cells, IBDM,
Sirius Red-stained collagen and activated stellate cells were more pronounced in female than male
MDR2KO mice are thus consistent with gender-related differences previously reported. Interestingly,
a gender-biased susceptibility to hepatic cholestasis was also reported in clinical studies, the incidence
of biliary dysfunctions in women being much higher than in men [31–33]. For example, primary
biliary cirrhosis (PBC) is a cholestatic liver disease of autoimmune origin, which predominantly affects
women (90% of patients) in middle age [31]. PBC is characterized by inflammatory destruction of the
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small intrahepatic bile ducts with fibrosis progressing to cirrhosis and subsequent liver failure. Studies
on estrogen receptors (ER-α, β) demonstrated that ER-α and -β were observed in cholangiocytes of
PBC patients but not in cholangiocytes from healthy controls [33].

Previous observations in human liver pathology and experimental animal models of liver
diseases suggest that hepatic cholestasis is associated with a significant suppression of HPA axis
activity [5,7–10,34]. The data presented here in the MDR2KO mouse model of hepatic cholestasis
support the concept that the HPA axis is suppressed during cholestasis. Thus, the decreased level of
serum corticosterone in MDR2KO mice is consistent with our previous observations in other animal
models of hepatic cholestasis, i.e., bile duct ligation (BDL) and α-naphtylisothiocyanate (ANIT) feeding
in the rat [9]. Reduced serum cortisol and corticosterone levels in BDL over a period of seven days
and two weeks of ANIT-diet were also detected [9]. A low level of circulating CRH released from
the hypothalamus found in MDR2KO mice is in agreement with significantly reduced serum CRH in
rats after BDL procedure [9]. A clinical study on the expression of CRH in patients with intrahepatic
cholestasis of pregnancy (ICP) after ursodeoxycholic acid (UDCA) treatment determined that CRH was
significantly down-regulated in patients with ICP and that UDCA treatment resulted in an attenuation
of serum CRH concentrations [34]. Our results from the MDR2KO model of hepatic cholestasis show
lower than normal serum CRH in MDR2KO mice and these findings are in agreement with clinical data.
To our knowledge, there are no reports on gender-dependent differences with regard to suppression of
the HPA axis in patients with biliary cholestasis or other liver disorders so far. In our experimental
MDR2KO mouse model, we observed a down-regulation of both corticosterone and CRH with the
effect being more pronounced in male than female MDR2KO mice.

Only a few clinical studies looked at gender-biased responses to glucocorticoid (GC) treatment in
hepatic cholestasis. A study on the effect of GCs on primary sclerosing cholangitis (PSC) indicated that
a significant response to corticosteroid treatment was detected in 3.7% of all PSC patients in the study
and this result was not gender-specific [35]. Another randomized double-blind study assessed the
effect of two GCs, budesonide and prednisone, in combination with UDCA on PSC and only minor
beneficial short-term effects of prednisone, but not budesonide, in addition to UDCA were found
in PSC patients [36]. In an experimental model of hepatic cholestasis, we previously showed that
glucocorticoid treatment significantly reduced biliary mass seven days after BDL surgery in rats [9].
Our results in the MDR2KO mouse model are consistent with the data obtained in the BDL rat model,
demonstrating that corticosterone treatment results in strong reduction of cholangiocyte hyperplasia
of MDR2KO male and female mice. As far as we know, this is the first study to demonstrate that
corticosterone treatment causes a significant reduction of hepatic inflammatory cells and hepatic
fibrosis in MDR2KO mice. Our study addresses the question of possible gender-dependent responses
of cholestatic MDR2KO mice to corticosterone treatment, and the data suggest that in MDR2KO mice
there is a gender-specific effect of corticosterone on indicators of cholangiocyte hyperplasia and liver
fibrosis. Thus, the excessive bile duct mass in MDR2KO was significantly reduced after two weeks of
corticosterone treatment in males and females, and corticosterone had a stronger effect in diminishing
IBDM in males than in females. We demonstrate that in MDR2KO males, corticosterone treatment
reduced IBDM by decreasing the cholangiocyte proliferation rate and not by inducing apoptosis.
In the livers of MDR2KO females treated with corticosterone, the cholangiocyte proliferation remained
unchanged and some apoptotic cells have been detected but the overall IBDM remained larger than
in FVBN controls. The molecular mechanisms of these gender-biased effects of corticosterone on
cholangiocyte proliferation in male and female MDR2KO mice, are still to be solved. Corticosterone
treatment significantly reduced Sirius Red-stained collagen in all MDR2KO mice and it was more
effective in males than in females. Corticosterone treatment reversed the abnormally increased
expression of hepatic αSMA with a greater effect in males than in females. Even though not related
to hepatic cholestasis, several reports described gender-related differences in the effect of GCs on
expression of GR-regulated genes in animal studies [12,13,37] as well as clinical investigations [37,38].
Our data indicated that this gender-specific response to corticosterone was not due to differences in
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GR expression or intracellular distribution in MDR2KO mice as compared to FVBN controls, but may
be due to a disparity in the downstream effectors or GR activation, or may be a reflection of a disparity
in the severity of cholestatic symptoms in male versus female MDR2KO mice. Further studies to
determine the cause of the gender difference in response to glucocorticoid treatment are warranted.

