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Abstract: Thymus is one of the best known genera within the Labiatae (Lamiaceae) family, with
more than 200 species and many medicinal and culinary uses. The effects of prolonged drought
on lipid profile were investigated in tolerant and sensitive thyme plants (Thymus serpyllum L. and
Thymus vulgaris L., respectively). Non-targeted non-polar metabolite profiling was carried out using
Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry with one-month-old plants
exposed to drought stress, and their morpho-physiological parameters were also evaluated. Tolerant
and sensitive plants exhibited clearly different responses at a physiological level. In addition, different
trends for a number of non-polar metabolites were observed when comparing stressed and control
samples, for both sensitive and tolerant plants. Sensitive plants showed the highest decrease (55%)
in main lipid components such as galactolipids and phospholipids. In tolerant plants, the level of
lipids involved in signaling increased, while intensities of those induced by stress (e.g., oxylipins)
dramatically decreased (50–60%), in particular with respect to metabolites with m/z values of 519.3331,
521.3488, and 581.3709. Partial least square discriminant analysis separated all the samples into four
groups: tolerant watered, tolerant stressed, sensitive watered and sensitive stressed. The combination
of lipid profiling and physiological parameters represented a promising tool for investigating the
mechanisms of plant response to drought stress at non-polar metabolome level.
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1. Introduction

In their environment, plants are often exposed to a plethora of biotic and abiotic stresses, such as
drought, salinity, extreme temperatures, nutritional deficiencies, heavy metals, and pollutants, as well
as pathogen and insect attacks [1–3]. These factors reduce crop yield and therefore, cause global
economic losses [4]. It has been estimated that drought, a major type of abiotic stress, affects around
64% of the world’s land area [5,6]. In plants, water is involved in a number of pivotal physiological
functions, such as plant growth and photosynthesis, and water deficiency results in a severe and often
lethal stress in plant cells. Water deficit is characterized by morphological and physiological features
in plants, such as decreased leaf water potential, wilting, stomatal closure, reduced gas exchange and
photosynthesis, and, finally, plant death [7,8]. Therefore, drought stress may largely impact crop yield
and quality and, hence, food security [9,10].
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At a metabolic level, sensitive plants usually exhibit a higher number ofsignificantly altered
metabolites than tolerant plants, though, qualitatively, the latter show increases in the accumulation of
osmolytes (that maintain the cell water status), and antioxidants that protect plant cells from reactive
oxygen species (ROS) produced during drought stress [1–3]. Lipidome changes and membrane lipid
remodelling are relevant strategies adopted by plant cells to counteract abiotic stresses such as drought.

Lipids are cell macromolecules with essential structural, energy storage and signaling roles in
biological systems [11]. Of note, lipids possess two major roles in the organism’s response to stress. First,
they act as signaling mediators [12,13]; second, they play an important role in the process of alleviating the
deleterious effects of stress [14,15]. Different groups of lipids are involved in signaling systems, including
lysophospholipids, fatty acids, phosphatidic acid, inositol phosphate, diacylglycerols, oxylipins,
sphingolipids, and N-acylethanolamine [12,13,16–18]. Signaling lipids are quickly synthesized
upon stress initiation by a wide range of enzymes including phospholipases, acyl hydrolases,
phytosphingosine kinases, diacylglcerol kinases, and fatty acid amide hydrolases [12,13,19]. Moreover,
lipids mitigate cell damage through membrane remodeling in response to abiotic stresses [14,20,21].
Such remodeling, finally, maintains lipid dynamics and membrane protein functionality [22].

Thyme belongs to the Thymus genus and the Lamiaceae (Labiatae) family, one of the largest
families of dicotyledons rich in aromatic plant species [23]. Thyme itself, a perennial herb, has been
well-known worldwide since ancient times for its medicinal and culinary uses, and its extracts possess
antiseptic, antibacterial and spasmolytic properties [24,25]. Rapidly increasing demand for various
thyme products indicates the importance of further research on this plant, in order to comprehend the
mechanisms involved in plant adaptation to different abiotic/biotic stresses [4].

