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Abstract: Primary cilia are hair-like organelles and play crucial roles in vertebrate development,
organogenesis, health, and many genetic disorders. A primary cilium is a mechano-sensory
organelle that responds to mechanical stimuli in the micro-environment. A cilium is also a
chemosensor that senses chemical signals surrounding a cell. The overall function of a cilium
is therefore to act as a communication hub to transfer extracellular signals into intracellular responses.
Although intracellular calcium has been one of the most studied signaling messengers that transmit
extracellular signals into the cells, calcium signaling by various ion channels remains a topic of
interest in the field. This may be due to a broad spectrum of cilia functions that are dependent
on or independent of utilizing calcium as a second messenger. We therefore revisit and discuss
the calcium-dependent and calcium-independent ciliary signaling pathways of Hedgehog, Wnt,
PDGFR, Notch, TGF-β, mTOR, OFD1 autophagy, and other GPCR-associated signaling. All of these
signaling pathways play crucial roles in various cellular processes, such as in organ and embryonic
development, cardiac functioning, planar cell polarity, transactivation, differentiation, the cell cycle,
apoptosis, tissue homeostasis, and the immune response.
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1. Introduction

Cilia are slender microtubule-based sensory organelles that protrude from the apical membrane
in many cell types; approximately 800 ciliary proteins have been identified [1,2]. These multifunctional
proteins are synthesized in the cytosol and transported to the cilia by intraflagellar transport (IFT) [3].
Cilia sense environmental cues and play vital roles in organ development. Based on their motility, cilia
can be classified as motile and non-motile (also referred to as primary cilia). Motile cilia are usually
bundled organelles known to be required for mucus clearance, cerebrospinal fluid flow, sperm motility,
and leftward flow at the embryonic node, among other functions [4]. Defects in this motility are known
to be associated with diseases such as primary ciliary dyskinesia, including Kartagener syndrome.
On the other hand, non-motile cilia are solitary sensory organelles. Defects in the sensory function
or structure of non-motile cilia are associated with diseases termed ciliopathies, including polycystic
kidney. Based on their structure and motility, a special hybrid type of cilia, known as nodal cilia, has
been identified. Nodal cilia are solitary motile organelles. Among all types of cilia, nodal cilia are
currently known to play the earliest physiological role during embryonic development. Dysfunction in
nodal cilia could potentially result in internal thoracic and abdominal organ configuration from
normal (situs solitus) to mirror-image configuration (situs inversus), randomized configuration (situs
ambiguous), or configuration with duplication (situs isomerism).
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2. Cilia Structure

The cilium structure contains the microtubule-based cytoskeleton core unit called the axoneme
(Figure 1). The axonemal structure is comprised of nine pairs of peripheral microtubules that are
post-translationally acetylated to support the long cilia structure. In motile cilia, these nine pairs
of microtubules are arranged in circumferentially with a central pair of microtubules (9+2). In the
non-motile primary cilia, the axoneme structure usually lacks the central pair of microtubules structure
(9+0 arrangement) and many other machineries [5]. In the nodal cilia, the axoneme also lacks the
central pair of microtubules (9+0 arrangement), but it requires both dynein arms and radial spokes
for motility [6]. The axonemal microtubule structures support the movement of IFT along cilia shaft.
IFT includes kinesin-based anterograde and dynein-powered retrograde transport [7–9]. A cilium
extends from a basal body, which is composed of two centrioles. One of the centrioles is known as
the mother centriole, to which the ciliary axoneme is rooted beneath the cell membrane. In addition
to its vital structural role, the basal body connected to the transition-fiber proteins is thought to
regulate protein entry and exit from the ciliary compartment [10,11]. Protein entering and exiting
the cilium is believed to be regulated by a barrier at the ciliary base that encompasses the transition
zone (Y-shaped linkers) [12,13]. The Y-shaped linkers, also called Y-ancle, Y-linkers, or simply Y-links,
extend from the outer microtubule doublets of the transition zone to the ciliary membrane, generating
a very stable membrane domain resistant to detergent [14]. The triplet microtubules at the transition
zone are transitioning to doublet microtubules at the ciliary axoneme. The ciliary membrane of the
transition zone houses many proteins. The majority of these protein functions are largely unknown
and have yet to be established. Some proteins are specifically confined within the transition zone
only at a specified time and are later translocated out to the ciliary membrane. For example, many
G-protein-coupled receptors are first targeted within the transition zone prior to translocation to the
ciliary membrane [15–18]. The ciliary membrane is therefore known to have many receptor proteins,
ion channels, protein transporters and sensory proteins to support the sensory function of the cilia.
On the other hand, cilioplasm is constituted within the soluble compartment where many of the
signaling proteins are localized.