In regard to the anti-inflammatory effect of low-dose corticosterone treatment in the MDR2KO
mouse model of hepatic cholestasis, our data show that corticosterone has a positive and effective
outcome, mediating a major reversal of macrophage accumulation within periportal and periductal
areas of the liver in MDR2KO mice. We measured the accumulation of several types of immune cells
such as CD68+, F4/80+, Clec4f+ and Ccr2+ in liver of MDR2KO mice as compared to FVBN controls.
CD68 is a marker for recruited monocytes/macrophages which take part in the inflammatory response
to liver injury by releasing cytokines such as TNFα, IL-1 and IL-6 [19,21,39]. The F4/80 marker is
also expressed in a large group of macrophages, which may or may not express CD68 [20]. In our
study, corticosterone was able to strongly diminish the abnormally high number of CD68+ and F4/80+

macrophages in liver of MDR2KO mice, regardless of gender. We also assessed Kupffer cells, which are
hepatic resident mononuclear cells (MNC) with very heterogeneous lineages [20,40]. Because Clec4f,
a C-lectin protein, is specifically located in the plasma membrane of Kupffer cells [41], we assessed the
amount of Clec4f+ cells in the liver of MDR2KO mice versus FVBN controls. Clec4f+ macrophages
were increased in both male and female MDR2KO mice, and this abnormal excess was reversed by
corticosterone treatment. Ccr2 is known to be expressed on the surface of many types of immune cells
such as monocytes and T-cells which are chemo-attracted by the specific ligand CCL2 [42]. Unlike all
the other immune cells tested in our study, Ccr2+ cells were greatly increased in female but not male
MDR2KO mice as compared to controls, and corticosterone treatment did not reduce this immune
response. It is well-known that immune cells which exhibit Ccr2, the receptor for CCL2 chemokine,
migrate along the CCL2 gradient to the damaged cells in the liver [42]. Interestingly, when CCL2
expression was measured in livers of male and female MDR2KO mice and controls, there was two-fold
more CCL2 mRNA in female than in male MDR2KO mice. Many Ccr2+ macrophages were detected
in close proximity to cholangiocytes, lining the ductal epithelium in female but not male MDR2KO
mice. These findings point to an important role of Ccr2+ recruited cells, in the pathology of liver in
MDR2KO female mice.