Considering the economic and phytotherapeutic importance of this genus, investigation on the
impact of environmental stresses, such as water deficit, could be very informative and useful. Indeed,
this information would undoubtedly assist plant producers and breeders to gain more yield under
stressed conditions. In this regard, we recently investigated the response of Thymus spp. populations
to drought stress [26]. Indeed, in a previous study, we screened different thyme populations based
on their morpho-physiological traits and tolerance to drought stress. The main aim of this study is to
provide a comprehensive overview of the lipidome changes in thyme plants under severe drought
stress, and to elucidate mechanisms involved in plant adaptation and tolerance to water deficiency.
Experiments were carried out on thyme species tolerant or sensitive to drought (Thymus serpyllum L.
and Thymus vulgaris L., respectively), and their lipid profiles were compared under stress conditions.

2. Results and Discussion

2.1. Lipid Profile Changes in Sensitive Thyme Plants under Drought Conditions

Prior to lipid profiling, physiological parameters (soil moisture, water potential, water content
and shoot dry weight) of plants under conditions of water deficiency were recorded to indicate how
drought stress progresses (Figure 1) [15]. To investigate the effects of water deficit on sensitive thyme
plants, non-polar metabolites were profiled. In this experiment, 2527 non-polar metabolites were
detected in negative mode, though only 84 metabolites significantly changed. The complete list of
the identified metabolites that significantly changed in sensitive plants under drought is reported in
Table S1.

The comparison of non-polar metabolite intensities in sensitive plants under watered and drought
conditions is shown in Figure 2. Water deficiency strongly altered lipid composition. The major lipid
class levels significantly decreased under drought stress, as well as total lipid levels. This trend was
more evident for the main lipid components such as galactolipids (monogalactosyldiacylglycerols
(MGDGs) and digalactosyldiacylglycerols (DGDGs)) as well as phospholipids (phosphatidylglycerol
(PG), Phosphatidylethanolamine (PE), Phosphatidic acid (PA) and phosphatidylserine (PS)) which
decreased by 55%. Among MGDGs, the metabolite with an m/z value of 790.5221 was the most
affected, decreasing by 70% in the stressed plants. Though some studies reported an increase of PG
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in rapeseed seedlings [9], our results are consistent with those obtained in rapeseed leaves [10,11],
wheat [12] and Lupinus albus L. genotypes [13]. Furthermore, some authors documented unchanged
levels for DGDGs after water deficit [12].Int. J. Mol. 2017, 18, 2067 3 of 16 

 

 
Figure 1. Impact of drought stress on physiological parameters in tolerant and sensitive thyme [15]: 
(a) soil moisture (%); (b) water potential (bar); (c) water content (%); and (d) shoot dry weight (g). 
Drought stress was imposed by water withholding on one-month-old plants of tolerant and 
sensitive populations (Thymus serpyllum and Thymus vulgaris, respectively). Physiological 
parameters were recorded at 4-day intervals. 
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Figure 1. Impact of drought stress on physiological parameters in tolerant and sensitive thyme [15]:
(a) soil moisture (%); (b) water potential (bar); (c) water content (%); and (d) shoot dry weight (g).
Drought stress was imposed by water withholding on one-month-old plants of tolerant and sensitive
populations (Thymus serpyllum and Thymus vulgaris, respectively). Physiological parameters were
recorded at 4-day intervals.
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Figure 2. Lipid composition changes in sensitive thyme plants under drought conditions. After 
water withholding, thyme leaves were harvested and non-polar extracts analyzed by direct infusion 
Fourier transform ion cyclotron resonance (DI FT-ICR) mass spectrometry. Vertical axis represents 
the fold change between the control and stressed plants. The mass-to-charge (m/z) values are 
reported next to each bar (abbreviations: MGDGs, monogalactosyldiacylglycerols; DGDGs, 
digalactosyldiacylglycerols; PS, phosphatidylserine; PG, phosphatidylglycerol; PC, 
phosphatidylcholine). 
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Figure 2. Lipid composition changes in sensitive thyme plants under drought conditions. After water
withholding, thyme leaves were harvested and non-polar extracts analyzed by direct infusion Fourier
transform ion cyclotron resonance (DI FT-ICR) mass spectrometry. Vertical axis represents the fold
change between the control and stressed plants. The mass-to-charge (m/z) values are reported next to
each bar (abbreviations: MGDGs, monogalactosyldiacylglycerols; DGDGs, digalactosyldiacylglycerols;
PS, phosphatidylserine; PG, phosphatidylglycerol; PC, phosphatidylcholine).

