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Abstract: Metal-containing ionic liquids (ILs) are of interest for a variety of technical applications,
e.g., particle synthesis and materials with magnetic or thermochromic properties. In this paper we
report the synthesis of, and two structures for, some new tetrabromidocuprates(II) with several
“onium” cations in comparison to the results of electron paramagnetic resonance (EPR) spectroscopic
analyses. The sterically demanding cations were used to separate the paramagnetic Cu(II) ions for
EPR measurements. The EPR hyperfine structure in the spectra of these new compounds is not
resolved, due to the line broadening resulting from magnetic exchange between the still-incomplete
separated paramagnetic Cu(II) centres. For the majority of compounds, the principal g values (g|| and
gK) of the tensors could be determined and information on the structural changes in the [CuBr4]2´

anions can be obtained. The complexes have high potential, e.g., as ionic liquids, as precursors for
the synthesis of copper bromide particles, as catalytically active or paramagnetic ionic liquids.
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1. Introduction

Metal-containing ionic liquids (ILs) or ionic liquid crystals (ILCs) are of interest for a variety
of technical applications, e.g., as precursors for the synthesis of (nano)particles, magnetic or
thermochromic materials [1–3] or as extraction agents [4] and catalysts [5–8]. Tetrahalidometalate
complexes exhibit many of these interesting properties. Also liquid-crystalline ILs based on
tetrahalidometalates have been reported [9–13]. Some ILs and ILCs combining tetrahalidocuprate
dianions with alkylpyridinium cations can serve as precursors for inorganic materials [2,14–17].
A variety of these metal-containing ionic liquids show interesting electrochemical properties as
electrochromy and/or magnetic behaviour [18,19]. The properties of ionic liquid materials such
as tuneable acidity, polarity, amphiphilic character, coordinating ability, and miscibility with many
compounds might be combined with the unique properties introduced by the metal ions. ILs of
this type are also of interest as catalysts, as alternative solvents and even morphology templates
for inorganic materials simultaneously. Reports on tetrahalidometalate-based ILs/ILCs and their
applications as well as their structural characterization are still relatively rare [2,10–13,20–32].
We present the syntheses, electron paramagnetic resonance (EPR) spectra and two X-ray structures of
some new tetrabromidocuprate(II) compounds. The following cations with different steric demand
were used to separate the paramagnetic Cu(II) ions for the EPR measurements (see Scheme 1): the
homogenously substituted tetraalkyl onium cations with varying chain lengths tetraethylammonium,
(Et4N+), tetrabutylphosphonium, (Bu4P+), tetrahexylammonium, (Hex4N+), the benzyl/alkyl
substituted ammonium cations benzyltrimethylammonium, (BzlMe3N+), benzyltriethylammonium,
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(BzlEt3N+), benzyltributylammonium, (BzlBu3N+), the alkyltriphenylphosphonium cations
ethyltriphenylphosphonium, (EtPh3P+), hexyltriphenylphosphonium, (HexPh3P+) and the long
chain cations dodecyltrimethylammonium, (C12H25Me3N+), hexadecylpyridinium, (C16H33-py+),
hexadecyldimethylammonium, (C16H33)2Me2N+), giving raise to lamellar structures [33]. It is known
that tetrahalidocuprate(II)-ions present a high structural flexibility. Thus, the complex anion adopts
coordination geometries between square-planar and tetrahedral. Recently we have shown that there is
a correlation of EPR parameters and the isotropic or averaged g-values with the degree of geometrical
distortion in the coordination sphere of tetrahalidocuprates expressed by the cis-angle, the average of
the four smallest X-Cu-X angles of the tetrahalidocuprate dianion [33–35].
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2. Results and Discussion

2.1. X-ray Crystallography

Table 1 summarizes the crystallographic data and refinement parameters for the structures of
(BzlEt3N)2[CuBr4] (5) and (HexPh3P)2[CuBr4] (8).

Table 1. Crystallographic data and refinement parameters for (5) and (8).

