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Abstract: Gastrointestinal stromal tumors (GIST) are the most common mesenchymal 

tumors of the gastrointestinal tract. They are characterized by gain of function mutations in 

KIT or PDGFRA tyrosine kinase receptors, with their consequent constitutive activation. 

The gold standard therapy is imatinib that offers a good and stable response for 

approximately 18–36 months. However, resistance is very common and it is vital to 

identify new biomarkers. Up until now, there have been two main approaches with focus to 

characterize novel targets. On the one hand, the focus is on the tumor genome, as the final 

clinical outcome depends mainly from the cancer specific mutations/alterations patterns. 

However, the germline DNA is important as well, and it is inconceivable to think the 

patients response to the drug is not related to it. Therefore the aim of this review is to 
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outline the state of the art of the personalized medicine in GIST taking into account both 

the tumor DNA (somatic) and the patient DNA (germline). 

Keywords: GIST; KIT/PDGFRA mutant GIST; WT-GIST; personalized therapy; biomarkers; 

drug resistance; polymorphisms 

 

1. Introduction 

Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors of the 

gastrointestinal  tract and are worldwide considered a paradigm of molecular biology in solid  

tumors [1]. Everything has begun with the introduction of tyrosine-kinase inhibitors (TKI) that 

positively affected the long-term prognosis of GIST patients, tremendously modifying the natural 

history of this rare disease [2–4]. Imatinib was the first TKI introduced in GIST management in 2000, 

and still remains the only approved first line treatment, while sunitinib and regorafenib represent the 

second and third line treatment, respectively [2,3]. 

The GIST paradigm has been proven to be more complex than expected, due to the evidence of  

a molecular heterogeneity within all GIST tumors, and the identification of different subgroups 

frequently characterized by a peculiar genotype-phenotype [5]. With the discovery of the common and 

mutually exclusive KIT or platelet-derived growth factor receptor alpha (PDGFRA) gain-of-function 

mutations, which occur in about 70%–80% and 7% of cases respectively, deeper insights on GIST 

biology have been progressively gained. Specifically, with the application of high throughput 

technologies into basic and translational research, we experienced the identification of a wide spectrum 

of other genomic alterations [6–10]. The biological role of most of these additional events in GIST 

pathogenesis and development remains undefined. However, it is known that acquisition of secondary 

resistance to TKIs’ frequently shows substantial heterogeneity within and between metastases from 

individual patients [11]. 

Tumor handling is, and has been for a long time, one of the most difficult issues. In the era of 

personalized medicine, clinicians are faced with many intriguing doubts regarding the choice of the 

adequate drug administered at the correct dosage, for a certain patient. Unfortunately, regarding GIST 

patients, clinicians do not have a real choice since only TKIs are approved for GIST treatment, even 

for patients without TK-gain of function mutations. In this context, the rapid progress of high-throughput 

genome sequencing, applied to molecular diagnosis, has the potential to drive the development and 

approval of new therapeutic options for GIST patients resistant to TKIs or with mutations in genes 

other than TK [12]. What is known to be sure is that two main players are involved in the final clinical 

outcome: the somatic DNA and the germline DNA [12]. The somatic genome represents the specific 

tumor DNA and includes all the mutations and alterations strictly associated with the cancer. The germline 

DNA represents the patient’s genome. These two genomes together are relevant in cancer treatment, 

dictating response and toxicity. In particular the somatic DNA influences the tumor behavior and 

aggressiveness, and mainly it determines the responsiveness to the treatment; germline DNA primarily 

influences drug exposure (how the body handles) and toxicity (how the body reacts) [12]. 
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In this view, scientists and clinicians are obligated to take into account that both DNAs supply 

specific biomarkers which together affect the patient’s drug response. Therefore, from the era of 
targeted therapies we are moving towards the era of personalized therapies, which should take into 

account all genomic variables, both the tumors and the patients, making GIST a more actual model in 

the molecular biology of solid tumors. In light of these considerations, the integrated study of the 

somatic genome and the germline DNA certainly represents a major step towards the translation of 

personalized therapy into clinical practice. 

The aim of this review is to outline the state of the art of the personalized medicine in GIST 

considering two sides of the same coin: on the one hand the tumor DNA, with its mutations pattern that 

strictly typify the cancer, and on the other hand the patient DNA, that could contribute to the clinical 

outcome as well. 

2. Pharmacogenetic Approaches in GIST: State of the Art 

As mentioned above, approximately 80% of GIST harbors KIT/PDGFRA mutations, however, 

unfortunately, there are not inherited genetic factors. Epidemiological studies have raised the 

possibility that risk factors, e.g., dioxin and radiation exposure, may be linked to sarcomas [13]. In 

regard to these considerations, O’Brien and colleagues analyzed 208 variants in 39 candidate genes 

related to DNA repair and dioxin metabolism and imatinib response in 279 GIST enrolled in a clinical 

trial for neoadjuvant imatinib. In particular, they found that polymorphisms in CYP1B1 (rs2855658 

and rs1056836) were strongly associated with the presence of KIT exon 11 codon 557-8 deletions  

(p = 0.002 and p = 0.004, respectively). Moreover, they found other potential risk variants such as 

RAD23B, ERCC2 and GSTM1, highlighting the hypothesis of an environmental related origin of 

GIST [13]. Up until now, no additional studies have been performed to confirm these findings, and this 

represents the only study, conducted through the high throughput screening platform (Illumina), 

related to germline variants in GIST. 