Since galactolipids are mainly involved in the structure of stroma lamellae, the grana system, and
the chloroplast envelope [14], water deficit would damage reaction centres and, consequently, inhibit
photosynthesis [15]. Decreased galactolipid levels have been pointed out in previous investigations
as a main trait of sensitive plants under drought stress [12,13,16,17]. In turn, MGDG reduction could
result from higher activity of MGDG-hydrolases under drought stress conditions [18].

A contrasting trend emerged for steroids, fatty acids and some sphingolipids which increased
in stressed plants compared to the watered ones (Figure 2). Regarding sphingolpids, sphinganine
1-phosphate levels increased by 136%, while the others exhibited a mean decrease of 53%. Free fatty
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acids (FFAs) were the major lipid constituents in the sensitive thyme leaves. As shown in Figure 1, FFAs
exhibited different trends following water deficit, varying from a 52% decrease in cis-2-octadecenoate
intensities to a 200% increase in octacosanoic acid.

In addition, the large increase in lipid unsaturation observed in this experiment caused a reduced
ratio of the saturated lipids versus unsaturated lipids. Even though this result is in contrast with those
obtained in other plants such as cotton [19], rapeseed [10], and safflower [20] under drought stress,
it should be noted that in previous comparative studies including two plant species with diverse
tolerance level, a correlation was observed between lipid unsaturation and stress tolerance [21–23].
Therefore, increased levels of unsaturated lipids may occur in tolerant plants.

On the other hand, the DGDG/MGDG ratio, another important indicator of plant tolerance to
stress, was almost unchanged following water depletion in sensitive plants, at 0.93 and 0.97 under
watered and drought conditions, respectively.

2.2. Lipid Profile Changes in Tolerant Thyme Plants under Drought Conditions

A full list of identified non-polar metabolites significantly changed in tolerant thyme plants under
water deficit condition is reported in Table S2. Changes in the intensities of lipids in plants under
watered and drought conditions are shown in Figure 3. Though the levels of major lipids increased in
stressed plants, indicating an increase in lipid biosynthesis and/or a decrease in lipid degradation,
a dramatic decrease was observed in the intensities of stress-induced lipids (oxylipins). Among the
detected phospholipids, including phosphatidylinositol (PI), PS, and phosphatidylcholine (PC), the
metabolites with m/z values of 519.3331, 521.3488 and 581.3709 decreased by 50–60%, whereas those
with m/z values of 845.5516, 840.5053, and 840.5053 were the most affected phospholipids, increasing
by over 200% in response to drought stress. The amounts of other phospholipids were also increased
in the stressed plants as compared with the watered controls.