A general classification of cilia structure is very complex because of the discoveries of a “9+4”
axoneme in Hensen’s node of a rabbit and a “3+0” axonemal structure in a protozoan [19,20].
Nonetheless, each part of this cilia structure is crucial to support various signaling molecules. Some of
the more established cilia-dependent signaling pathways are described below. Because the roles of
primary cilia are diverse, the signaling pathways by cilia are more complex than previously thought.
There is currently no literature that summarizes all signaling pathways by primary cilia; in this report,
we therefore take the opportunity to provide a brief and concise summary of all known and potential
signaling pathways that depend on primary cilia structure and function.
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Figure 1. Structure of a cilium. The cilium is a hair-like structure composed of the ciliary membrane, 

cilioplasm, axoneme, and basal body. This sensory organelle is membrane-bound and contains 

multiple microtubules running along its length. The ciliary membrane and axoneme make up the 

Figure 1. Structure of a cilium. The cilium is a hair-like structure composed of the ciliary membrane,
cilioplasm, axoneme, and basal body. This sensory organelle is membrane-bound and contains multiple
microtubules running along its length. The ciliary membrane and axoneme make up the upper part of
the cilium. The axoneme has nine peripheral microtubule doublets. The axoneme may have two central
microtubules (9+2 vs. 9+0 axoneme). The 9+2 cilia usually have dynein arms and radial spokes that link
the microtubule doublets and are motile, whereas most 9+0 cilia lack dynein arms, radial spoke, and
central sheath and are nonmotile (primary cilia). Some 9+0 cilia only lack the central microtubule and
are motile (nodal cilia). The axoneme is enclosed in the ciliary membrane, which is distinct from the
cell membrane. Between the cilia and the cell membrane, there is a hypothetical transition membrane
surrounding the transition fibers. The transition fibers at the junction of the basal body act as a filter for
molecules that can pass into or out of the primary cilium.

3. Calcium Signaling

The association between cilia and calcium (Ca2+) signaling has been recognized for decades
but had only focused on the motile cilia [21,22]. Recently, many studies have demonstrated that, in
different cell types, primary cilia are involved in the regulation of intracellular Ca2+ signaling by
two major ciliary-associated proteins (polycystin-1 (PC1) and polycystin-2 (PC2)) [23–26]. In renal
epithelial and vascular endothelial primary cilia, PC2 is co-localized with PC1 and functions as a
component of a mechanosensory complex [23,24,26]. PC2 activation results in increased intracellular
Ca2+. The bending of the primary cilium causes cytoskeletal deformation and bending induced
membrane stretching at the base of the primary cilium [27]. This, in turn, helps extracellular Ca2+

influx through PC2, an event that further stimulates the release of Ca2+ from the intracellular stores
through the stimulation of ryanodine receptors (Figure 2A) [28]. A more recent advance to study
intracellular Ca2+ is through the use of genetic markers that specifically encode Ca2+-reporter proteins
targeted to the cilium. This technique allows for the differentiation of intracellular Ca2+ signaling
between the cilioplasm and the cytoplasm. Ca2+ signals within the cilium mechanically induced
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by shear stress have also been studied by combining biosensor technology with mechanical flow
systems [28–31]. Using a sensor targeted to primary cilia cells, it is shown that deflecting the cilium
with fluid shear force causes an increase in ciliary Ca2+ [28–31].Int. J. Mol. Sci. 2017, 18, 2272 4 of 19 
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Figure 2. Cilia-dependent calcium signaling. (A) The standard established model suggests that primary
cilia respond to force through mechanosensation. In this original model, fluid flow bends the cilium,
which triggers the opening of calcium-sensitive channel proteins and allows Ca2+ to enter the cilium.
Intracellular signaling cascades are activated by the Ca2+ influx, leading to altered gene expression
on the left side of the embryo, or promoting water transport in the kidneys. (B) In another model,
ciliary bending in response to fluid force does not open Ca2+ channels. Instead, Ca2+ influx, observed
in previous experiments, might have been due to diffusion from the cell body or caused by a damaged
cilium membrane in response to extreme levels of shear force.

