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Abstract: Knowledge on protein folding has a profound impact on understanding the heterogeneity
and molecular function of proteins, further facilitating drug design. Predicting the 3D structure (fold)
of a protein is a key problem in molecular biology. Determination of the fold of a protein mainly relies
on molecular experimental methods. With the development of next-generation sequencing techniques,
the discovery of new protein sequences has been rapidly increasing. With such a great number of
proteins, the use of experimental techniques to determine protein folding is extremely difficult because
these techniques are time consuming and expensive. Thus, developing computational prediction
methods that can automatically, rapidly, and accurately classify unknown protein sequences into
specific fold categories is urgently needed. Computational recognition of protein folds has been a
recent research hotspot in bioinformatics and computational biology. Many computational efforts
have been made, generating a variety of computational prediction methods. In this review, we
conduct a comprehensive survey of recent computational methods, especially machine learning-based
methods, for protein fold recognition. This review is anticipated to assist researchers in their pursuit
to systematically understand the computational recognition of protein folds.
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1. Introduction

Understanding how proteins adopt their 3D structure remains one of the greatest challenges in
science. Elucidation of this process would greatly impact various fields of biology and medicine, as
well as the rational design of new functional proteins and drug molecules. Determination of the fold
category of a protein is crucial as it reveals the 3D structure of proteins. Classification of a protein of
unknown structure under a fold category is called fold recognition, which is a fundamental step in the
determination of the tertiary structure of a protein.

In the early years, determination of protein structure relies on traditional experimental methods,
such as X-ray crystallography and nuclear magnetic resonance spectroscopy. In the post-genomic
era, numerous sequences are generated by next-generation sequencing techniques. Although an
increasing number of sequences are structurally characterized using experimental methods, the gap
between structurally determined sequences and uncharacterized sequences is constantly increasing.
Therefore, developing computational methods for fast and accurate determination of protein structures
is urgently needed. Accurate computational prediction of protein folds has recently emerged as
alternative approach to the labor intensive and expensive experimental methods. Computational
methods for protein fold recognition can be generally categorized into three classes: (1) de novo
modeling methods; (2) template-based methods; and (3) template-free methods. Many efforts have
focused on the development of methods under classes (2) and (3) because the de novo approach
(class 1) has two limitations. First, it requires long computational time and numerous sources, and
second, it can only be successfully applied in small proteins.
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Template-based methods used to determine protein structures are based on the evolutionary
relationships of proteins. The procedure for template-based methods can be summarized as follows:
First, proteins of known structures retrieved from public protein structure databases (e.g., Protein Data
Bank (PDB)) are used as template proteins for a query protein sequence. To make template-based
prediction fast and reliable, a simplified database is usually employed, in which the sequence similarity
is less than 50%–70%. Second, distant evolutionary relationships between a target sequence and
proteins of known structure are detected. In this step, multi-alignment algorithms are adopted to
exploit evolutionary information by encoding amino acid sequences into profiles. Third, to determine
the optimal alignments, scoring functions are usually used as measures to evaluate the similarity
between the profiles derived from a query protein and those of template proteins with known structures.
Z-score and E-value are the two commonly used scoring functions. The accuracy of the alignment
is tremendously important in model building. Fourth, 3D structure models based on template atom
coordinates and optimal query-template alignments are built. Last, the optimal structure models are
determined from the model candidates through further structure optimization. The commonly used
structural optimization methods include energy minimization and loop modeling.