After imatinib introduction in therapy, GIST patients’ prognosis and survival improved  

significantly [6,14]. However, despite the excellent results, it is common that patients initially 

responding well to imatinib, develop progression and acquired resistance through different  

mechanisms [6,14]. In this view, the major efforts of researchers have focused on identifying the  

driver mechanisms of acquired resistance as well as novel potential biomarkers for GIST treatment. 

Though it is likely that in drug response the significance of the tumor DNA weighs more than the 

germinal one, the genetic code of the patient still remains relevant. Indeed, it is well known that any 

drug, starting from its intake, undergoes a specific pharmacokinetics itinerary, and a growing body of 

literature ascribes to this itinerary a role in drug efficacy and side effects [15]. 

Figure 1 shows the main actors taking part in the resulting imatinib bioavailability; imatinib is  
almost completely absorbed (~97%) [16], and it is widely metabolized in the liver by the cytochrome 

P450 isoforms 3A4 and 3A5, while proteins as OCT1, OCTN, OATP, ABCB1 and ABCG2 are 

transporters affecting its efflux and uptake. As a result, it seems obvious that polymorphisms in genes 

coding these metabolizing and transporter enzymes could make the differences in the resulting 

proteins. In a previous pharmacogenetic study evaluating chronic myeloid leukemia (CML) patients 

undergoing imatinib therapy, an association between imatinib transporter genotype and imatinib 
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response has been found [17]. On the basis of these findings, in 2013, Angelini and colleagues conducted 

the first pharmacogenetic study on GIST patients undergoing imatinib therapy. Through a multiple 

candidate gene approach, they analyzed a panel of 31 single nucleotide variants in nine transporters 

genes and two metabolizing genes in 54 GIST patients treated with imatinib. They found three 

polymorphisms, one in SLC22A4 (rs105152) and two in SLC22A5 (rs263136, and rs231372)—coding 

for OCTN1 and OCTN2 transporters respectively—associated with a significant improvement in the 

time to progression (TTP) [18]. Interestingly, this study confirmed a previous finding in CML patients, 

highlighting the involvement of the OCTN1 polymorphisms (rs105152) in imatinib response [17]. 

 

Figure 1. The main players in imatinib pharmacokinetics. 

More recently, Koo et al. reported a polymorphism in ABCG2 (rs2231142) associated with  

five-year progression-free survival (PFS) in 209 GIST treated with imatinib 400 mg/daily; in 

particular, carriers of the AA genotype had a longer PFS compared with GG or AG carriers [19]. This 

represents an intriguing finding as the same polymorphism has been analyzed by Angelini et al. 
showing no significant correlation. The discrepancy might be due to the small GIST population 

analyzed by Angelini et al. (54 vs 209 GIST patients), with a consequent low statistical power, which 

might not have revealed the significance [17,19]. To the best of our knowledge, there are no additional 

studies in GIST reporting on polymorphisms in imatinib transporters and metabolizing genes. 

In the last years, growing evidence of a strict link between aberrant methylation profile and cancer, 

as well as neurodegenerative diseases, have been reported [20,21]. In particular, a recent finding 

suggests the DNA methylation pattern may be associated with aggressive clinical behavior and 

unfavorable prognosis in GIST [22]. Based on these findings, and considering that the genes coding for 

enzymes involved in the folate pathway could impact the methylation processes, Angelini et al. 
evaluated 13 common polymorphisms in eight of the main folate-related genes, in 60 GIST patients 

and 153 healthy controls. The data highlighted a decreased risk of GIST associated with a six bp 
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deletion in the thymidylate synthase (TS) gene (formerly rs34489327, delTInsTTAAAG), and a 

reduced TTP associated with the wild-type allele in the reduced folate carrier (RFC) [23]. All these 

results, taken together, suggest the importance of germline genetic variations in genes involved in key 

pathways, including drug uptake and efflux, and in the accurate regulation of the balance in 

methylation rate. 

The importance of the patient’s DNA is also supported by new evidence reinforcing the role of 

plasma level regulation in assessing the response rate. In 2010, for the first time, Yoo et al. examined 

imatinib plasma trough levels (Cmin) in GIST patients treated with imatinib 400 mg/daily [24]. Among 

all patients’ and tumor characteristics, the most interesting finding is that major gastrectomy was 

associated with lower imatinib Cmin when compared to a more conservative gastric resection. This 

observation suggests that monitoring imatinib Cmin might be particularly important for optimal 

treatment in patients who have undergone major gastrectomy, as imatinib 400 mg/daily might be 

insufficient to maintain an optimal blood level, and can be responsible of a poor PFS. However, from 

this study it is difficult to draw a definitive conclusion on the clinical utility of plasma trough levels 

monitoring, considering that data on imatinib response were not taken into account [24]. Two years 

later, Eechoute and colleagues carried out the first prospective pharmacokinetic study in 50 GIST 

patients, revealing a substantial decrease of approximately 30% in imatinib exposure after long-term 

treatment, in part due to reduced absorption. According to these results, the authors, in order to get 