Increase of fatty acid unsaturation has been considered as one of the most striking features of
drought-tolerant plants, scavenging ROS and reducing damage to cell lipids [23,24]. Analysis of the
unsaturated fatty acid composition showed increased levels of all detected polyunsaturated fatty acids
(PUFAs) 18:2 and 18:3 (Figure 3) in the drought-stressed thyme plants. A similar pattern was also
reported for Arabidopsis thaliana [23]. Furthermore, PUFAs with m/z values of 802.4649, 840.5053 and
845.5516 showed the highest increase compared to other unsaturated fatty acids.
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Figure 3. Lipid composition changes in tolerant thyme plants under drought conditions. After
withholding water, thyme leaves were harvested and non-polar extracts were analyzed by DI FT-ICR
mass spectrometry. The vertical axis represents the fold change between the control and stressed plants.
The mass-to-charge (m/z) values are reported next to each bar (abbreviations: PI, phosphatidylinositol;
PS, phosphatidylserine; PC, phosphatidylcholin; DGDGs, digalactosyldiacylglycerols; MGDGs,
monogalactosyldiacylglycerols).

Another feature of tolerance to drought stress is an increased digalactosyldiacylglycerol
(DGDG):monogalactosyldiacylglycerol (MGDG) ratio [24]. Our results showed a general increase in
both membrane structural lipids DGDGs and MGDGs in the stressed leaves, though a slight decrease in
DGDG/MGDG ratio was registered in these plants as compared to watered controls (Figure 3). A recent
study also reported increased levels of all structural lipids of the photosynthetic membranes (DGDGs,
MGDGs, and sulfoquinovosyldiacylglycerols) in the highly drought-tolerant plant Calotropis procera W.
T. Aiton [25].

Analysis of the changes in oxylipin profile revealed that the content of the oxidized fatty acids
was significantly decreased in the stressed thyme plants (Figure 3). Since these fatty acids are mainly
produced by the action of ROS [24,26], it can be suggested that the tolerant thyme plants efficiently
scavenge ROS arising from drought stress, thus reducing non-enzymatic formation of oxylipins.
Interestingly, the content of antioxidant compounds significantly increased in leaves of stressed thyme
plants (Figure 3) [27]. These antioxidants reduce ROS fatty acid oxidation and oxylipin production,
thus protecting cells against oxidative damage.

Other changes in the lipid profile caused by drought stress included a decrease in the levels
of ceramides, while levels of steroids increased (Figure 3). According to previous studies, the
stress-induced changes in the profile of mentioned lipid classes can cause membrane lipid remodeling
and activate plant defense responses against various biotic and abiotic stresses such as drought [26,28].
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2.3. Integrative Analysis of Lipid Composition in Drought-Sensitive and -Tolerant Thyme Plants

2.3.1. Principal Component Analysis and Pattern Recognition Analysis of Mass Spectra

Principal component analysis (PCA) was performed on the pretreated data and score plots were
constructed (Figure S1).

Because of partial overlap between tolerant watered (TW) and tolerant drought-stressed (TD)
groups, partial least square discriminant analysis (PLSDA), a supervised pattern recognition method,
was applied to maximize the separation between the different groups (Figure S1) [29–31]. This
technique is useful for data with a much higher number of variables than samples and with
multicolinearity in the dataset [29], and provides several statistics such as loading weight, variable
importance on projection (VIP), and the regression coefficient, that can be used in metabolite
identification. This technique provides a visual interpretation of a large dataset through a
low-dimensional and easily interpretable score plot (Figure 4) [31]. Of note, TW and TD groups
were completely separated and stress-induced changes in various metabolites were associated with
water deficiency. The PLSDA visualized individual groups and indicated appropriate reproducibility
of the FT-ICR-metabolomics based on the trend of grouped samples.
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Figure 4. Score plot obtained by partial least square discriminant analysis (PLSDA). Four distinct
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drought-stressed (TD);F sensitive watered (SW); � sensitive drought-stressed (SD).

2.3.2. Outstanding Metabolites Involved in Plant Response Mechanism

PLSDA loading plots were then constructed to identify metabolites responsible for sample
separation (Figure 5).The selected points are represented as red triangles in Figure 5.