A series of template-based methods were developed in the last few decades. This series of
approaches are regarded as the most successful methods in constructing theoretical models of protein
structures. For instance, Jaroszewski et al. [1] developed a protein recognition method called Fold
and Function Assignment System (FFAS) by using a profile-profile alignment strategy without
using any structural information. In FFAS, query and template profiles are obtained by PSI-BLAST
searching against the NR85 database; these profiles are then aligned by a dot-product scoring function.
The significance of alignment scores was calculated by comparing the protein with the distribution
scores from pairs of unrelated proteins. Xu et al. [2] improved the FFAS method and proposed a method
called FFAS-3D, wherein they introduced structural information, such as secondary structure, solvent
accessibility, and residue depth. FFAS-3D remarkably outperforms FFAS. Moreover, Shi et al. [3]
developed a protein fold recognition method called FUGUE, which can search sequences against
protein fold libraries by using environment-specific substitution tables and structure-dependent gap
penalties. Raptor is a novel method that uses the mathematical theory of linear programming to build
3D models of proteins and predict protein folds [4,5]. Roy et al. [6] developed an online prediction
server called I-TASSER (Iterative Threading ASSEmbly Refinement), which is an integrated platform
for automated protein structure and function prediction based on the sequence-to-structure-to-function
paradigm. Ghouzam et al. [7] proposed ORION, a new fold recognition method based on pairwise
comparison of hybrid profiles that contain evolutionary information from protein sequences and their
structures. Other template-based methods were successfully developed, including MODELLER [8]
and TMFR [9]. MODELLER implements comparative protein structure modeling through satisfaction
of spatial restraints, whereas TMFR applies special scoring functions to align sequences and predict
whether given sequence pairs share the same fold. As mentioned above, several typical template-based
methods have been proposed. However, the manner by which to examine the quality of template-based
modeling methods remains unknown. Currently, CASP (Critical Assessment of protein Structure
Prediction) is a mainstream platform used to establish an independent mechanism to assess the
current methods employed in protein structure modeling [10]. This platform can be accessed at
http://predictioncenter.org/.

Although much progress has been made in template-based methods, some problems still exist,
as follows: First, we need to determine the structures of template proteins. The three-dimensional
structures of many proteins remain to be determined. Second, template-based modelling largely
relies on the homology between target and template proteins. When the target and template proteins
display a sequence similarity of >30%, the use of sequence alignment methods (e.g., BLAST [11] and
SSEARCH [12]) can reveal their evolutionary relationships. However, this approach is not available
for non-obvious relationships between targets and templates with a sequence identity of lower than
20%–30%. Third, template-based structure modeling is time consuming. This approach always
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requires homology detection by searching target proteins against a template database to detect distant
evolutionary relationships.

To address the aforementioned problems, recent research efforts have focused on the development
of template-free methods. Template-free methods seek to build models and accurately predict protein
structures solely based on amino acid sequences rather than on known structural proteins as templates.
Many machine learning algorithms have been recently used for that purpose; these algorithms include
Hidden Markov Model (HMM), genetic algorithm, Artificial Neural Network, Support Vector Machines
(SVMs), and ensemble classifiers. A key underlying assumption in employing machine learning-based
methods for protein fold recognition is that the number of protein fold classes is limited [13]. Machine
learning aims to build a prediction model by learning the differences between different protein fold
categories and use the learned model to automatically assign a query protein to a specific protein fold
class. This approach is thus more efficient for large-scale predictions and can examine a large number
of promising candidates for further experimental validation. This review focuses mainly on the recent
progress in machine learning-based methods for protein fold recognition. This review is organized
as follows: First, we introduce the public databases usually used in protein fold recognition research.
Second, we describe the framework and flowchart of machine learning-based recognition methods.
Third, we summarize some recent representative machine learning-based methods for protein fold
recognition. Finally, we evaluate and compare the recognition performance of existing methods used
in the last 10 years on a benchmark dataset.

2. Databases

Multiple database sources are often used in protein structure research. These databases include
PDB [14]; Universal Protein Resource [15]; Database of Secondary Structure of Protein (DSSP) [16];
Structural Classification of Proteins (SCOP) [17]; SCOP2 (a successor of SCOP) [18]; and Class,
Architecture, Topology, Homology (CATH) [19] (Table 1). Among these databases, SCOP and CATH
have become valuable resources in protein fold recognition research. Figure 1 shows the architectures
of these databases. These databases are detailed below.

Table 1. Summary of database sources of protein structure classification.