Compound (BzlEt3N)2[CuBr4] (5) (HexPh3P)2[CuBr4] (8)

Empirical formula C26H44N2CuBr4 C48H56P2CuBr4
MW/g¨ mol´1 767.81 1078.04

Crystal description purple plate purple needle
Crystal size/mm 0.7 ˆ 0.5 ˆ 0.1 0.8 ˆ 0.2 ˆ 0.1
Crystal system monoclinic monoclinic

Space group P21/c P21/n
a/Å 15.1019(5) 10.7410(3)
b/Å 11.6664(5) 22.4775(9)
c/Å 17.5517(6) 19.6455(6)
α/˝ 90 90
β/˝ 99.166(3) 99.807(2)
γ/˝ 90 90
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Table 1. Cont.

Compound (BzlEt3N)2[CuBr4] (5) (HexPh3P)2[CuBr4] (8)

V/Å3 3052.9(2) 4673.7(3)
Z 4 4

F(000) 1532 2172
Density/mg¨ m´3 1.67 1.532

µ/mm´1 5.97 3.987
Θ range/˝ 2.10–25.00 2.15–24.998

Rint 0.1338 0.0740
Reflections measured 38,767 73,469

Reflections independent 5372 8223
Parameters 299 496

R1/wR2 (I > 2σ(I)) 0.0370/0.0893 0.0480/0.1183
R1/wR2 (all data) 0.0529/0.0975 0.0711/0.1293
Goodness of fit 1.015 1.031

Max. difference peak/hole/e Å´3 0.71/´0.83 2.231/´1.220

2.2. Bis(benzyltriethylammonium)tetrabromidocuprate(II) (5)

(BzlEt3N)2[CuBr4] (5) crystallizes in the monoclinic space group P21/c with four formula units
per unit cell. The corresponding lattice parameters are a = 15.1019(5) Å, b = 11.6664(5) Å, c = 17.5517(6)
Å, and β = 99,166(3)˝. The complex dianion has a distorted tetrahedral geometry with Br–Cu–Br angles
between 98.2˝ and 131.8˝ (see Table 2), the resulting cis-angle, the average of the four smallest angles,
is 99.8˝. The shortest Cu¨ ¨ ¨ Cu distances are 9.12 and 9.44 Å. Figure 1 shows the molecular structure of
(BzlEt3N)2[CuBr4] (5). The structure is stabilized by a series of hydrogen bonds (see Table 3).
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fragmented lines.

Table 2. Selected bond lengths and bond angles of (BzlEt3N)2[CuBr4] (5).

Bond Lengths/Å Bond Angles/˝

Cu1–Br1 2.3981(7)
Br1–Cu1–Br2 99.73(2)
Br1–Cu1–Br3 98.38(2)
Br1–Cu1–Br4 130.80(3)

Cu1–Br2 2.3747(7) Br2–Cu1–Br3 131.84(3)
Cu1–Br3 2.3918(7) Br2–Cu1–Br4 98.19(2)
Cu1–Br4 2.3984(7) Br3–Cu1–Br4 102.80(2)
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Table 3. Hydrogen contacts for (BzlEt3N)2[CuBr4] (5).

C–H¨¨¨Br H¨¨¨Br/Å C¨¨¨Br/Å Angles C–H¨¨¨Br/˝

C1–H1A¨ ¨ ¨ Br2 i 2.93 3.568(4) 124.2
C2–H2A¨ ¨ ¨ Br2 3.09 3.955(6) 151.1

C6–H6A¨ ¨ ¨ Br2 ii 2.82 3.742(6) 161.1
C6–H6A¨ ¨ ¨ Br1 ii 3.01 3.621(6) 132.2
C7–H7A¨ ¨ ¨ Br2 ii 2.99 3.935(4) 164.6
C7–H7B¨ ¨ ¨ Br3 3.04 3.982(5) 165.4

C14–H14A¨ ¨ ¨ Br1 iii 3.08 3.564(4) 112.3
C14–H14B¨ ¨ ¨ Br3 2.92 3.720(5) 140.3
C16–H16A¨ ¨ ¨ Br4 3.02 3.849(5) 144.6
C16–H16B¨ ¨ ¨ Br1 2.96 3.868(5) 156.9

C20–H20A¨ ¨ ¨ Br1 ii 3.08 3.982(4) 154.6

Symmetry codes: (i) 1 ´ x, 2 ´ y, 1 ´ z; (ii) 1 ´ x, 0.5 + y, 0.5 ´ z; (iii) ´x, ´0.5 + y, 0.5 ´ z.