A study on retinal pigmented cell epithelia demonstrates that changes in the amount of cytosolic
Ca2+ can occur without a significant alteration in ciliary Ca2+, arguing against the hypothesis that
channels in the primary cilium would have a significant effect on global cytoplasmic Ca2+ [32].
Mechanical rupturing of the cilia membrane led to a rapid increase in ciliary Ca2+ propagating to the
ciliary base without affecting the cytoplasmic Ca2+ level. It is proposed that the cilium can become
rapidly infused with tiny amounts of Ca2+ that flow in from the cell body (Figure 2B) [33–35].

As previously discussed [35], the difference in the intracellular Ca2+ models (Figure 2A,B) may
be due to genetically-encoded Ca2+ indicator (G-GECO) used in the experiments. When changes in
ciliary calcium were observed, G-GECO1.0, which has a Kd value of 749 nM, was utilized in these
studies [28–31]. On the other hand, G-GECO1.2, with a Kd value of 442 nM, would have reached
saturation of the fluorescent signal intensity by about 90%, resulting in the likelihood of dampening
of ciliary calcium [34]. Nonetheless, the question remains of whether a cilium could serve as a
mechanosensitive calcium signaling organelle. Of note is that many calcium channels localized in the
ciliary membrane are also found elsewhere within the cells. This leads us to question how crucial the
difference is between ciliary and cytosolic Ca2+ in response to the same stimulus.

Aside from PC2, a primary cilium also contains other transient receptor potential (TRP)
channels [35–39]. These TRP channels may also conduct Ca2+ signaling. Each transient receptor
potential cation channel subfamily member, namely TRPC1, TRPP2, TRPP3, and TRPV4 can be
modulated by chemical (Ca2+ and receptor ligands), physical (voltage and temperature), and
mechanical stimuli (osmolality and fluid shear-stress) [35–39]. Rigorous research on TRPP2 has
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determined several trafficking mechanisms that regulate transport between the endoplasmic reticulum,
plasma membrane, and ciliary membrane [40,41]. In addition, several laboratories independently
show that TRPP2 contributes to responses to the mechanical fluid flow in cholangiocytes, embryonic
node, left–right asymmetry of zebrafish, smooth muscle cells, and vascular endothelia [23,25,30,42–44].

A recent study shows that TRPP3, also known as the PKD2-L1 polycystin ion channel, has atypical
Ca2+ regulation [39]. This study shows that TRPP3 is partially selective to Ca2+ influx. This influx is
inhibited by high internal Ca2+ concentrations. Moreover, the C-terminal EF-hands and coiled-coil
domains of TRPP3 do not contribute to Ca2+-induced potentiation and inactivation. It is proposed
that the unique characteristics of the TRPP3 enable Ca2+ to enter but not leave the small ciliary
compartments [39].

Apart from TRP channels, the L-type Ca2+ channel also modulates the cystic kidney phenotype,
hydrocephalus, and left–right organization defects [45,46]. L-type Ca2+ channel knockdown in a
zebrafish model facilitates the formation of these ciliopathic phenotypes and the L-type Ca2+ channel
presence in renal epithelial cilium is confirmed by immunocytochemistry. This confirms the importance
of Ca2+ signaling in the chemosensory roles of the primary cilium. This L-type Ca2+ channel expression
also regulates through Wnt signaling [46]. Although the exact mechanism is still not known, it is
thought that the modulation of mitochondrial mass and activity results in increased reactive oxygen
species that generates oxidative DNA lesions. The subsequent cellular DNA damage response triggers
increased CaV1.2 expression [46].

4. Hedgehog Signaling

The evolutionarily conserved Hedgehog (Hh) signaling plays an essential role in many aspects
of vertebrate embryonic development and stem cell maintenance. Hh signaling is disrupted in a
spectrum of human tumors, such as in basal cell carcinoma and medulloblastoma. Although the
precise intracellular process of Hh signaling has slightly diverged between species, involving different
mechanisms and protein components, primary cilia have an essential role in Hh signaling in both
vertebrate and invertebrate development [47,48]. The association between Hh and cilia was first
established from genetic screening in the mouse based on the neural tube patterning of mouse embryos.
This screening identifies a set of genes that are required for normal Hh signaling and the formation of
primary cilia.