clinical benefits, suggest a different approach that, besides tumor biology, considers also patient 

characteristics, in particular time point-specific imatinib trough level determination [25]. The same 

approach has been recommended by Yoon et al. that described two case reports with advanced GIST 

for which imatinib-related toxicities were successfully managed through dose modifications via 

imatinib plasma level testing [26]. Taken together, these findings indicated that a fine dose adjustment, 

guided by imatinib plasma level measurement, could prevent over-exposure and the resulting toxicity 

without affecting its efficacy [25,26]. An important consideration regarding the clinical utility of 

plasma trough levels monitoring is that optimal threshold value of imatinib Cmin has yet to be 

determined in GIST patients. Furthermore, even if treatment failure or toxicities could occur with an 

inappropriate dosing, and imatinib trough levels monitoring could in turn prevent inappropriate dosing, 

this has not been sufficiently investigated in clinical practice. However, an interesting scenario that  

has emerged from these studies is that inter-individual differences could impact the resulting drug 

clearance or the amount of protein bound drug. Unfortunately, to the best of our knowledge, there are 

no studies in GIST patients evaluating the influence of polymorphisms in imatinib clearance. Interestingly, 

stimulating information comes from CML patients undergoing imatinib treatment. In particular,  

Di Paolo et al. reported a correlation between the hOCT1 polymorphisms (c.480C>G, rs683369) and 

drug clearance in 60 CML patients treated with imatinib [27]. In this study, patients carrying at least 

one polymorphic G-allele had a significantly lower drug clearance than CC carriers. This intriguing 

finding should stimulate further research in GIST patients and, if validated, it could be useful in 

choosing the most effective dose with the as low toxicity as possible. 
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Table 1. Summary of the pharmaocogenetics studies. 

Authors Year 
#n of the Evaluated 

SNPs and Pathway  
Gene/Reference Sequence (rs) * #n of Cases Aim Significant SNPs 

O’Brien et al 

[13]. 
2013 

208 SNVs in  

39 candidate genes 

related to DNA repair 

and dioxin 

metabolism or 

response 

CYP1A2, CYP1B1, HIF1A, NQO1, G6PC/G6PT, 

ADH1A, ADH1B, ADH1C, ALDH18A1, ALDH1A1, 

ALDH1A2, ALDH1A3, ALDH1B1, ALDH1L1, 

ALDH1L2, ALDH2, CYP2B6, CYP2C8, CYP2C9, 

CYP2D6, CYP2E1, CYP3A4, GSTM1, GSTT1, GSTP1, 

HNF4A, NAT2, NFE2L2, NOS2A, PTGS2/COX2, 

SULT1A1, TP53, MDM2. 

279 GIST from 

a clinical trial 

of adjuvant 

imatinib 

mesylate 

To test the association 

between germline SNVs 

and somatic mutations 

and to evaluate the 

hypothesis of 

environmental related 

origin for GIST 

CYP1B1 rs2855658 and rs1056836 were 

associated with KIT exon 11 codon 557-8 

del; ERCC2 rs50871 was associated with 

WT GIST; ERCC2 rs50871 was 

associated with KIT exon 11 insertion  

(no codon 557-8); GSTM1 deletion was 

associated with KIT exon 11 codon 557-8 

del; RAD23B rs1805329 and rs7041137 

were associated with other KIT mutations 

(none in exon 11) 

Angelini et al 

[18]. 
2013 

27 SNVs in 9 

transporters genes;  

4 SNVs in  

4 metabolizing genes 

SLC22A1 (rs12208357, rs683369, rs4646277, 

rs4646278, rs2282143, rs72552763); SLC22A4 

(rs1050152); SLC22A5 (rs2631367, rs2631370, 

rs2631372); SLCO1A2 (rs11568563); SLCO1B3 

(rs4149157, rs4149158, rs4149117, rs7311358); 

ABCA3 (rs323040, rs4146825); ABCB1 (rs10245483, 

rs3213619, rs1128501, rs1128503, rs60023214, 

rs2032582); ABCC4 (rs3765534, rs9561765); ABCG2 

(rs2231137, rs2231142); CYP3A4 (rs2740574, 

rs28371759); CYP3A5 (rs776746, rs28365083). 

54 GIST 

patients 

receiving 

imatinib 400 mg 

To evaluate the 

correlation among SNPs 

and clinical outcome 

TTP improved by C allele in SLC22A4 

(rs1050152; p = 0.013), and by G alleles 

in SLC22A5 (s2631367; p = 0.042) and 

(rs2631372; p = 0.045) 

Koo et al [19]. 2015 

5 SNVs in  

2 transporters genes; 

1 SNVs in  

1 metabolizing genes 

ABCB1 (rs1128503, rs1045642, rs2032582); ABCG2 

(rs2231137, rs2231142); CYP3A5 (rs776746). 

209 GIST 

patients 

receiving 

imatinib 400 mg 

To evaluate the 

correlation among SNPs 

and clinical outcome 

The 5-year PFS rate in patients with the 

AA variant of ABCG2 rs2032582 was 

superior compared with patients with 

CC/CA genotypes (p = 0.047) 
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Table 1. Cont. 