Heat maps were used for data visualization [32–34]. Based on the heat map analysis,
all metabolites in the SD and TD groups were affected by drought stress, with a significant difference in
their changing patterns (Figure 6). Metabolites with m/z values of 149.07713, 279.23299, 281.24864, and
367.35832 showed the highest intensities in all four groups and were not affected by water deficit in
either sensitive and tolerant plants. Consequently, these metabolites did not seem to be involved in the
stress response mechanisms of thyme plants. While intensities of most metabolites changed following
stress (both in tolerant and sensitive groups) as compared to the corresponding watered plants,
dramatic changes in concentrations of some metabolites were recorded. For instance, the intensities of
the m/z values 323.03281 and 323.22277 significantly increased in the tolerant plants under drought
conditions as compared to the control ones. In contrast, metabolites with m/z values of 597.34385 and
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314.07513 decreased in the stressed plants as compared to the watered groups. Other stress-induced
changes in metabolite intensities were documented in sensitive thyme plants, i.e., an increase of m/z
values 597.34384, and 323.03281 and decrease of m/z values 343.08236 and 291.19366 in stressed plants
as compared to the controls.Int. J. Mol. 2017, 18, 2067 8 of 16 
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142 peaks were selected (red triangles). These peaks showed the greatest influence on the classification
of samples, as they were placed in the lowest and highest values of latent variables 1 and 2. The cut off
line was calculated based on the formula: V − V ≥ α × σ.
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2.4. Metabolic Pathway Analysis

Selected important metabolites were introduced into MetaboAnalyst online database (http://
www.metaboanalyst.ca) and MI-Pack software, and the all obtained pathways are reported in Table S3.
Among these pathways, those with p < 0.05 from MetaboAnalyst and with coverage value ≥0.1 from
MI-Pack were selected and are shown in Table 1.

Table 1. Major metabolic pathways significantly involved in drought stress response of thyme plants.

Pathway Category Coverage p-Value Database

α-Linolenic acid
metabolism Lipid metabolism 0.33 0.0068255 MI-Pack,

MetaboAnalyst

Isoflavonoid
biosynthesis

Biosynthesis of secondary
metabolites 0.25 n/a MI-Pack

Linoleic acid metabolism Lipid metabolism 0.23 n/a MI-Pack

Limonene and pinene
degradations

Metabolism of terpenoids
and polyketides 0.2 0.021087 MetaboAnalyst

Retinol metabolism Metabolism of cofactors
and vitamins 0.13 n/a MI-Pack

Biosynthesis of
unsaturated fatty acids Lipid metabolism 0.12 0.025999 MetaboAnalyst

Steroid biosynthesis Lipid metabolism 0.1 n/a MI-Pack

Flavonoid biosynthesis Biosynthesis of secondary
metabolites 0.1 n/a MI-Pack

The α-linolenic acid (18:3) metabolismwas significantly involved in drought stress response
of thyme plants; indeed, α-linolenic acid represents one of the main components of the plant cell
membrane [35]. Of note, this PUFA is also relevant for biosynthesis of jasmonic acid and oxylipinin
higher plants via the phospholipase/lipoxygenasepathway [36]. The increase of flavonoids and
isoflavonoids in stressedplantsis in agreement with recent reports on other plant species [37,38].
Indeed, these secondary metabolitescan scavenge ROS and protect plant cellfromoxidative stress
caused by water deficiency [39,40]. The role of biosynthesis of steroids and other unsaturated fatty
acidsin drought stressresponse of thyme plantshas been previouslydiscussed.