The use of corticosteroids for liver disease treatment has been long studied [43]. Clinical case
studies on GC treatment of chronic cholestasis, such as autoimmune cholangitis, drug-induced
cholangitis and intrahepatic cholestasis of pregnancy have been reported [44]. It has been demonstrated
that in cases of prolonged cholestatic jaundice after endoscopic retrograde cholangiography, prednisone
treatment resulted in progressive restoration of serum bilirubin and alkaline phosphatase to
normal levels [44,45]. Interestingly, many case studies focused on prolonged cholangitis following
removal of gallstones in women specifically, since estrogens are thought to promote gallstone
formation [45]. Observational studies show that estrogen therapy is an important risk factor in
gallbladder disease [46,47]. Studies on experimental models also suggested a beneficial effect of GC
treatment, such as dexamethasone, for attenuation of ductular impairment [48,49]. Our data from
the MDR2KO mouse model, showing cholangiocyte hyperplasia and hepatic fibrosis being more
pronounced in females than in males, and being partially reduced by corticosterone treatment, are in
agreement with these reports.

GCs are known to have anti-inflammatory effects in many types of immune conditions
by inducing apoptosis of inflammatory cells and suppressing proinflammatory genes encoding
cytokines, chemokines and cell adhesion molecules, thereby reducing the inflammation process [50].
In an experimental model of contact dermatitis for example, dexamethasone reduced the number of
CD68+ macrophages [51]. The same effect was found when allergic airway inflammation was induced
in mice, with CD68+ macrophages in the lungs being significantly diminished with dexamethasone
treatment [52]. Interestingly, GC treatment was reported to remarkably reduce the macrophage content
of atherosclerotic plaques in an experimental model of atherosclerosis in which macrophages are
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crucial for inducing blood vessel inflammation [53]. Thus, our data in MDR2KO mice, where CD68+,
F4/80+ and Clec4f+ macrophages in cholestatic liver were reduced by corticosterone treatment, are in
line with reported results in which GCs were shown to reduce the accumulation of macrophages
associated with inflammation in various parts of the body.

4. Materials and Methods

4.1. Materials

All chemical reagents were purchased from Sigma-Aldrich (St. Louis, MO, USA) and were of the
highest grade available, unless otherwise specified. The antibodies used in IHC experiments were:
CK19, CD68, F4/80, αSMA, Clec4f, Ccr2, PCNA from Abcam (Cambridge, MA, USA); GR antibody
was from Santa Cruz Biotechnology (Dallas, TX, USA).

4.2. Animal Treatment

FVBN and MDR2KO mice were purchased from Charles River and maintained in
a temperature-controlled environment at 20–22 ◦C with a 12:12 h light-dark cycle, having free access to
food and drinking water. All animal procedures were performed in accordance with the approval of
the Baylor Scott & White Health Institutional Animal Care and Use Committee, (protocol no. 2015-015,
approved 8 December 2015). Two-month-old male and female FVBN and MDR2KO mice were treated
with corticosterone (1 mg/kg/day via ip implanted osmotic minipumps Alzet (Cupertino, CA, USA)
or Vehicle (20% DMSO) for 2 weeks, following manufacturer’s instructions. Each treatment group
consisted of 4–5 animals.

4.3. Assay of HPA Axis Activity

The concentration of corticosterone and CRH in the serum of male and female FVBN and
MDR2KO mice were measured by using EIA kits from Phoenix Pharmaceuticals (Phoenix, AZ, USA),
according to manufacturer’s instructions.

4.4. Assessment of Cholangiocyte Proliferation, Liver Fibrosis and Inflammation

In order to measure the amount of IBDM in wildtype and MDR2KO mice in the absence or
presence of corticosterone, IHC on paraffin-embedded liver sections was performed using a CK19
antibody for labeling the cholangiocytes, followed by VectaStain ABC kit from Vector Laboratories
Inc. (Burlingame, CA, USA) for color development, following previous described protocols [9].
Liver sections of 4 µm were obtained with a Leica microtome. The VectaStain-stained sections
were mounted on slides, and scanned with a Leica SCN400 scanner, with 20× optical magnification.
Screenshots with 10× digital magnification were taken and used for quantification of field-stained
pixel percentage of CK19-positive cells. The same procedure was employed for IHC of CD68, F4/80,
Clec4f, Ccr2 and αSMA in liver sections. The images were analyzed with ImageJ software downloaded
from the NIH website. The degree of fibrosis in FVBN and MDR2KO mice treated with vehicle or
corticosterone was assessed by staining collagen I and III fibers in liver sections with Sirius Red (kit
from Sigma Aldrich, St. Louis, MO, USA) and then processing the slides in the same manner used for
IHC analysis. Apoptosis in the liver of FVBN and MDR2KO mice was assessed using a TUNEL kit
from Abcam (Cambridge, MA, USA) according to manufacturer’s instructions and was conterstained
with methyl green.