The cilium has been suggested to function as the Hh transduction hub [49]. Hh signaling involves
multiple inhibitory interactions. In the absence of Hh ligand (Figure 3A), Hh transmembrane receptor
Patched1 (PTCH1, Hh 12-transmembrane receptor) is located at the base of a primary cilium and inhibits
the activity of seven transmembrane smoothened proteins (SMO) through an unidentified signaling
cascade. Meanwhile, suppressor of fused (SUFU) and three zinc-finger-containing transcriptional
factors (Gli1, Gli2, and Gli3) interact with each other within the cilium. This leads to the inhibition of
Gli transcriptional repressor (Gli3) formation and stimulation of gli transcriptional activators (Gli1 and
Gli2) [47,50]. Thus, the transcriptional activation by Hh is largely driven by Gli1 and Gli2.

In the presence of an Hh ligand (Figure 3B), PTCH1 is activated. This triggers PTCH1 to move out
of the cilium and releases the inhibition of SMO, allowing SMO translocation into the cilium [51,52].
Activated SMO co-receptor translocates into the cilium and activates Gli (Gli activator) by releasing
the inhibition of SUFU. Furthermore, the Gli activator is transported to the cell nucleus to turn on the
expression of other genes [53–55]. The repressor complex composed of SUFU and kinesin-like KIF7
sequesters Gli2 and Gli3 in the cilium tip. Sequential phosphorylations of Gli2 and Gli3 by protein
kinase A (PKA), glycogen 3b (Gsk3b), and casein kinase 1 (Ck1) create a phophopeptide motif on
Gli2 and Gli3 that is recognized by Skip/Cullin1/F-box E3 ubiquitin ligase β-TrCP (β-transducin
repeat-containing protein) [56]. The addition of ubiquitin then directs the Gli proteins to the proteasome
for limited (Gli3) or complete (Gli2) degradation by the proteasome. This in turn regulates the
abundance of the Gli2 and Gli3 repressor forms that ultimately inhibit Hh target genes in the
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nucleus [57–60]. Inhibition of Gli3 and activation of Gli2 in response to Hh are largely dependent on
cilium function [47,61,62].
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Figure 3. Cilia-dependent Hedgehog signaling. (A) The Hedgehog (Hh) pathway in vertebrates utilizes
cilium as a signal transduction compartment. In the absence of the Hh ligand, the PTCH1 receptor
localizes to the cilium and is thought to block the entry of SMO into cilia. The kinesin Kif7 (the COS2
homologue) localizes to the base of the cilium, where it may form a complex with Gli transcription
factors and other pathway components. Kif7 at the cilium base prevents Gli proteins’ enrichment
within the cilium and promotes processing of GliRs. (B) Upon Hh binding, SMO moves to the ciliary
membrane and Kif7 translocates into the primary cilium, thereby promoting Gli accumulation at the
ciliary tip. Kif7 and SMP in the cilia may also block the function of SUFU. Activated Gli (GliA) is
transported out of the cilium by the dynein motor and intraflagellar transport particles (IFT). X and T
symbols denote inhibition of gene transcription and protein function, respectively.

5. Wnt Signaling

Another important pathway required for ciliary protein transportation for normal regulation
is Wnt pathways (canonical and non-canonical; Figure 4) [63]. The Wnt signaling pathway is
evolutionarily conserved in many species, ranging from flies to human, and the signaling is
mediated within primary cilia. Wnt signaling is involved in cell migration, planar cell polarity,
neural patterning, skeletal system development, and organogenesis. In cultured cells and zebrafish
embryos, ciliary proteins have been shown to regulate both non-canonical and canonical Wnt signaling
pathways [64–67]. Wnt binding to membrane-bound receptors (frizzled) can activate both canonical
(β-catenin-dependent) and non-canonical (β-catenin-independent) Wnt signaling.