In the linoleic acid metabolic pathway, (10E,12Z)-9-oxooctadeca-10,12-dienoic acid (9-oxoODE),
γ-linolenate, linolenate, cepenynate, 13-oxooctadeca-9,11-dienoic acid (13-oxoODE), and 9-cis,11-trans-
octadecadinoate changed significantly following drought stress (Figure 7A, red circles). In the
α-linolenic acid pathway, significantly altered metabolites included α-linolenic acid, 17-hydroxy
linolenic acid, (9S,10E,12Z,15Z)-9-hydroxyoctadeca-10,12,15-trienoic acid (9S-HOTrE), 9, 10 EOTrE,
colnelenic acid, 8-[(1S,5S)-2-oxo-5-[(Z)-pent-2-enyl]cyclopent-3-en-1-yl]octanoic acid (10-OPDA),
2(R)-HOTrE, etherolenic acid, 12-oxo-cis-10, cis-15-phytodienoic acid (12 OPDA), and 8-[3-oxo-2-
[(Z)-pent-2-enyl]cyclopentyl]octanoate (OPC8), 12,13-EOTrE (Figure 7B, red circles). In the isoflavonoid
biosynthetic pathway, 7,4-dihydroxy-flavone, calycosin, vestitone, 2-hydroxy-formonentin, pisatin,
maackiain, 2,6,7,4-tetrahydroxy-isoflavanone, glycitein, 2-hydroxy-2,3-dihydrogenistein, prunetin,
biochanin, and 2,3-dihydrobiochanin A significantly changed following water deficiency (Figure 7C,
red circles). The monoterpenoid metabolic route showed significantly altered levels of S-limonene,
R-limonene, α-pinene, pinocarvone, myrtenal, 4S-carvone, 4R-carvone, iso-pipenitenone, and perillyl
aldehyde (Figure 7D, red circles). Finally, subsequent to water deficit, flavonoid biosynthesis also
showed significant changes in pinobanksin 3-acetate, chrysin, dihydrofisetin, 7,4-dihydroxy flavone,
dihydrokaempferol, pentahydroxychalcone and eriodictyol (Figure 7E, red circles).

http://www.metaboanalyst.ca
http://www.metaboanalyst.ca
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3. Materials and Methods

3.1. Chemicals, Plant Materials, and Physiological Parameters

Chemicals were obtained from Sigma (St. Louis, MO, USA). Thyme plant seeds were purchased
from SemillasSilvestres®, Spain. Thymus vulgaris L. and Thymus serpyllum L. were used as sensitive
and tolerant plants, respectively. A growth room with a 16:8 light:dark cycle and a temperature of
22 ± 0.5 ◦C was used to grow plants watered weekly. Experiments were carried out in triplicate.
Drought stress was imposed by ceasing the watering on day 30, as described previously [26]. Briefly,
seeds were sown in pots measuring 8 cm in diameter, and grown in a room with a 16:8 light:dark
cycle and a temperature of 22 ◦C; they were watered weekly. The soil mixture was four parts Humax
Multipurpose peat based compost mixed in one part perlite with Intercept 70wg insecticide added to
0.02g/L compost. To measure the soil moisture, a sensor model SM300 by Delta-T Devices Ltd was
used. The SM300 measures volumetric soil moisture content with 2.5% accuracy. A pressure chamber
(Skye Company Model SKPM 1400, Powys, UK) was used at midday to measure shoot water potential
in shoots measuring 10–30 mm in length. To record the water potential (before and after drought),
stems were cut and sealed into the chamber.

3.2. Tissue Harvesting and Sample Extraction

Leaf collection was performed at the end of stress period (day 12 for sensitive plants and day
15 for tolerant plants) for lipidomics experiments. Leaves at the same developmental stage were cut
with scissors, flash-frozen with liquid nitrogen, and stored at −70 ◦C. Six biological replicates for each
group were freeze-dried. To extract non-polar metabolites, the methanol: chloroform: water protocol
was used. In brief, 32 µL MeOH and 12.8 µL water were added per mg of tissue, and a Precellys 24
homogenizer (Bertin Technologies Ltd, Paris, France) was used to homogenize tissues. Then, 32 µL of
chloroform (CHCl3) and 16 µL of water were added and the mixture was centrifuged in glass vials at
4000 rpm, at 4 ◦C for 10 min. Finally, non-polar extracts from the lower layer in the biphasic system
were transferred to vials, dried by nitrogen gas and stored at −70 ◦C until analysis (for more details
refer to [27]).