4.5. Assays of mRNA Expression of Genes with Role in Inflammation and Fibrosis by RT-qPCR

Changes in mRNA expression of TNFα. IL-6, CCL2, αSMA, COL1A1, FN1, TIMP1 and PCNA
were estimated by performing RT-qPCR. Total RNA was isolated from liver tissue of FVBN and
MDR2KO mice treated with vehicle or corticosterone, by using RNeasy kit from Qiagen (Germantown,
MD, USA) according to manufacturer’s instructions. The reverse transcription of RNAs was done
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with iScript RT Supermix from Bio-Rad (Hercules, CA, USA), and then the real time PCR assay was
performed with iTaq Universal SYBR Green Supermix from Bio-Rad, and corresponding primers from
SABiosciences-Qiagen. The amplification reactions were run with an AriaMx Real Time PCR system
from Agilent Technologies (Santa Clara, CA, USA).

4.6. Statistical Analysis of Results

Quantifications obtained in all experiments were subjected to statistical analysis, i.e., the average
and standard error of the mean (SEM) were calculated for each group of animals; namely male
FVBN treated with vehicle (DMSO), females FVBN treated vehicle, FVBN males with corticosterone,
FVBN females with corticosterone, MDR2KO males treated with vehicle, MDR2KO females treated
with vehicle, MDR2KO males with corticosterone, and MDR2KO females treated with corticosterone.
When comparing two groups, the significance was calculated using Student’s t-test. We also used
two-way ANOVA followed by an appropriate post-hoc test on GraphPad Prism (San Diego, CA, USA)
when comparing multiple groups. The statistical difference was considered significant when the p
value was less than 0.05.

5. Conclusions

In conclusion, we demonstrated, in a hepatic cholestasis mouse model, that treatment with
corticosterone to activate the HPA axis reversed cholangiocyte proliferation, inflammation and
fibrosis of the liver in MDR2KO mice, having a higher efficacy in males than in females. Overall,
the corticosterone treatment was beneficial in reducing liver inflammation and fibrosis in this mouse
model of hepatic cholestasis in both males and females. Future studies on combining corticosterone
treatment with other factors, novel or known to repress the damaging effects of biliary cholestasis,
may improve the healthcare procedures for treating biliary diseases.
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αSMA Alpha smooth muscle actin
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CCL2 C chemokine ligand 2
Ccr2 C chemokine receptor 2 (receptor of CCL2)
Clec4f C-lectin 4f
CK19 Cytokeratin 19
Col1A1 Collagen type 1 alpha 1
CRH Corticotrope releasing hormone
EIA Enzyme immune assay
ER-α, ER-β Estrogen receptor-α, -β
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GR Glucocorticoid receptor
HPA Hypothalamus-Pituitary-Adrenal axis
HSC Hepatic stellate cells
HSP Heat shock protein
IBDM Intrahepatic biliary duct mass
IHC Immunohistochemistry
IL-6 Interleukin 6
MDR2KO Multidrug resistance protein 2 knockout transgenic mouse
MNC Mononuclear cells
PCNA Proliferating cell nuclear antigen
PSC Primary sclerosing cholangitis
PBC Primary biliary cirrhosis
TIMP1 Tissue inhibitor of metallopeptidases 1
TNFα Tumor necrosis factor alpha
UDCA Ursodeoxycholic acid
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