Authors Year 
#n of the Evaluated 

SNPs and Pathway 
Gene/Reference Sequence (rs) * #n of Cases Aim Significant SNPs 

Angelini et al 

[23]. 
2015 

13 SNVs in 8 folate 

pathway genes 

RFC (rs1051266); FOLR (rs2071010); DHFR 

(rs70991108); TS (rs45445694, rs34489327); SHMT 

(rs1979277); MTHFR (rs1801131, rs1801133); 

MTR (rs1805087); MTRR (rs10380). 

60 GIST patients 

receiving imatinib 

400 mg and  

153 controls 

To evaluate the 

correlation among SNPs 

and clinical outcome 

In 54 patients, presence of WT allele in 

RFC rs1051266, (AA/AG) was associated 

with reduced TTP (p = 0.028) 

Rutkowski et al 

[28]. 
2012 

6 SNVs in 2 VEGF 

pathway genes 

VEGFA (rs699947, rs3025039,rs2010963, 

rs833061); VEGFR2 (1531289, rs1870377). 

39 GIST patients 

receiving sunitinib 

2nd line treatment 

50 mg 

To evaluate the 

correlation among  

SNPs and adverse 

reactions or toxicity 

Presence C-allele in VEGFA rs833061 

and the T-allele in rs3025039 were 

associated with higher risk of 

hypothyroidism (p = 0.041 and p = 0.015, 

respectively) 

* The polymorphisms analyzed by multiple studies are highlighted in red. 
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To date, most of the pharmacogenetics literature is centered on imatinib while the potential 

associations with sunitinib or regorafenib have not been taken into account. The only exception is 

represented by the work of Rutkowski and colleagues who described the outcome and potential 

predictive factors in GIST patients treated with sunitinib after imatinib failure [28]. In this study, six 

polymorphisms in genes belonging to the vascular endothelial growth factor (VEGF) pathway were 

evaluated. Sunitinib is a multitargeted agent, an inhibitor of tyrosine kinases, including KIT, 

PDGFRA/B and the VEGFR receptors −1 and −2. Therefore, as sunitinib acts through the VEGF 

signaling cascade, authors investigated the influence of VEGFA and VEGFR2 polymorphisms on 

sunitinib toxicity, highlighting a likely link between sunitinib-induced hypothyroidism [28]. 

Regrettably, given the small population size of 39 cases, the authors did not evaluate any possible 

association with the clinical outcome and at the moment no data are available. Table 1 summarizes the 

studies and shows the polymorphisms identified as involved in the pharmacogenetics of GIST. To the 

best of our knowledge, no other pharmacogenetic studies have been conducted on sunitinib or 

regorafenib. However, considering the similar pharmacokinetics of the two drugs with the cytochrome 

P450 isoforms 3A4 and 3A5 as main players in their metabolisms, and proteins ABCB1 and ABCG2 

as transporters, it is plausible that polymorphisms in these genes may also affect their clinical utility. 

A fascinating part of pharmacogenetics is left for the emerging role of microRNAs as potentially 

responsible for clinical outcome variability. MicroRNAs are a class of 18–24 nucleotides long noncoding 

RNAs, playing an important role in significant biological processes, such as differentiation, proliferation 

and apoptosis [29]. MicroRNAs alteration represents epigenetic modifications that are emerging as 

having a relevant role in GIST biology, including disease development and progression, clinical 

outcome and drug resistance [30]. Unfortunately, as highlighted by Nannini et al., despite the growing 

evidence of the importance of microRNAs in GIST, there is a small consensus among the microRNA 

signature between the different studies [31]. However, the majority of them agreed about the involvement 

in GIST pathogenesis of miR-221 and miR-222, which have been reported by four independent groups 

as implicated in KIT expression regulation [32–35]. In particular, it has been demonstrated that their 

overexpression negatively regulates the TK receptor expression rate and consequently miR-221 and 

222 could be realistically developed as therapeutic-targets for GIST management. 

3. Analysis in Somatic DNA 

The detection of somatic mutations from cancer genome sequences is the key to understanding the 

genetic basis of disease progression, patient survival, therapy response and toxicity. The tumor DNA is 

the main source of information, which has led over the years to a more detailed characterization of the 

biological profile of GIST. According to the somatic genome, GIST are divided into KIT/PDGFRA 

mutant GIST and wild-type (WT) GIST, characterized by deep differences in imatinib response.  

GIST KIT exon 11 mutants manifest response rate in 80% of cases, KIT exon 9 in 40%, and GIST WT 

in 14%. PDGFRA mutants show a mild sensitivity to imatinib (66%), with the exception of exon 18 

point mutation (D842V), which is totally resistant [10–12]. 
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3.1. KIT/PDGFRA Mutant GIST 

From the beginning, the kinase mutational status has represented the peculiar molecular hallmark of 

GIST, and has been recognized as the main pathogenic event as well as the best known predictive 

biomarker of tumor response to TKI [36–39]. Besides the importance of GIST mutational status in 

predicting imatinib sensitivity, as described above, the acquisition of secondary mutations in either 

KIT or PDGFRA represents the most frequent mechanism of imatinib resistance in GIST. The 

acquisition of additional KIT and PDGFRA mutations, occurs with a median of 24 months and shows 

a typical heterogeneous distribution within each lesion [40]. However, other molecular events beyond 