In the presence of a canonical Wnt signal (Figure 4A), cytosolic levels of β-catenin are high due to
the inhibition of the β-catenin destruction complex [55,63,68,69]. This complex is composed of Axin,
adenomatous polyposis coli (APC), casein kinase 1 (CK1), and glycogen synthase kinase 3β (GSK-3β).
The β-catenin destruction complex operates within the β-TrCP/SCF-dependent ubiquitin–proteasome
pathway. In the absence of Wnt, the phosphorylation of β-catenin by CK1 and GSK-3β is thought to
act as a trigger for degradation. This process occurs at the basal body. Furthermore, disheveled (DSH)
regulates canonical Wnt signaling through direct inhibition of GSK-3β kinase activity [70].
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Figure 4. Cilia-dependent Wnt signaling. The cilia/basal body may function as a regulatory switch
to control the canonical and non-canonical Wnt signaling pathways. (A) In the absence of fluid flow,
canonical Wnt signaling predominates. Wnt ligand binds to the co-receptors frizzled, dishevelled
(DSH) is recruited to frizzled, and glycogen synthase kinase-3 (GSK3) is inactivated. β-catenin (β-cat)
translocates to the nucleus, where it acts as a transcriptional co-activator with members of the LEF
and TCF family and induces transcription of Wnt target genes such as cMYC, AXIN2, or L1CAM.
(B) In non-canonical Wnt signaling, the mechanosensation by fluid flow causes intracellular Ca2+

increase and an increase inversin expression. Inversin resides in multiple locations in the cell
as well as at the base of the cilium. Inversin targets cytoplasmic DSH for anaphase-promoting
complex/cyclosome (APC/C)-dependent ubiquitylation and degradation, making it unavailable for
canonical Wnt signaling.

In the presence of Wnt, the β-catenin destruction complex is anchored in the plasma membrane
by DSH, resulting in the inactivation of the complex. As a result, the β-catenin level is increased in
the cytoplasm. β-catenin then translocates into the nucleus to function as a transcriptional coactivator.
β-catenin associates with the nuclear transcription factors T-cell factor (TCF) and lymphocyte enhancer
factor (Lef), which interacts with various transcriptional suppressors, such as Groucho.

The non-canonical Wnt pathway is less well characterized. It is thought that the non-canonical
pathway is independent of β-catenin, but dependent on DSH (Figure 4B). The non-canonical Wnt
signaling is involved in controlling tissue functions and maintaining tissue architectures by modulating
cell migration and orientation. The control of cells in the plane of a tissue, also known as planar cell
polarity (PCP) pathway, was first established in Drosophila [71]. The mechanosensation-dependent
calcium (Ca2+) pathway is believed to be an important initiator for non-canonical Wnt signaling.
DSH is recruited to the plasma membrane to prevent the proteasomal degradation of DSH in a
β-catenin-independent manner. Several studies have implicated many other ciliary and basal body
proteins in the regulation of Wnt signaling [67,72–74]. Inversin, in particular, interacts with DSH
and targets the cytoplasmic fraction of DSH for degradation. Inversin is thought to function as
a molecular switch required for non-canonical Wnt signaling and the suppression of β-catenin
activity [67]. Inversin thus regulates the balance between the canonical and non-canonical Wnt
signaling. Notably, inversin also functions to separate protein pools among the basal body or cilium,
cytoplasm, adherens junction, and nuclear proteins [67,75]. However, it is currently unknown how
inversin navigates its role among those protein pools.
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A recent study shows that several Wnt ligands can bind to PKD1 and that PKD1/TRPP2 can
mediate the effects of other Wnts, not only in the kidney but also in other organs where Wnt/Ca2+

activity is present [76]. This study further suggests that the PKD1/TRPP2 channel complex can
function as a ligand-activated channel. Specifically, Wnt3A, a typical canonical Wnt, activates TRPP2,
suggesting that Wnts could induce Ca2+ influx regardless of their ability to signal through β-catenin as
long as they can bind to PKD1 and PKD1/TRPP2 is present in the target cell.

6. PDGFR Signaling

Platelet-derived growth factor (PDGF) and their receptors (PDGFRs) play pivotal roles in cell
survival, growth control, proliferation, cell migration, embryonic development, and the maintenance
of tissue growth. The PDGFR is a receptor tyrosine kinase that mediates signaling events through
primary cilia [77]. Abnormal PDGF signaling causes a range of diseases, including cancer development,
cardiovascular inflammation, or fibrosis [78]. PDGFRα-signaling is coordinated by the primary cilium
in mouse cultured embryonic fibroblasts [79,80]. PDGFRα is a tyrosine–kinase receptor located within
the ciliary membrane. In normal fibroblasts and the fibrosarcoma cell line, the binding of ligand
PDGF-AA activates the dimerized PDGFR-αα receptor, which is present in the extracellular flow,
and induces downstream cellular responses via MEK/ERK cascade signaling pathways (Figure 5).
These pathways specifically lead to cellular growth, cytoskeletal development, and cellular migration
and their differentiation [55,81,82]. Subsequently, PDGFRα-signaling through the fibroblast primary
cilium may also be important in tissue homeostasis, while defects in this pathway could lead to
tumorigenesis [83]. It has been reported that β-catenin may form a complex with PDGFRα to modulate
cell migration [82].
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Figure 5. Cilia-dependent PDGFR signaling. The G-protein coupled receptors such as platelet-derived
growth factor receptor (PDGFRα) are located at the cilia membrane. The PDGFR pathway is initiated
with PDGF ligand binding to their receptors and inducing cellular responses through downstream
signaling pathways such as the MEK/ERK cascade.