3.3. Lipidome Profiling by Direct Infusion Fourier Transform Ion Cyclotron Resonance (DI FT-ICR)
Mass Spectrometry

MeOH:H2O (HPLC grade) was used in an 80:20 (v/v) ratio to re-suspend freeze dried samples
and then, 20 mM ammonium acetate were added (0.25% of total volume) at dilution ratio of 3:1
(dilution solvent: original extract volume). The diluted samples were vortexed and sonicated for
5 min. Randomly selected samples were mixed in an equal volume to prepare quality control (QC). All
samples and QCs were centrifuged at 14,000 rpm, at 4 ◦C for 10 min. For each sample, 10-µL aliquots
were loaded into auto-sampler plates as three technical replicates. To analyze the samples, a hybrid 7-T
Fourier-transformed ion cyclotron resonance mass spectrometer (LTQ FT, Thermo Scientific, Bremen,
Germany) equipped with a chip-based direct infusion nanoelectrospray ionization assembly (Triversa,
Advion Biosciences, Ithaca, NY, USA) was used. To control the nanoelectrospray conditions, ChipSoft
software (version 8.1.0, Advion Biosciences) was used with a 200 nL/min flow rate, 0.3 psi backing
pressure and −1.7 kV electrospray voltage for negative ions. Scanning took 2 min and 15 s in total,
in seven overlapping Selected Ion Monitoring (SIM) scans with range of 70–2000 m/z.

Data analysis was carried out in three stages, including pre-processing, metabolite identification
and statistical analysis. In pre-processing, raw data were exported from Xcalibar (Version 2.0.7,
Thermo Scientific) to MATLAB version 7 (The Mathwork Inc., Natick, MA, USA) and then subjected
to custom-written code including the sum of transient files and their process [28]. The processing
method was carried out as described previously [29]. Briefly, two out of three mass spectra for technical
replicates with an 80% sample filter were retained. Then, the custom-written code including the sum of
transient files and their processing was applied to raw data [28]. The processed transient data files were
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subjected to the SIM-stitch algorithm version 2.8 (custom written codes in MATLAB) as well as three
more MATLAB scripts (peak filtering) [30]. At this stage, a peak list and a peak matrix were generated.
The peak list contained mass to charge (m/z) signals and related intensities. The peak matrix consisted
of a multivariate dataset that recorded all the peaks detected for each biological replicate.

3.4. Identification of the Extracted Metabolites

To identify the metabolites, the peak lists and intensities were submitted to the MI-Pack software
package [31]. Empirical formulas were generated for each given accurate mass using seven “golden
rules” [32]. These rules have been described in detail in our previous study [29]. The elemental
composition of the detected peaks corresponding to the adducts of neutral metabolites (charged
molecular ions) was added by adduct mass of the seven most relevant positive ions including M − e+,
M + Na+, M + H+, M + 2Na-H+, M + 39K+, M + 239K-H+, M + 41K+. All possible formulas were finally
filtered for selection of the most accurate and correct elemental formula using the given rules.

Of note, despite the high mass accuracy, one mass might be assigned to different elemental
formulas, or even similar formulas but with different structure. Therefore, all possible compounds
were reported in the tables of the present study. For instance, for the m/z = 815.5279 value, all forms of
18:1–18:3-MGDG (monogalactosyldiacylglycerol) and 18:2–18:3-MGDG were considered and FTMS
cannot distinguish between these isomers.

In present study, after selecting m/z values corresponding to important metabolites, the list
of metabolites was arranged by two databases: the HMDB online database (available online:
http://www.hmdb.ca) and MI-Pack software [31]. The results are summarized in Table S2 and
some overlap was observed between these two databases.