KIT and PDGFRA mutations may play a relevant role in GIST pathogenesis and progression, even if 

at the moment they remain still unidentified. For example, it has been shown that micro-GIST, defined 

as GIST smaller than 1 cm, can display KIT/PDGFRA mutations and, at the same time, carry rare  

and novel mutations, suggesting that, actually, other pathogenic molecular events, besides kinase 

mutations, could occur [41]. Furthermore, secondary resistance can also occur without the onset of 

secondary KIT/PDGFRA mutations, suggesting that other driven molecular events can play a relevant 

role in GIST biology. So, in recent years, with the use of increasingly innovative high throughput 

technologies, many efforts have been made in order to better characterize the molecular background of 

each GIST subtype. This, in the long run will lead to the identification of novel targets, thus expanding 

the armamentarium of GIST therapies available to clinicians. Most of the studies showed that GIST 

display cytogenetic aberrations, with the highest occurrence of 1p, 13q, 14q, and 15q loss, and 22q loss 

of heterozygosity. Interestingly, this unstable karyotype typifies mutant GIST, whereas WT GIST do 

not show genomic imbalances [8,42–44]. Integrating the high-resolution genomic copy number 

analysis with gene expression profiling, some known oncogenes, including KRAS in chromosome 12p 

amplification, and some tumor suppressors genes, such as KIF1B, PPM1A, and NF2 on chromosome 

1p, 14q and 22p deletions, respectively, have been found. Moreover, other tumor suppressor genes, 

including DAAM1, RTN1 and DACT1 have been restricted to the 14q23.1 region, which represents 

the genomic segment most frequently altered in mutant GIST [8]. In a further study, it has been shown 

that the ETS family transcription factor, ETV1, is universally highly expressed in GIST, both at protein 

and mRNA levels, and at higher levels than any other tumor type, including melanoma and prostate 

cancer [44]. Additionally ETV1 is required for tumor growth and survival in both imatinib-sensitive 

(GIST882) and imatinib-resistant (GIST48) cell lines. Furthermore, ETV1 is highly expressed in the 

subtypes of interstitial cells of Cajal (ICC)—the presumed GIST cell of origin—sensitive to oncogenic 

KIT mediated transformation, and required for their development into GIST [44]. ETV1 is a master 

regulator of the ICC lineage, and a recent study in a mouse model of KIT activation and ETV1 ablation 

has demonstrated that ETV1 is required for GIST initiation and proliferation in vivo [45]. Furthermore, 

a positive feedback circuit involving MAPK signaling, that stabilizes ETV1 protein, which in turn 

positively regulates KIT expression has been found [45]. Taken together, these results suggest that 

ETV1 may be considered a new key therapeutic target in GIST, with the potential to revolutionize the 

first-line treatment of GIST patients [45]. 
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3.2. Wild-Type GIST 

While the efforts for mutant GIST have been addressed to the discovery of other oncogenic events 

beyond KIT and PDGFRA, the efforts for KIT/PDGFRA WT GIST have been directed to the 

identification of the molecular signature of this small subset of GIST. For a long time, WT GIST have 

been viewed as a unique and less frequent subgroup of GIST, characterized by the lack of known KIT 

and PDGFRA mutations. Advances in science, culminating with whole genome analysis have shown 

that KIT/PDGFRA WT GIST should be considered more appropriately as a heterogeneous family of 

distinct disease entities, with different biological and clinical features [46]. As previously highlighted, 

WT GIST are characterized by an imatinib response rate of 14%, requiring the identification of novel 

targets and the development of new therapeutic strategies. About 15% of KIT/PDGFRA WT GIST 

harbors activating mutation in BRAF or, more rarely, RAS gene [47]. Effective treatments for  

BRAF-mutant GIST might be the use of a BRAF inhibitor such as dabrafenib, which is active in 

several BRAF-mutant cancers [48]. To the best of our knowledge, the efficacy of BRAF inhibitors in  

BRAF-mutant GIST has not been reported, however, there is a case of prolonged antitumor activity  

in a BRAF-mutant GIST, which suggests the need for additional studies and perhaps a global clinical 

trial [49]. 

In addition, KIT/PDGFRA WT GIST may be related to syndromic neurofibromatosis type I (NF1) 

disease, associated with NF1 protein loss of function due to genomic inactivation of the NF1 gene [50]. 

Moreover, about 20%–40% of KIT/PDGFRA WT GIST shows a loss of function of the succinate 

dehydrogenase (SDH) complex, identified with the loss of the subunit B (SDHB) protein expression 

and referred as SDH-deficient GIST or type 2 GIST. All the SDHB immunohistochemical-negative GIST 

are also characterized by an over expression of the insulin growth factor 1 receptor (IGF1R) [51,52]. 

With regard to SDH-deficient GIST, they display distinctive clinic-pathological features, including 

predominance in young (<40 years) women, gastric localization, multifocality, mixed epitheliod and 

spindle cell morphology, diffuse KIT and DOG1 positivity, frequent lymphonode metastases, and an 

indolent course, although it is often metastatic when diagnosed [53]. In most cases, SDH-deficient 
GIST harbor germline and/or somatic loss-of-function mutations in any of the four SDH subunits (A, 

B, C, or D; SDHx), with the highest occurrence of SDHA mutations [54,55]. More recently, it has been  

shown that loss of SDHB protein expression, not driven by SDHx mutations, might be due to a 

hypermethylation in the SDHC promoter region [9,56]. 