7. Notch Signaling

Notch signaling plays a key role in various aspects of patterning and cell fate choice in
neurogenesis and maintenance of adult tissue growth and development. Notch signaling balances
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progenitor cells with differentiated neurons; it regulates the binary cell fate choice of progenitors as they
segregate into different neuronal subtypes [84–89]. In mammals, Notch refers to four different kinds of
receptors, Notch1–4. The Notch receptor has a single transmembrane domain with a large extracellular
portion associated with Ca2+ and a short intracellular portion. There is evidence suggesting that some
Notch signaling may depend on primary cilium for the signal transduction [90,91].

The Notch3 receptor interacts with Presenilin-2, an enzyme responsible for Notch cleavage and
activation (Figure 6). The Notch3 receptor has also been shown to localize in the ciliary membrane
while Presenilin-2 is localized to the ciliary basal body [92]. Zebrafish with defects in basal body
proteins (such as bbs1 and bbs4) have an increased expression of Notch targets. In these zebrafish
models, the Notch receptor accumulates in the late endosomes, and consequent lysosomal degradation
of Notch receptor is impaired [90]. The Notch signaling pathway plays a central role in left-right
asymmetry by regulating cilium length and thus plays a crucial role in cilium length control [93,94].
Finally, Notch signaling also promotes trafficking of the sonic hedgehog (Shh) signaling mediators into
primary cilium, thereby enhancing the responsiveness of neural progenitor cells to Shh [95].
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Figure 6. Cilia-dependent Notch signaling. A single-transmembrane Notch forms a receptor complex
with the eight-transmembrane presenilin. Upon activation, presenilin mediates the intramembranal
cleavage of notch containing the cdc10/Ankyrin repeats. The Notch intracellular domain is then
released to the nucleus to activate various gene transcriptions.

8. TGF-β Signaling

Transforming growth factor beta (TGF-β) plays major roles in bone development and
maintenance metabolism by regulating cellular proliferation, differentiation, matrix deposition, and
cell migration [96,97]. TGF-β1/Bone morphogenic protein (BMP), which is localized in the extracellular
bone matrix, is activated during osteoclast-mediated resorption. The TGF-β1/BMP complex is
released in response to loading or injury such as a bone fracture [98–101]. Recent studies have
elegantly demonstrated that a discrete spatial group of TGF-β1 and TGF-β2 receptors is localized
within and around the primary cilium in embryonic fibroblast and stem cells [102–104]. Both TGF-β1
and TGF-β2 receptors localize to the ciliary tip and endocytic vesicles at the ciliary base (Figure 7).
TGF-β stimulation increases clathrin-mediated receptor localization and activation of SMAD2/3 and
ERK1/2 at the ciliary base, which is increased in stem cells undergoing cardiomyogenesis [104].
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TGF-β1-induced recruitment of human mesenchymal stem cells (MSCs) is regulated by the primary
cilium. Furthermore, the cilium mediates this response through distinct spatial localization of TGF-β
receptors and signaling components at the primary cilium, whereby TGF-β1-mediated activation of
SMAD3 takes place at the ciliary base (Figure 7). Signaling through the primary cilium is necessary for
the sensing of a TGF-β1 chemotactic gradient in human bone MSCs, demonstrating a novel mechanism
of TGF-β signal regulation and recruitment in stem cells. This highlights the primary cilium as a
possible target to enhance MSCs recruitment and bone formation in orthopedic disease [105].
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Figure 7. Cilia-dependent TGF-β signaling. In the presence of TGF-β, activated TGF-β receptors
(TGF-β1 and TGF-β2) translocate from the ciliary membrane to the ciliary pocket (CiPo) for
clathrin-dependent endocytosis (CDE) and activation of SMAD transcription factors 2/3 (SMAD2/3) in
early endosomes (EE) at the ciliary base. SMAD2/3 forms a trimeric complex with SMAD4 for nuclear
translocation and activation of TGF-β target genes. Ciliary TGF-β signaling also involves the activation
of ERK1/2.