Database Sources Websites References

PDB http://www.rcsb.org/pdb/ [14]
UniProt http://www.uniprot.org/ [15]

DSSP http://swift.cmbi.ru.nl/gv/dssp/ [16]
SCOP http://scop.mrc-lmb.cam.ac.uk/ [17]
SCOP2 http://scop2.mrc-lmb.cam.ac.uk/ [18]
CATH http://www.cathdb.info/ [19]

2.1. SCOP and SCOP2

SCOP, proposed by Murzin et al. [14], is a hierarchical protein classification database that aims to
organize structurally characterized proteins based on their structural and evolutionary relationships.
Proteins in SCOP are categorized into four hierarchical levels: family, superfamily, protein fold, and
structural class. At the family level, proteins are clustered into families based on one of two principles;
the first principle is that proteins display more than 30% sequence identity, and the second is that the
proteins with lower sequence identities share similar structure and functions. Families containing
proteins with low sequence identities but with similar structural and functional features and sharing
a common evolutionary origin are grouped into superfamilies. At the fold level, superfamilies and
families are clustered into a fold if their proteins display the same secondary structures in the same
arrangement with similar topological connections. At the structural class level, different folds are
grouped into classes for the convenience of users. In SCOP, seven different structural classes are

http://www.rcsb.org/pdb/
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formed based on protein secondary structure contents: (1) all α; (2) all-β; (3) α and β; (4) α plus β;
(5) multi-domain proteins; (6) membrane and cell surface proteins; and (7) small proteins.

Murzin et al. [14] have recently presented a successor of SCOP, called SCOP2, which is available at
http://scop2.mrc-lmb.cam.ac.uk. Compared with SCOP, SCOP2 displays a more advanced framework
for protein structure classification, wherein the best features of SCOP are retained and a novel approach
for classification of protein structures is offered. In SCOP2, protein sequences and their structures are
presented in a directed acyclic graph to form a network of many-to-many relationships.

2.2. CATH

Similar to SCOP, CATH is a hierarchical protein domain classification. In the CATH database,
proteins and their structures are obtained from the PDB database. When proteins share a clear common
evolutionary ancestor, they are clustered into a homologous superfamily (“H” level in CATH, Figure 1).
When proteins in the same homologous superfamily display the same fold but do not obviously
show evolutionary relationships, they are grouped into the same topology (“T” level). Proteins in the
“T” level show similar secondary structural arrangements and are clustered into the same architecture
(“A” level). For that end, the architectures are further grouped into structural classes (“C” level)
according to secondary structure content.
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3. Framework of Machine Learning-Based Methods

This section describes the mechanism of protein fold recognition by machine learning-based
methods. The overall procedure in protein fold recognition by machine learning-based methods
includes two phases (Figure 2): (1) model training; and (2) prediction.
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In the first phase (model building), query protein sequences are first submitted into a pipeline
of feature representation, in which sequences of different lengths are encoded with fixed-length
feature vectors by feature descriptors. The commonly used feature descriptors include Amino Acid
Composition (AAC), Pseudo AAC, Functional Domain (FunD), Position Specific Scoring Matrix
(PSSM)-based descriptors, Secondary Structure-based descriptors, and Autocross-covariance (ACC)
transformation. When the resulting feature representations display some irrelevant features or
redundant features, an alternative step is usually performed to select the optimal feature subsets,
which can yield the best performance, from the resulting feature representations. Subsequently, the
feature vectors are fed into a pre-selected classification algorithm to train a prediction model. Typical
classification algorithms often used in model building include SVM, Random Forest (RF), Naïve Bayes
(NB), and Logistic Regression (LR). The first phase is completed in this step.