3.5. Chemometrics and Statistical Analyses

Before principal component analysis (PCA), data set normalization was performed based on the
probabilistic quotient normalization (PQN) method [33] to reduce the effect of extreme peak intensities.
Next, the data matrix was treated using the K-nearest neighbor (KNN) imputation technique [34,35]
to estimate the missing values. Finally, the samples were transformed using the generalized log
transformation (GLog) method [36] to remove the domination of the highest intensity peaks through
stabilizing the whole variance. PCA was then performed using MATLAB software and PLS Toolbox,
which is an unsupervised approach, and the obtained information represents any structure correlated
to the data. Indeed, PCA converts data into a simple visual format. The PCA score plot is based
on similarities or differences in each sample, which are due to their concentrations or compositions.
Each mass spectrum in score plot is converted to one point in the space of principal components.
In PLSDA, a supervised method, the loading plot represents the relative contribution of each m/z
value, corresponding to one metabolite, to the principal components. Therefore, it shows m/z values of
metabolites responsible for discrimination among classes in score plot. The identification of important
metabolites depends on determining the latent variables responsible for class separation.

Different statistical methods are available in order to determine metabolites that are significantly
different from metabolites present in the center of the loading plot. The different m/z values from
loading plot were calculated according to the formula:

υ −
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and α is dependent on the percent confident that the analysis is correct. In the present study, α was
selected equal to two.

However, data visualization plays a pivotal role in the interpretation of metabolomics results.
In a heat map, columns and rows are rearranged to find a quantitative pattern from the considered
data. Then, these rearranged data are converted to a color image. This type of data visualization is
very informative [33].
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4. Conclusions

Investigations with respect to the impact of different abiotic and biotic stresses (such as water
deficit) on relevant food and medicinal plants are very informative and useful, and will undoubtedly
help plant producers and breeders to improve their knowledge on the tolerance mechanisms of these
plants against stresses. This will assist them in gaining more yield under stressed conditions. In this
view, we evaluated, for the first time, lipidome changes induced by drought stress in sensitive and
tolerant thyme plants. Our results showed significant changes of various lipid classes in leaves of plants
exposed to severe water deficiency. In particular, total lipids and galactolipids (MGDGs and DGDGs)
as well as phospholipids (PG, PE, PA and PS) decreased in stressed sensitive plants. Conversely,
in tolerant plants, severe drought increased galactolipids and unsaturated fatty acids (18:2 and 18:3) in
addition to antioxidant secondary metabolites (i.e., flavonoids).

Therefore, we can speculate that water deficiency stimulates the biosynthesis of membrane
structural lipids in tolerant plants in order to protect cell and chloroplast membranes from damage
induced by severe drought and preserve their structure and function. In addition, increased levels of
antioxidant lipids and flavonoids, in these plants, would contribute to scavenging ROS production
during water deficiency.

Finally, in the current global climate change scenario, further molecular approaches, such as
transcriptomics and RNAseq, will certainly contribute to understanding the gene network behind the
observed phenomena, thus providing a new insight into plant adaptation mechanisms with respect to
drought stress conditions.
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DGDG Digalactosyldiacylglycerol
DI FT-ICR Direct infusion Fourier transform ion cyclotron resonance
FFA Free fatty acid
KNN K-nearest neighbor imputation method
MGDG Monogalactosyldiacylglycerol
NL Neutral lipids
PA Phosphatidic acid
PC Phosphatidylcholine
PCA Principal component analysis
PE Phosphatidylethanolamine
PG Phosphatidylglycerol
PI Phosphatidylinositol
PL Phospholipids
PLS Partial least square
PLSDA Partial least square discriminant analysis
PQN Probabilistic quotient normalization
PS Phosphatidylserine
PUFAs Polyunsaturated fatty acids
ROS Reactive oxygen species
VIP Variable importance on projection
18:3, 18:2 18-Carbon chain PUFAs with three and two double bonds, respectively
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