Most recently, a small subgroup of KIT/PDGFRA WT GIST, referred as quadruple WT GIST, that 

lack mutations in any of the known KIT exons (8, 9, 11, 13, 14, 17) or PDGFRA exons (12, 14, 18) or 

RAS pathways, including BRAF (exons 11, 15) and RAS (exons 2, 3), or NF1, and yet retain an intact 

SDH complex (SDHB IHC positive, and no mutations in SDHx) has been identified [57,58]. A whole 

genome analysis, using massively parallel sequencing and gene expression analysis, has shown that 

quadruple WT GIST have an expression signature extremely different from both KIT/PDGFRA 

mutated and SDHA mutated GIST, characterized by the overexpression of molecular markers 

(CALCRL and COL22A1) and of specific oncogenes, including tyrosine and cyclin-dependent kinases 

(NTRK2 and CDK6), and one member of the ETS-transcription factor family (ERG) [58]. 

All this evidence together reveals that GIST should be considered as a distinctive set of biological 

entities, and it would be wise to take into consideration all these genomic variables when selecting the 
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medical treatment. Unfortunately, the high cost associated with genomic analysis, as well as the need 

of specialized laboratories and tools, and the need of fresh tumor tissue for analysis, restrict the 

realization and its application in clinical practice. For these reasons, in recent years, the DNA extracted 

from formalin-fixed, paraffin-embedded specimens and, more recently, the circulating tumor DNA 

(ctDNA) obtained from a patient’s bloodstream, known as liquid biopsy, have become the most 

potential and promising source of tumor DNA [59,60]. In particular, the possibility to extend sophisticated 

analysis with high-throughput technologies on all archived specimens, may allow genomic studies on  

a wider number of samples, and thereby improve the knowledge of the biological background of all 

subsets of GIST. Furthermore, in view of a personalized therapy, serial evaluations of ctDNA may 

offer a dynamic picture of the molecular changes during the course of the disease, in order to identify 

the early development of heterogeneous resistant clones, allowing optimizing the time to switch the 

treatment, as well as the choice of the right treatment. All this should lead to the identification of the 

optimal therapeutic strategy  for each individual patient. 

4. Conclusions 

The prognosis for GIST patients has changed enormously over the last decades. In particular, 

imatinib has radically changed life expectancy of patients with GIST, a previously largely untreatable 

group of patients. However, imatinib has not proven to be the definitive answer for their management. 

For those with disease refractory to imatinib, as well as the great majority who develop resistance to 

imatinib, other TKI, sunitinib and regorafenib, are available. It is clear that, at the moment, TKIs are 

the only available treatment in GIST, however, with the development of high throughput technologies, 

as next generation sequencing, and the use of ctDNA, new targets will be available and new targeted 

therapies will be developed. The increasing number of targeted agents, which hold promise for 

improving outcomes in patients with GIST, raises interesting questions about the optimal utilization of 

these agents and the development of pharmacogenetics tests. In the most ideal situation pharmacogenetics 

will allow oncologists to individualize therapy based on somatic and germline genetic test results. 

Overall, this can help to improve efficacy, reduce toxicity and predict non-responders in hope that 

alternative therapy can be chosen or individual dose adjustments can be made. Despite the extensive 

studies and some promising results, it remains unclear when and how pharmacogenetic testing should 

be routinely integrated into GIST management. 

Very few genotype-driven dose-optimization studies prospectively assessed objective response rate, 

progression-free survival, overall survival or other measures of efficacy as their primary endpoints, and 

have been translated into clinical practice. In regard to GIST, it is still an uphill road towards 

personalized medicine. The evidence is still too sparse to provide a solid relationship between germline 

variants and imatinib response, largely due to a lack of validated predictive polymorphisms. Furthermore, 

the way to the identification of translatable pharmacogenetic markers may be complicated by the 

inability to always take into account the effects of somatic genome, tumor heterogeneity, epigenetic 

factors, or additional unidentified prognostic factors. 
  



Int. J. Mol. Sci. 2015, 16 15603 

 

 

Acknowledgments 

This work was partially supported by the Fondazione del Monte di Bologna e Ravenna. Gloria 

Ravegnini is supported by a post-doctoral fellowship from the Department of Pharmacy and 

Biotechnology of the University of Bologna. 

Author Contributions 

Gloria Ravegnini, Margherita Nannini, Patrizia Hrelia and Sabrina Angelini have made substantial 

contributions to conception and design of the review and drafted the manuscript; Giulia Sammarini, 

Annalisa Astolfi have revised the manuscript; Guido Biasco and Maria A. Pantaleo: have been 

involved in revising the manuscript critically for important intellectual content and have given final 

approval of the version to be published; All authors read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Antonescu, C.R. The gist paradigm: Lessons for other kinase-driven cancers. J. Pathol. 2011, 223, 

251–261. 

2. Demetri, G.D.; von Mehren, M.; Blanke, C.D.; van den Abbeele, A.D.; Eisenberg, B.; Roberts, P.J.; 

Heinrich, M.C.; Tuveson, D.A.; Singer, S.; Janicek, M.; et al. Efficacy and safety of imatinib 

mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 2002, 347, 472–480. 