In the second phase (prediction), uncharacterized query proteins are first submitted into the same
pipeline of feature representation as in the first phase. Note that if feature optimization of the generated
feature representation is performed in the first phase, feature optimization should also be performed
in the second phase; otherwise, the resulting feature vectors are fed into the trained prediction model,
wherein the protein fold class to which the query proteins belong is predicted.
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4. Recent Representative Methods for Protein Fold Recognition

Machine learning-based methods can be further categorized into two classes according to the
learning algorithms used in prediction models: (1) single classifier-based methods; and (2) ensemble
classifier-based methods. Single classifier-based methods use a single specific learning algorithm to
build prediction models, whereas ensemble classifier-based methods use an ensemble of multiple,
either similar or different, learning algorithms to build prediction models. This section introduces
the recent single classifier-based methods and ensemble classifier-based methods used in protein fold
recognition, as follows:

4.1. Single Classifier-Based Methods

Most of the current single classifier methods used in protein fold recognition are based on SVM
classifier probably because SVM, being a well-known classification algorithm, has been highly efficient
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in several fields of bioinformatics, such as in protein remote homology detection, protein structural
classification, and DNA-binding protein prediction. SVM-based protein fold recognition methods
include Shamim’s method [20], Damoulas’ method [21], ACCFold_AC and ACCFold_ACC [22],
TAXFOLD [23], and Alok Sharma’s method [24]. The main difference among these SVM-based
methods is their feature representation algorithms. For instance, Shamim et al. [20] propose to use
secondary structural state and solvent accessibility state frequencies of amino acids and amino acid
pairs as feature vectors. Of these features, the secondary structural state frequencies are more effective
than the two other features for fold class discrimination. Combining the secondary structural state
frequencies with the two other feature types can further improve the accuracy of fold discrimination.
Dong et al. [22] propose the ACCFold_AC and ACCFold_ACC methods for protein fold recognition.
Based on the distant evolutionary relationships of protein sequences, their proposed feature algorithm
can effectively capture the evolutionary information embedded in the form of position-specific score
matrices and the sequence-order effect by utilizing ACC transformation. The TAXFOLD method,
proposed by Yang et al. [23], proposes to use global and local sequential and structural features
for protein fold classification. Given that an increasing number of features are proposed, simply
fusing different types of feature spaces is probably not an informative means to further improve
recognition accuracy. Thus, a classification method that can assess the contribution of these potentially
heterogeneous object descriptors must be developed. For this reason, Damoulas et al. [21] propose a
single multi-class kernel machine that informatively combines available feature groups. Apart from
the SVM classifier, other single classifiers, such as RF (Random Forest) [25] and Hidden Markov
Model [26], are used to construct a prediction engine in machine learning-based methods.

Chen et al. [25] recently propose an RF-based protein fold recognition method called PFP-RFSM.
The framework of PFP-RFSM involves a comprehensive feature representation algorithm that can
capture distinctive sequential and structural information from primary sequences and predicted
structures, respectively. This feature representation algorithm generates features from seven
perspectives, namely: amino acid composition, secondary structure contents, predicted relative solvent
accessibility, predicted dihedral angles, PSSM matrix, nearest neighbor sequences, and sequence
motifs. Features based on sequence motifs are utilized in protein fold recognition for the first time.
Moreover, the PFP-RFSM method is the first to use the RF classifier as its prediction engine. As reported
in [25], RF classifier is superior over the other commonly used classifiers, such as SVM, NB, and LR.
In terms of overall performance, RF outperforms most of the existing methods, especially some of the
ensemble-classifier methods (e.g., the well-known PFP-FunDSeqE method).

Lampros et al. [26] propose a novel optimization method for protein fold classification;
the prediction model of this method is constructed based on a Markov chain trained with primary
structure of proteins and on a reduced state-space HMM, which is an effective means of classifying
proteins in fold categories with low computational cost. The proposed Markov chain requires only
a primary sequence for training, and it is trained using a likelihood maximization algorithm. This
method has proven to be effective in protein fold categorization [26].