2.3. Bis(hexyltriphenylphosphonium)tetrabromidocuprate(II) (8)

(HexPh3P)2[CuBr4] (8) crystallizes in the monoclinic space group P21/n with Z = 4. The
corresponding lattice parameters are a = 10.7410(3) Å, b = 22.4775(9) Å, c = 19.6455(6) Å, and
β = 99,807(2)˝. This complex dianion has also a distorted tetrahedral geometry with Br–Cu–Br
angles between 100.4˝ and 124.8˝ (Table 4), with a resulting cis-angle of 103.3˝. The shortest Cu¨ ¨ ¨ Cu
distances are 10.62 and 10.74 Å. Figure 2 shows the molecular structure of (HexPh3P)2[CuBr4] (8).
The structure is stabilized by a variety of hydrogen contacts (Table 5).
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Table 4. Selected bond lengths and bond angles for (HexPh3P)2[CuBr4] (8).

Bond Lengths/Å Bond Angles/˝

Cu1–Br1 2.4500(9)
Br1–Cu1–Br2 120.66(4)
Br1–Cu1–Br3 103.25(3)
Br1–Cu1–Br4 104.45(3)

Cu1–Br2 2.3867(9) Br2–Cu1–Br3 104.95(3)
Cu1–Br3 2.4207(9) Br2–Cu1–Br4 100.39(3)
Cu1–Br4 2.3677(9) Br3–Cu1–Br4 124.76(4)
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Table 5. Hydrogen bond geometry for (HexPh3P)2[CuBr4] (8).

C–H¨¨¨Br H¨¨¨Br/Å C¨¨¨Br/Å Angles C–H¨¨¨Br/˝

C12–H12¨¨¨Br2 2.82 3.744(6) 166.4
C19–H19B¨¨¨Br3 iii 3.10 4.064(5) 166.4

C26–H26¨¨¨Br1 3.13 3.840(5) 133.8
C26–H26¨¨¨Br3 3.07 3.718(6) 127.2

C32–H32¨¨¨Br4 ii 2.90 3.673(5) 140.8
C36–H36¨¨¨Br2 i 2.84 3.776(5) 176.7
C43–H43B¨¨¨Br1 2.88 3.834(5) 165.9

C43–H43A¨¨¨Br2 i 3.06 4.000(6) 161.1

Symmetry codes: (i) 0,5 + x, 0.5 ´ y, 0.5 + z; (ii) 1 + x, y, z; (iii) 1 ´ x, y, z.

2.4. Electron Paramagnetic Resonance (EPR) Spectroscopy

Figure 3 shows a spectrum of (EtPh3P)2[CuBr4] (7) at 150 K, characteristic for most of the recorded
spectra. In general the spectra are of poor resolution, due to the magnetic interactions between the
paramagnetic centers and no hyperfine structure can be observed. Some of the spectra are of axial
symmetry and g|| as well as gK can be determined; for a few samples only an isotropic signal (giso)
could be extracted. The EPR data are shown in Table 6. The gav-values correspond to the isotropic
giso-value of liquid systems as long as strong solvents are excluded (e.g., solutions or ionic liquids).
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Figure 3. Electron paramagnetic resonance (EPR) spectrum of (EtPh3P)2[CuBr4] (7) at 150 K.

Table 6. Experimental g-values (g||, gK and giso), calculated values gav and known cis-angles (φav) for
this series of tetrabromidocuprates(II).

Cation/Compound g|| gK giso gav φav/˝ Reference (φav)

Et4N+/(1) - - 2.18 a - 108.06 * [36]
Bu4P+/(2) - - 2.089 - -

Hex4P+/(3) 2.34 a 2.079 2.11 a 2.166 -
BzlMe3N+/(4) 2.221 2.058 2.101 2.109 99.64 * [37]
BzlEt3N+/(5) - - 2.11 a - 99.77 *
BzlBu3P+/(6) - - 2.108 - -
EtPh3P+/(7) 2.217 2.062 - 2.114 -
BuPh3P+/(8) 2.280 2.069 - 2.139 -

HexPh3P+/(9) - - 2.13 a - 103.26 *
(C12H25)Me3N+/(10) 2.26 a, 2.124, 2.040 2.141 -