9. mTOR Signaling

Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase functioning as a
central regulator in cellular metabolism, cell growth, cell proliferation, cell cycle progression, and
survival. mTOR associates with different proteins to form the rapamycin-sensitive (mTORC1) and
-insensitive (mTORC2) complexes, respectively. mTOR signaling and primary cilia are associated
with the hyper-proliferation of renal tubular cells, which induces the formation of renal cysts [106].
The most intensive studies about the primary cilium and mTOR in kidney research lie in the
polycystic kidney-associated proteins [107]. The mTOR subcellular signaling involves many proteins,
and the detailed subcellular localization of mTOR family members is largely unclear except that
Hamartin (TSC1) is localized to the base of the primary cilium (Figure 8) [108]. In a recent study,
the LKB-1-AMPK-mTOR signaling pathway is proposed in the kidney for the flow-dependent
downregulation of the mTOR pathway. This pathway is necessary for the proper control of cell
size by autophagy [109]. It is proposed that the primary cilia prevent cyst progression and kidney
tubular cell hypertrophy and proliferation [110], and PC1 inhibits mTOR activity through the regulation
of tuberous sclerosis complex (TSC2) localization [111].
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Figure 8. Cilia-dependent mTOR signaling. Flow shear stress mediates the bending of primary cilia
and inhibition of mTORC1. Tumor suppressor kinase (LKB1) and AMP-dependent protein kinase
(AMPK) are found in the cilia and basal body. Upon cilium bending by fluid flow, LKB1 is activated and
transported into the basal body, where AMPK is phosphorylated. Furthermore, AMPK phosphorylates
TSC2 to activate the TSC1–TSC2 complex. In turn, TSC1–TSC2 stimulates the GTPase activity of Rheb,
preventing it from activating mTORC1. Otherwise, AMPK could also directly antagonize mTORC1.
Polycystin-1 (PC1) may also exert its inhibitory effect on the mTORC1 pathway through its known
interaction with TSC2. The T bars denote inhibition of protein function.

10. OFD1 and Autophagy Signaling

Autophagy is a process by which cells break down cytoplasmic contents. Oral facial digital
syndrome 1 (OFD1) localizes to centrioles and centriolar satellites (Figure 9A). At the basal
autophagy level, OFD1 and the autophagosome marker LC3 are co-localized at the basal body [112].
In starvation-induced autophagy, OFD1 is degraded (Figure 9B); the decreased OFD1 level upon
serum starvation is contingent on both the autophagy-related (ATG) protein ATG5 and lysosome
function. Fascinatingly, OFD1 degradation is specific to the centriolar satellite pool of this protein
as OFD1 levels at the centrioles remain unchanged following serum starvation. OFD1 at the
centriolar satellites suppresses ciliogenesis and that starvation-induced autophagy removes OFD1
from centriolar satellites.

Another study explores the effect of ciliogenesis on autophagy [113]. Starvation-induced
autophagy and autophagosome biogenesis are dysfunctional in cell lines with abnormal IFT20 or
IFT88, proteins required for cilia formation. Additional experiments show that signaling by the Hh
pathway, components of which are recruited to the cilia by IFT, is required for cilia-induced autophagy.
Increasing Hh signaling tends to induce autophagic flux, while decreasing Hh will prevent autophagy.
This mechanism is abnormal in IFT20 or IFT88 mutants. These data suggest that primary cilia promote
autophagosome formation.
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Figure 9. Cilia-dependent OFD1/Autophagy signaling. (A) In basal autophagy, ciliogenesis is
prevented by the sequestering of IFT20 in autophagosomes and its autophagic degradation. OFD1, a
protein that constrains cilium formation at centriolar satellites, is not affected by basal autophagy and
ciliogenesis is therefore impaired. (B) Autophagy induced by serum deprivation promotes ciliogenesis
through inactivation of OFD1, while sparing IFT20. Autophagy proteins are also confined to this
sensory organelle, probably contributing to cilium organization. At the basal body, signals from the
cilium stimulate autophagosome nucleation and OFD1 degradation.