3. Demetri, G.D.; van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; 

McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; et al. Efficacy and safety of sunitinib 

in patients with advanced gastrointestinal stromal tumour after failure of imatinib: A randomised 

controlled trial. Lancet 2006, 368, 1329–1338. 

4. Demetri, G.D.; Reichardt, P.; Kang, Y.K.; Blay, J.Y.; Rutkowski, P.; Gelderblom, H.;  

Hohenberger, P.; Leahy, M.; von Mehren, M.; Joensuu, H.; et al. Efficacy and safety of 

regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib 

(grid): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 

381, 295–302. 

5. Ricci, R.; Dei Tos, A.P.; Rindi, G. Gistogram: A graphic presentation of the growing gist 

complexity. Virchows Arch. 2013, 463, 481–487. 

6. Corless, C.L.; Barnett, C.M.; Heinrich, M.C. Gastrointestinal stromal tumours: Origin and 

molecular oncology. Nat. Rev. Cancer 2011, 11, 865–878. 

7. Lourenço, N.; Hélias-Rodzewicz, Z.; Bachet, J.B.; Brahimi-Adouane, S.; Jardin, F.;  

Tran van Nhieu, J.; Peschaud, F.; Martin, E.; Beauchet, A.; Chibon, F.; et al. Copy-neutral  

loss of heterozygosity and chromosome gains and losses are frequent in gastrointestinal stromal 

tumors. Mol. Cancer 2014, 13, 246. 
  



Int. J. Mol. Sci. 2015, 16 15604 

 

 

8. Astolfi, A.; Nannini, M.; Pantaleo, M.A.; di Battista, M.; Heinrich, M.C.; Santini, D.; Catena, F.; 

Corless, C.L.; Maleddu, A.; Saponara, M.; et al. A molecular portrait of gastrointestinal stromal 

tumors: An integrative analysis of gene expression profiling and high-resolution genomic copy 

number. Lab. Investig. 2010, 90, 1285–1294. 

9. Nannini, M.; Astolfi, A.; Urbini, M.; Indio, V.; Santini, D.; Heinrich, M.C.; Corless, C.L.; 

Ceccarelli, C.; Saponara, M.; Mandrioli, A.; et al. Integrated genomic study of quadruple-wt gist 

(kit/pdgfra/sdh/ras pathway wild-type gist). BMC Cancer 2014, 14, 685. 

10. Angelini, S.; Ravegnini, G.; Fletcher, J.A.; Maffei, F.; Hrelia, P. Clinical relevance of 

pharmacogenetics in gastrointestinal stromal tumor treatment in the era of personalized therapy. 

Pharmacogenomics 2013, 14, 941–956. 

11. Liegl, B.; Kepten, I.; Le, C.; Zhu, M.; Demetri, G.D.; Heinrich, M.C.; Fletcher, C.D.; Corless, C.L.; 

Fletcher, J.A. Heterogeneity of kinase inhibitor resistance mechanisms in gist. J. Pathol. 2008, 

216, 64–74. 

12. Hertz, D.L.; McLeod, H.L. Use of pharmacogenetics for predicting cancer prognosis and 

treatment exposure, response and toxicity. J. Hum. Genet. 2013, 58, 346–352. 

13. O’Brien, K.M.; Orlow, I.; Antonescu, C.R.; Ballman, K.; McCall, L.; DeMatteo, R.; Engel, L.S. 

Gastrointestinal stromal tumors, somatic mutations and candidate genetic risk variants. PLoS ONE 
2013, 8, e62119. 

14. Heinrich, M.C.; Corless, C.L.; Demetri, G.D.; Blanke, C.D.; von Mehren, M.; Joensuu, H.; 

McGreevey, L.S.; Chen, C.J.; van den Abbeele, A.D.; Druker, B.J.; et al. Kinase mutations and 

imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 2003, 

21, 4342–4349. 

15. Eechoute, K.; Sparreboom, A.; Burger, H.; Franke, R.M.; Schiavon, G.; Verweij, J.; Loos, W.J.; 

Wiemer, E.A.; Mathijssen, R.H. Drug transporters and imatinib treatment: Implications for 

clinical practice. Clin. Cancer Res. 2011, 17, 406–415. 

16. Peng, B.; Dutreix, C.; Mehring, G.; Hayes, M.J.; Ben-Am, M.; Seiberling, M.; Pokorny, R.; 

Capdeville, R.; Lloyd, P. Absolute bioavailability of imatinib (glivec) orally versus intravenous 

infusion. J. Clin. Pharmacol. 2004, 44, 158–162. 

17. Angelini, S.; Soverini, S.; Ravegnini, G.; Barnett, M.; Turrini, E.; Thornquist, M.; Pane, F.;  

Hughes, T.P.; White, D.L.; Radich, J.; et al. Association between imatinib transporters and 

metabolizing enzymes genotype and response in newly diagnosed chronic myeloid leukemia 

patients receiving imatinib therapy. Haematologica 2013, 98, 193–200. 