(C16H33)py+/(11) - - 2.15 a - -
(C16H33)2Me2N+/(12) 2.28 a 2.079 - 2.146 -

Experimental errors: g-values: ˘0.005; a g: ˘0.01; *: new added EPR/structure data sets.
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The averaged g-values gav for axial symmetry are calculated by the following expression:

gav “
gII ` 2 ˆ gK

3
(1)

For rhombic symmetry the averaged g-values gav are calculated as follows:

gav “
g1 ` g2 ` g3

3
(2)

The variation of the structural parameter (φav) reflects the degree of structural flexibility of the
tetrahalidocuprate(II) moiety. With a series of known X-ray structures combined with EPR parameters
of tetrabromidocuprates(II) it could be possible to classify the degree of distortion between square
planar and tetrahedral geometries, as well as those of complexes with unknown structures as was
recently shown for tetrabromidocuprates(II) [34]. With larger the cis-angles the gav or the isotropic
giso-values have a tendency to increase (see Figure 4). This is also supported by calculated values from
DFT calculations.
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The EPR spectrum of (C12H25Me3N)2[CuBr4] (9) at 110 K (Figure 7) reflects a rhombic symmetry
of the g-tensor with three different g-values and indicates a change in coordination geometry or a
possible lamellar structure.

2.5. Differential Scanning Calorimetry (DSC)

(EtPh3P)2[CuBr4] (7) shows a glass transitions at 306 K, a melting point at 432 K and a cold
crystallization by 369 K. Figure 8 shows the second heat run of the compound. The third measurement
comes to the same result as the second. It can be concluded that the compound has a temperature
reversibility at least up to 443 K. The results of the differential scanning calorimetry of (7) are in good
agreement with the data from EPR-spectroscopy.
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3. Materials and Methods

3.1. Methods

The melting points were determined using a Mikroheiztisch Boetius (VEB Wägetechnik, Radebeul,
DDR). Elemental analyses were carried out on an Elementar Vario EL III analyzer (elementar
Analysensysteme GmbH, Hanau, Germany). Infrared spectra were recorded on a Perkin-Elmer
type 16PC FT-IR spectrophotometer (Perkin-Elmer GmbH, Überlingen, GErmany) between 4000 and
400 cm´1 as KBr-pellets (reference KBr). The measurements of the magnetic susceptibility were
performed with a Magnetic Susceptibility Balance-Auto from Johnson Matthey GmbH (Matthey
GmbH, Cambridge, UK) at room temperature, for diamagnetic correction the increment system of
Pascal and Pacault [38] was applied. EPR spectra were recorded at 9.4 GHz (X-band) using a Bruker
CW Elexsys E 500 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany)

For X-ray structure determinations, the crystals were embedded in perfluoropolyalkylether
oil and mounted on a glass fibre (5) or within a MicroGripper (8). For structure analysis of (5),
the intensity data were collected at 210 K using an Imaging Plate Diffraction System IPDS-2 (Stoe,
Darmstadt, Germany) with graphite monochromatized Mo-Kα radiation (λ = 0.71073 Å) at 50 kV
and 40 mA. The data collection for (8) was performed on a StadiVari diffractometer (Stoe, Darmstadt,
Germany) equipped with a four-circle goniometer (open Eulerian cradle), a Genix Microfocus X-ray
source (Mo) with a graded multilayer mirror and a Pilatus 200 K detector (Dectris, Baden-Daettwil,
Switzerland). The data were corrected for absorption as well as for Lorentz polarization and
extinction effects using the program X-Area (Stoe, 2004) [39]. The structures were solved by direct
methods using SHELXS-2013/1 [40] and refined by full-matrix least squares on F2 using the program
SHELXL-2014/7 [41]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were
calculated in their expected positions and refined with a riding model. CCDC 1459578 (5) and CCDC
1459612 (8) contain the supplementary crystallographic data for this paper. These data are provided
free of charge by The Cambridge Crystallographic Centre (Cambridge, UK).