4.2. Ensemble Classifier-Based Methods

Most of the recently developed methods for protein fold recognition are based on ensemble
classifier models. Figure 3 shows the three general types of ensemble classifier models. For given n
different single basic classifiers, the first type of ensemble classifier-based methods use one specific
feature descriptor to encode query proteins with feature representations (Figure 3a); the feature
representations are trained with each single basic classifier to create n single classifier models, and
then all of the n trained single classifier models are combined with ensemble strategies to generate
an ensemble classifier-based model. For a given n different single basic classifiers and n different
feature descriptors, the second type of ensemble classifier-based methods use n feature descriptors to
encode query proteins with n different feature representations (Figure 3b); the n feature representations
are sequentially combined as one to train the n single basic classifiers, and then all of the n trained
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single classifier models are combined with ensemble strategies to generate an ensemble classifier-based
model. For a given specific classifier and n different feature descriptors, the third type of ensemble
classifier-based methods use n feature descriptors to encode query proteins with n different feature
representations (Figure 3c); the n feature representations are respectively trained with a specific
single classifier to construct n single classifier-based models, and then all of the n trained single
classifier models are combined with ensemble strategies to generate an ensemble classifier-based
model. This section highlights some representative ensemble methods used in protein fold recognition.
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One well-known ensemble classifier method is PFP-FunDSeqE proposed by Shen and Chou [27].
In PFP-FunDSeqE, a novel feature extraction approach is proposed to explore the functional domain
information and sequential evolution information. This approach generates 17,402 FunD features
and 220 Pseudo PSSM features. The two feature groups are separately fed into an optimized
evidence-theoretic K-nearest neighbor (OET-KNN) classifier to build prediction models. Accordingly,
the two optimized OET-KNN models are fused to generate an ensemble classifier prediction model.

Wei et al. [13] also develop an ensemble method called PFPA. In the PFPA method, the authors
design a novel feature representation algorithm considering the sequential evolutionary information
and structural information. The sequential evolutionary information is derived from PSI-BLAST [28]
and profiles which are generated by searching query proteins against a non-redundancy database. On
the basis of the PSI-BLAST profiles, the authors compute 20 PSSM features and 420 amino acid
compositional features from consensus sequences, which contain rich evolutionary information.
The structural information is derived from PSI-PRED [29] profiles. To sufficiently explore the
structural information, the authors calculate 27 local and 6 global secondary structure features from
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PSI-PRED profiles. Generally, all of the sequential and structural features are integrated to construct
comprehensive feature representations of query proteins. For prediction engine construction, they
build an ensemble classifier model, which fuses five basic classifier models (RF [30], NB [31], Bayes
Net [32], LibSVM [33], and SMO (Sequential Minimal Optimization) [34]) with an average probability
strategy. Importantly, an online webserver that implements the PFPA method is developed and
freely available at http://server.malab.cn/PFPA/index.html. This method is useful to researchers in
this field.

Moreover, Chen et al. [35] recently proposed a recognition method called ProFold. In ProFold,
information on protein tertiary structures is first considered in its feature extraction framework in
addition to other commonly used features, such as global features of amino acid sequence, PSSM
features, functional domain features, and physiochemical features. The tertiary structure features are
used to compute eight types of secondary structure states from PDB files by using DSSP. Additionally,
ProFold proposes a novel strategy to construct an ensemble classifier. The authors first select 10 widely
used basic classifiers, such as Logistic model tree [36], RF [30], LibSVM [33], Simple Logistic [36],
Rotation Forest [37,38], SMO [34], NB [31], Random Tree [30], Functional tree [39], and Simple Cart [40].
Subsequently, different types of feature representations are trained using these 10 basic classifiers.
For each feature type, the model with the highest accuracy is chosen, generating four single classifier
models for the four feature types. The four models are DSSP model, AAsCPP model, PSSM model,
and FunD model. The average probability strategy is used to fuse the four single classifier models,
similar to that in the PFPA method.