11. Other Cilia-Dependent Signaling Pathways

G-protein coupled receptors (GPCRs) constitute a substantially diverse family of
seven-transmembrane receptors that transmit specific signals to the cell through G proteins
that regulate the activity of various cellular and physiological signaling networks. GPCRs also localize
to rodent neuronal cilia, including the serotonin subtype-6 receptor (5-HTr6), somatostatin receptor3
(SSTR3), and melanin-concentrating hormone receptor 1 (MCHR1) [18,114,115]. Although receptors
were found on neuronal cilia a long time ago, the functional roles of these GPCRs are still elusive.

The elusive role of ciliary kisspeptin receptor (KISS1R) in the onset of puberty and adult
reproductive function is observed in gonadotropin-releasing hormone (GnRH) neurons [116]. While the
selective ablation of cilia from GnRH neurons affects neither cell migration nor sexual maturation in
the mice, the loss of the cilia in GnRH neurons seems to alter neuronal signaling. All these findings
demonstrate that ciliary localization of a GPCR can have different effects on cellular metabolic function
compared to being distributed throughout the membrane.

Overexpression of the serotonin subtype-6 receptor (5-HT6) in cilium induces abnormally long
cilia in rat brains that also have significantly reduced dendritic branches [117]. This effect may be
associated with signaling through type 3 adenylyl cyclase (AC) and important ciliary AC and cAMP,
which have been found to impact cilia length and further control neuronal cell development [118].

Another GPCR that has been associated with cilia signaling is dopamine receptors. Dopamine is
a circulating hormone that plays a fundamental role as a neurotransmitter. Dopamine has been
implicated in hypertension in humans and animal models. The roles and functions of dopamine vary
in different tissues in the body. The renovascular dopaminergic system is involved in renal blood
flow and blood pressure control, but its specific regulation is not yet known. Genetic screening for
abnormal cilia length has identified a family of class-A dopamine binding GPCRs that are involved
in the regulation of cilia and flagella length [119]. One of the many regulators of cilia length is
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the orphan GPR22, a rhodopsin-like GPCR that couples to Gαi/αo to inhibit AC. GPR22 regulates
cilia length and structure as well as left–right asymmetry in zebrafish [120]. The expression of the
dopamine receptor in renal epithelial and vascular endothelial primary cilia has further led to the
hypothesis in the mechanism and signaling of dopamine involved cilia-specific signaling [121,122].
Activation of the ciliary dopamine receptor induces vasodilation via changes in the chemical and
mechanical properties of primary cilia through changes in the cilia length. Another regulator of cilia
length is oculocerebrorenal syndrome of Lowe 1 (OCRL1), a lipid phosphatase that has been shown
to modulate cilia length in renal epithelial cells. OCRL1 knockdown leads to elongation of cilia and
reduced intracellular Ca2+ release in response to ATP [123].

12. Conclusions and Perspectives

It is important to note that while the cellular and molecular pathways described above have
been studied in the context of cilia structure or function, there is evidence that some pathways
could also take place independent of cilia. For example, it has been suggested that cilia are not
involved in Wnt signaling [124,125]. When a Wnt ligand binds to its receptor, the effector β-catenin
translocates to the nucleus [126,127]. Although the roles of many ciliary proteins have been shown
to alter the translocation of β-catenin to the nucleus [63,65], there is contradicting evidence about the
roles of cilia on the Wnt signaling, ranging from inactivation to overactivation of the pathway [128].
Likewise, Hedgehog (Hh) signaling has also been shown to function independently of cilia [129].
It is shown that Hh regulation of Gli protein levels by Sufu is cilium-independent [129], despite the
fact that many Hh pathway components are localized to cilia. It is therefore conceivable to assume
that the cellular signaling described above could mechanistically involve both cilium-dependent and
cilium-independent signal transduction pathways.

In summary, the primary cilium remains a vital organelle responsible for integrative signaling
from extracellular signals in order to exert the physiological functions within a cell. It would certainly
be a generalization to assume that a single type of cilium would serve most of the needs of every cell.
The key to our understanding of cilia function in cellular signaling might be to differentiate the roles
of cilia in different cells, tissues, and organs. Although abnormal ciliary proteins cause ciliopathies,
which present a diversity of clinical features, we do not have a clear idea as to how the cilia signaling
compartment plays an ultimate role in the pathogenesis. There needs to be further research on primary
cilia as this neglected organelle continues to disclose its internal mysteries.
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