Differential scanning calorimetry (DSC) measurements were performed with a DSC 214 Polyma
(Netzsch GmbH & Co. KG, Selb, Germany) by NETZSCH operating with a scan rate of 5–10 ˝C¨ min´1

under a nitrogen flow.
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3.2. Chemicals

The following chemicals were used without further purification. Copper(II) bromide (99%),
ethanol anhydrous (99%), n-hexane (96%), potassium bromide (Uvasol, Merk KGaA, Darmstadt,
Germany, for IR spectroscopy) tetraethylammonium bromide (98%), tetrabutylphosphonium
bromide (99%), tetrahexylammonium bromide (99%), benzyltrimethylammonium bromide
(98%), benzyltriethylammonium bromide (98%), benzyltributylammonium bromide (99%),
ethyltriphenylphosphonium bromide (98%), hexyltriphenylphosphonium bromide (>99%),
dodecyltrimethylammonium bromide (>98%), hexadecylpyridinium bromide (98%), and
dihexadecyldimethylammonium bromide (99%).

3.3. Syntheses

3.3.1. General Preparation

In general, tetrabromidocuprate(II) complexes can be achieved by different procedures [42–44].
In the current work, the [CuBr4]2´ moiety was synthesized according to a protocol by N. S. Gill
and R. S. Nyholm [44]: an ethanolic solution of a stoichiometric amount of CuBr2 was added to
the respective bromide salt of the cation dissolved in a minimum volume of ethanol. The reaction
mixture was stirred for one hour at room temperature. The product was precipitated by evaporating
the solvent.

3.3.2. Bis(tetraethylammonium)tetrabromidocuprate(II), (Et4N)2[CuBr4] (1)

Compound (1) was synthesized according to an already published protocol [36].
A solution of 1.5 mmol (0.32 g) of tetraethylammonium bromide in 3 mL of ethanol was mixed

with a solution of 0.5 mmol (0.11 g) of copper(II) bromide in 10 mL ethanol. The solution was stirred
one hour at room temperature. The solvent was removed and a violet powder was received, filtered
off and dried.

Melting point: 241–242 ˝C. Yield: 0.22 g (67%). Elemental analysis calculated for C16H40N2CuBr4

(643.66): C 29.85, H 6.26, N 4.35 (%); found: C 29.80, H 6.20, N 4.34 (%). IR (KBr, cm´1): 3443 s, 2976 m,
2921 m, 2852 wm, 1628 wm, 1478 s, 1402 m, 1307 w, 1183 m, 1032 m, 1006 m, 793 m.
(IR: s = strong, ms = medium strong, m = medium, wm = weak medium, w = weak).

3.3.3. Bis(tetrabutylphosphonium)tetrabromidocuprate(II), (Bu4P)2[CuBr4] (2)

Solutions of 0.5 mmol (0.11 g) copper(II) bromide and 1.0 mmol (0.32 g) tetrabutylphosphonium
bromide, each dissolved in 2 mL ethanol, were combined and stirred at room temperature for 1 h.
The resulting violet precipitate is filtered off and dried.

Melting point: 49–52 ˝C. Yield: 0.38 g (84%). Elemental analysis calculated for C32H72P2CuBr4 (902.13):
C 42.60, H 8.04 (%), found: C 42.08, H 8.16 (%). IR (KBr, cm´1): 2928 s, 2891 ms, 2870 ms, 1463 ms,
1407 m, 1375 m, 1237 w, 1098 m, 968 w, 920 m, 722 m. µeff = 1.5 B.M.

3.3.4. Bis(tetrahexylammonium)tetrabromidocuprate(II), (Hex4N)2[CuBr4] (3)

A solution of 1.0 mmol (0.22 g) CuBr2 in 5 mL ethanol was added to a solution of 2.0 mmol (0.87 g)
tetrahexylammonium bromide in 5 mL ethanol. The mixed solution was stirred at room temperature
for 1 h. The resulting violet precipitate was filtered off and dried.

Melting point: 93–95 ˝C. Yield: 0.58 g (53%). Elemental analysis calculated for C48H104N2CuBr4

(1092.51): C 52.77, H 9.60, N 2.56 (%), found: C 53.06, H 9.70, N 2.67 (%). IR (KBr, cm´1): 2928 s, 2553 m,
1634 w, 1480 m, 1383 mw, 1050 w, 728 w. µeff = 1.5 B.M.
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3.3.5. Bis(benzyltrimethylammonium)tetrabromidocuprate(II), (BzlMe3N)2[CuBr4] (4)

Compound (4) was also synthesized according to an already published procedure [37].
To a solution of 0.5 mmol (0.11 g) of CuBr2 in 3.5 mL methanol a solution of 1.0 mmol (0.23 g)

benzyltrimethylammonium bromide, dissolved in 1.5 mL methanol, was added. The mixture
was stirred for one hour at room temperature. After a short while the complex precipitated as
purple crystals.