5. Comparisons with Different Methods on Benchmark Dataset

To examine the effectiveness of existing machine learning-based methods in the literature for
protein fold recognition, an intuitive comparison is to perform the methods on a public benchmark
dataset. Here, a public and stringent dataset, proposed by Ding and Dubchak [41], is employed as
a benchmark dataset for performance comparison of the existing methods. This dataset, referred as
to DD, has been widely used in several studies [22,23,27,41–50]. The DD dataset is comprised of a
training dataset and a testing dataset, both of which cover 27 protein fold classes in the SCOP database.
The training dataset contains 311 protein sequences with ≤40% residue identity, while the testing
dataset contains 383 protein sequences with ≤35% residue identity. Importantly, the sequences in the
training dataset have residue identity ≤35% with that in testing dataset, thus ensuring to provide
unbiased performance evaluation. The sequence distribution of each of the 27-fold classes can be seen
in Table 2.

As the benchmark dataset determined, the next thing is to determine the methods for performance
comparison. To provide a comprehensive comparison, we evaluated and compared the 20
representative methods published in the past 10 years (from 2006 to present) on the DD dataset.
The compared 20 methods are first modeled by the training dataset of the DD dataset, and then they
are tested on the testing dataset of the DD dataset. The prediction results are presented in Table 3.
As shown in Table 3, we observe the following two experimental results. First, the recent ProFold
exhibits the best performance among other existing methods. The overall accuracy of ProFold is 76.2%,
which is 2.6%–15.7% higher than that of other methods. This demonstrates that the ProFold has great
power to distinguish the 27-fold classes in the DD dataset. The significant performance improvement
of ProFold contributes to the first use of the DSSP feature in the field of protein fold recognition. Their
research results indicate that integrating the DSSP features into feature representations remarkably
enhanced the overall accuracy from 71.2% to 76.2% [35]. This provides an alternative way to further
improve predictive performance by integrating some unexplored but informative features. Second,
of the 20 methods, 14 methods are based on an ensemble classifier, while 6 methods are based on a
single classifier. In particular, we observe that there are 9 out of 20 methods that obtain an overall
accuracy of >70%, which are PFP-FunDSeqE (70.5%), TAXFOLD (71.5%), Marfold (71.7%), Kavousi et
al. (73.1%), PFPA (73.6%), Feng and Hu (70.2%), Feng et al. (70.8%), and ProFold (76.2%), respectively.

http://server.malab.cn/PFPA/index.html
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Of the nine methods, only TAXFOLD is based on single classifier while the other methods are based on
ensemble classifier. This indicates that ensemble classifiers are more effective than single classifiers for
protein fold recognition. On the other hand, this result also explains why more recent research efforts
are focused on the development of ensemble-classifier-based predictors.

Table 2. Sequence distribution of the 27-fold classes in the DD dataset.

Index Fold Identifier Fold Name STrain STest Total

1 a.1 Globin-like 13 6 19
2 a.3 Cytochrome c 7 9 16
3 a.4 DNA/RNA-binding 3-helical bundle 12 30 32
4 a.24 4-Helical up-and-down bundle 7 8 15
5 a.26 4-Helical cytokines 9 9 18
6 a.39 EF hand-like 6 9 15
7 b.1 Immunoglobulin-like β-sandwich 30 44 74
8 b.6 Cupredoxin-like 9 12 21
9 b.121 Nucleoplasmin-like/VP 16 13 29
10 b.29 ConA-like lectins/glucanases 7 6 13
11 b.34 SH3-like barrel 8 8 16
12 b.40 OB-Fold 13 19 32
13 b.42 β-Trefoil 8 4 12
14 b.47 Trypsin-like serine proteases 9 4 13
15 b.60 Lipocalins 9 7 16
16 c.1 TIM β/α-barrel 29 48 77
17 c.2 FAD/NAD(P)-binding domain 11 12 23
18 c.3 Flavodoxin-like 11 13 24
19 c.23 NAD(P)-binding Rossmann 13 27 40
20 c.37 P-loop containing NTH 10 12 22
21 c.47 Thioredoxin-fold 9 8 17
22 c.55 Ribonuclease H-like motif 10 12 22
23 c.69 α/β-Hydrolases 11 7 18
24 c.93 Periplasmic binding protein-like 11 4 15
25 d.15 β-Grasp (ubiquitin-like) 7 8 15
26 d.58 Ferredoxin-like 13 27 40
27 g.3 Knottins (small inhibitors, toxins, lectins) 13 27 40

Total 311 383 694

Note that STrain denotes the training dataset, and STest denotes the testing dataset.