Melting point: 173–175 ˝C. Yield: 0.35 g (72%). Elemental analysis calculated for C20H32N2CuBr4

(969.51): C 35.16, H 4.72, N 4.10 (%); found: C 35.09, H 4.71, N 4.17 (%). IR (KBr, cm´1): 3017 m, 1585 w,
1485 s, 1476 s, 1411 m, 1218 m, 989 m, 974 m, 887 s, 780 s, 703 s. µeff = 1.4 B.M.

3.3.6. Bis(benzyltriethylammonium)tetrabromidocuprate(II), (BzlEt3N)2[CuBr4] (5)

0.5 mmol (0.11 g) of CuBr2 dissolved in 3 mL HBr was heated under reflux for 0.5 h. To this copper
solution a solution of 1.0 mmol (0.27 g) BzlEt3NBr and 2 mL methanol was slowly added. The mixture
was stirred for one hour at room temperature. The solvent was reduced and purple crystals were
obtained by covering the remaining solution with N-hexane.

Melting point: 110–112 ˝C. Yield: 0.21 g (54%). Elemental analysis calculated for C26H44N2CuBr4

(767.7): C 40.67, H 5.78, N 3.65 (%); found: C 40.56, H 5.76, N 3.69 (%). IR (KBr, cm´1): 2983 m, 1583 w,
1450 s, 1402 ms, 1372 w, 1171 w, 1154 m, 1027 m, 1005 m, 787 m,756 s, 705 s. µeff = 1.6 B.M.

3.3.7. Bis(benzyltributylammonium)tetrabromidocuprate(II), (BzlBu3N)2[CuBr4] (6)

A solution of 1.0 mmol (0.22 g) CuBr2 in 5 mL ethanol was added to a solution of 2.0 mmol
(0.71 g) benzyltributylammonium bromide in 5 mL ethanol. The mixed solution was stirred at room
temperature for 1 h. The resulting violet precipitate was filtered off and dried.

Melting point: 58–60 ˝C. Yield: 0.59 g (63%). Elemental analysis calculated for C38H68N2CuBr4 (936.12):
C 48.75, H 7.32, N 2.99 (%), found: C 48.90, H 7.48, N 3.12 (%). IR (KBr, cm´1): 2959 s, 2871 m, 1654 w,
1561 w, 1474 m, 1458 m, 1380 mw, 1212 w, 869 mw, 725 m, 704 m. µeff = 1.5 B.M.

3.3.8. Bis(ethyltriphenylphosphonium)tetrabromidocuprate(II), (EtPh3P)2[CuBr4] (7)

The synthesis of (EtPh3P)2[CuBr4] as follows: 0.5 mmol (0.11 g) copper(II) bromide and 1.0 mmol
(0.37 g) EtPh3PBr solved even in 2 mL ethanol. The combined solutions are stirred for one hour at
room temperature. A violet powder was obtained.

Melting point: 135–137 ˝C. Yield: 0.23 g (48%). Elemental analysis calculated for C40H40P2CuBr4

(964.90): C 49.74, H 4.17 (%), found: C 49.74, H 4.19 (%). IR (KBr, cm´1): 2922 m, 1586 m, 1483 m,
1438 s, 1113 s, 996 m, 780 w, 739 s, 691 s, 531 s, 510 s, 482 m. µeff = 1.6 B.M.

3.3.9. Bis(hexyltriphenylphosphonium)tetrabromidocuprate(II), (HexPh3P)2[CuBr4] (8)

A solution of 1.0 mmol (0.22 g) copper(II) bromide in 5 mL ethanol is added to 2.0 mmol (0.85 g)
hexyltriphenylphosphonium bromide dissolved in 5 mL ethanol. The solution was stirred for 1 h
at room temperature. The formed violet precipitate was filtered off and dried. Purple crystals were
obtained by covering the remaining solution with n-hexane for slowly interdiffusion.

Melting point: 102–103 ˝C. Yield: 0.65 g (60%). Elemental analysis calculated for C48H56P2CuBr4

(1078.04): C 53.47, H 5.24 (%), found: C 53.05, H 4.97 (%). IR (KBr, cm´1): 2956 m, 2923 m, 2758 m,
1585 w, 1485 w, 1436 s, 1113 s, 724 s, 689 s, 533s, 498 ms. µeff = 1.6 B.M.
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3.3.10. Bis(dodecyltrimethylammonium)tetrabromidocuprate(II), (C12H25Me3N)2[CuBr4] (9)

A solution of 1.0 mmol (0.22 g) of CuBr2 in 5 mL ethanol and a solution of 2.0 mmol (0.62 g)
C12H25Me3NBr in 5 mL ethanol were combined and stirred at room temperature for 1 h. The resulting
violet precipitate was filtered off and dried.

Melting point: 94–95 ˝C. Yield: 0.56 g (85%). Elemental analysis calculated for C30H48N2CuBr4 (662.23):
C 42.89, H 8.16, N 3.34 (%), found: C 43.19, H 8.23, N 3.37 (%). IR (KBr, cm´1): 2922 ms, 2851 m, 1632 w,
1469 s, 966 ms, 909 m, 722 m. µeff = 1.5 B.M.

3.3.11. Bis(hexadecylpyridinium)tetrabromidocuprate(II), (C16-py)2[CuBr4] (10)

A solution of 0.5 mmol (0.11 g) copper(II) bromide in 10 mL ethanol is added to 1.0 mmol (0.40 g)
hexadecylpyridinium bromide dissolved in 3 mL ethanol. The solution was stirred for 1 h at room
temperature. The obtained violet precipitate was filtered off and dried.

Melting point: 73–74 ˝C. Yield: 0.15 g (30%). Elemental analysis calculated for C42H76N2CuBr4 (992.23):
C 50.84, H 7.72, N 2.82 (%), found: C 47.67, H 7.20, N 2.95 (%). IR (KBr, cm´1): 3446 wm, 3053 w, 2918 s,
2850 m, 1633 wm, 1485 m, 1468 wm, 1175 w, 768 w, 721 w, 679 w. µeff = 1.6 B.M.

3.3.12. Bis(dihexadecyldimethylammonium)tetrabromidocuprate(II), (C16H33)2Me2N)2[CuBr4] (11)

A solution of 1.0 mmol (0.58 g) dihexadecyldimethylammonium bromide in 3 mL ethanol was
slowly added to a solution of 0.5 mmol (0.11 g) copper(II) bromide in 3 mL ethanol. The mixture was
stirred at room temperature for 1 h. The formed violet precipitate was filtered off and dried.

Melting point: 36–38 ˝C. Yield: 0.67 g (98%). Elemental analysis calculated for C68H144N2CuBr4

(1373.05): C 59.48, H 10.57, N 2.04 (%), found: C 59.11, H 10.89, N 2.15 (%). IR (KBr, cm´1): 2919 m,
2851 m, 1628 w, 1469 s, 1376 w, 1054 w, 990 w, 968 w, 878 w, 718 m.

4. Conclusions

Some of the compounds in this series are real ionic liquids—(2), (3), (6), (10) and (11)—with
melting points below 100 ˝C, or very close to it—(5) and (8). All the reported compounds are
thermally stable up to at least 430 K. This thermal cycle is completely reversible without any signs of
decomposition. Interestingly, after cooling to room temperature, for (7) only an isotropic EPR signal
remains, which returned to the axial symmetric spectrum after a couple of days. That means the
re-crystallizing process is kinetically enhanced. Compounds of this type might be useful as ionic
liquids for higher temperatures.

Two compounds, (5) and (8), could be structurally characterized by X-ray structure analysis.
The structures are stabilized by a variety of hydrogen contacts between the [CuBr4]2´ anions and
corresponding onium cations, responsible for the coordination geometry of the tetrahalidocuprates.
The EPR parameters also reflect the degree of structural flexibility of the tetrahalidocuprate(II)
moiety. With a series available data sets of known X-ray structures combined with EPR
parameters of tetrabromidocuprates(II) it is possible to classify the degree of the distortion
coordination sphere between square planar and tetrahedral geometries, as was recently shown for
tetrabromidocuprates(II) [34].
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