Table 3. Performance of representative machine learning-based methods in the literature on the
DD dataset.

Index Methods Classifier Type References Overall Accuracy (%)

1 Nanni et al. (2006) Ensemble [49] 61.1
2 PFP-Pred (2006) Ensemble [50] 62.1
3 Shamim et al. (2007) Single (SVM) [20] 60.5
4 PFRES (2007) Ensemble [42] 68.4
5 Damoulas et al. (2008) Single (SVM) [21] 68.1
6 ALHK (2008) Ensemble [51] 61.8
7 GAOEC (2008) Ensemble [52] 64.7
8 PFP-FunDSeqE (2009) Ensemble [27] 70.5
9 ACCFold_AC (2009) Single (SVM) [22] 65.3

10 ACCFold_ACC (2009) Single (SVM) [22] 66.6
11 Ghanty et al. (2009) Ensemble [47] 68.6
12 TAXFOLD (2011) Single (SVM) [23] 71.5
13 Alok Sharma et al. (2012) Single (SVM) [24] 69.5
14 Marfold (2012) Ensemble [53] 71.7
15 Kavousi et al. (2012) Ensemble [54] 73.1
16 PFP-RFSM (2013) Single (RF) [25] 73.7
17 Feng and Hu (2014) Ensemble [55] 70.2
18 PFPA (2015) Ensemble [13] 73.6
19 Feng et al. (2016) Ensemble [56] 70.8
20 ProFold (2016) Ensemble [35] 76.2
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6. Conclusions and Perspectives

We have systematically reviewed the recent progress in machine learning-based protein fold
recognition methods. Compared with the traditional experimental methods, machine learning-based
methods present three advantages. First, they demonstrate accurate, robust, and reliable performance.
Second, they can be applied in large-scale protein fold recognition; this application is extremely
important in the post-genomic era, wherein numerous proteins remain to be structurally characterized.
Third, they can effectively address the intrinsic limitations of experimental methods, that is, their
being time consuming and expensive. In the past decades, remarkable progress has been made in
computational protein fold recognition. However, several challenges remain to be addressed.

First, the benchmark dataset (e.g., DD dataset) used to evaluate the performance of predictors
actually suffers some limitations. For instance, the DD dataset is imbalanced. Table 2 shows
that the ratio of the smallest class (“EF hand-like”) against the largest class (“immunoglobulin-like
β-sandwich”) is roughly 1:4. Moreover, the sample size for each fold class is small. Only 383 training
sequences belong to 27-fold classes. The largest fold class contains 30 training samples, whereas the
smallest fold class contains 6 training samples. Generally, the prediction model generated based on
such an imbalance and small dataset is easily overfitting.

Second, most of the existing methods, especially for those with online webservers, can only
provide for the populated 27-fold class prediction. Although the sequences of the 27-fold classes cover
the majority of the sequences in SCOP database, approximately 1800 protein fold classes actually
exist in SCOP. Thus, developing adaptive multi-class protein fold predictors is desirable given that an
increasing number of protein fold classes are being discovered.

Third, constructing informative and effective prediction engines remains a great challenge.
Well-established ensemble classifiers have demonstrated their classification power in protein fold
recognition. The use of deep learning algorithms for classification tasks has been a recent research
hotspot in the machine learning field. Deep learning networks have been successfully applied in
protein fold recognition [57]. Combining deep learning networks with well-established ensemble
classifiers is probably an alternative means to improve the efficiency of protein fold recognition.

In general, machine learning-based methods can be successfully applied in protein fold
recognition. In the future, machine learning methods will be extensively applied in other
similar but unexplored fields, such as disease-causing amino acid change prediction [58–60],
protein-protein binding site or interaction prediction [61–63], and DNA-protein binding site or
interaction prediction [64–66].
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