18. Angelini, S.; Pantaleo, M.A.; Ravegnini, G.; Zenesini, C.; Cavrini, G.; Nannini, M.; Fumagalli, E.; 

Palassini, E.; Saponara, M.; di Battista, M.; et al. Polymorphisms in OCTN1 and OCTN2 

transporters genes are associated with prolonged time to progression in unresectable gastrointestinal 

stromal tumours treated with imatinib therapy. Pharmacol. Res. 2013, 68, 1–6. 

19. Koo, D.H.; Ryu, M.H.; Ryoo, B.Y.; Beck, M.Y.; Na, Y.S.; Shin, J.G.; Lee, S.S.; Kim, E.Y.;  

Kang, Y.K. Association of ABCG2 polymorphism with clinical efficacy of imatinib in patients 

with gastrointestinal stromal tumor. Cancer Chemother. Pharmacol. 2015, 75, 173–182. 

20. Liu, J.J.; Ward, R.L. Folate and one-carbon metabolism and its impact on aberrant dna 

methylation in cancer. Adv. Genet. 2010, 71, 79–121. 



Int. J. Mol. Sci. 2015, 16 15605 

 

 

21. Fuso, A. The “golden age” of DNA methylation in neurodegenerative diseases. Clin. Chem.  
Lab. Med. 2013, 51, 523–534. 

22. Okamoto, Y.; Sawaki, A.; Ito, S.; Nishida, T.; Takahashi, T.; Toyota, M.; Suzuki, H.;  

Shinomura, Y.; Takeuchi, I.; Shinjo, K.; et al. Aberrant DNA methylation associated with 

aggressiveness of gastrointestinal stromal tumour. Gut 2012, 61, 392–401. 

23. Angelini, S.; Ravegnini, G.; Nannini, M.; Bermejo, J.L.; Musti, M.; Pantaleo, M.A.; Fumagalli, E.; 

Venturoli, N.; Palassini, E.; Consolini, N.; et al. Folate-related polymorphisms in gastrointestinal 

stromal tumours: Susceptibility and correlation with tumour characteristics and clinical outcome. 

Eur. J. Hum. Genet. 2015, 23, 817–823. 

24. Yoo, C.; Ryu, M.H.; Kang, B.W.; Yoon, S.K.; Ryoo, B.Y.; Chang, H.M.; Lee, J.L.; Beck, M.Y.; 

Kim, T.W.; Kang, Y.K. Cross-sectional study of imatinib plasma trough levels in patients with 

advanced gastrointestinal stromal tumors: Impact of gastrointestinal resection on exposure to 

imatinib. J. Clin. Oncol. 2010, 28, 1554–1559. 

25. Eechoute, K.; Fransson, M.N.; Reyners, A.K.; de Jong, F.A.; Sparreboom, A.; van der Graaf, W.T.; 

Friberg, L.E.; Schiavon, G.; Wiemer, E.A.; Verweij, J.; et al. A long-term prospective population 

pharmacokinetic study on imatinib plasma concentrations in gist patients. Clin. Cancer Res. 2012, 

18, 5780–5787. 

26. Yoon, S.; Ryu, M.H.; Yoo, C.; Beck, M.Y.; Ryoo, B.Y.; Kang, Y.K. Imatinib plasma  

monitoring-guided dose modification for managing imatinib-related toxicities in gastrointestinal 

stromal tumor patients. J. Korean Med. Sci. 2013, 28, 1248–1252. 

27. Di Paolo, A.; Polillo, M.; Capecchi, M.; Cervetti, G.; Baratè, C.; Angelini, S.; Guerrini, F.; 

Fontanelli, G.; Arici, R.; Ciabatti, E.; et al. The c.480c>g polymorphism of hoct1 influences 

imatinib clearance in patients affected by chronic myeloid leukemia. Pharmacogenomics J. 2014, 

14, 328–335. 

28. Rutkowski, P.; Bylina, E.; Klimczak, A.; Switaj, T.; Falkowski, S.; Kroc, J.; Lugowska, I.; 

Brzeskwiniewicz, M.; Melerowicz, W.; Osuch, C.; et al. The outcome and predictive factors of 

sunitinib therapy in advanced gastrointestinal stromal tumors (GIST) after imatinib failure-one 

institution study. BMC Cancer 2012, 12, 107. 

29. Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116,  

281–297. 

30. Croce, C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 
2009, 10, 704–714. 

31. Nannini, M.; Ravegnini, G.; Angelini, S.; Astolfi, A.; Biasco, G.; Pantaleo, M.A. MicroRNA 

profiling in gastrointestinal stromal tumors: Implication as diagnostic and prognostic markers. 

Epigenomics 2015, in press. 

32. Gits, C.M.; van Kuijk, P.F.; Jonkers, M.B.; Boersma, A.W.; van Ijcken, W.F.; Wozniak, A.;  

Sciot, R.; Rutkowski, P.; Schöffski, P.; Taguchi, T.; et al. MiR-17-92 and miR-221/222 cluster 

members target KIT and ETV1 in human gastrointestinal stromal tumours. Br. J. Cancer 2013, 

109, 1625–1635. 
  



Int. J. Mol. Sci. 2015, 16 15606 

 

 

33. Haller, F.; von Heydebreck, A.; Zhang, J.D.; Gunawan, B.; Langer, C.; Ramadori, G.; Wiemann, S.; 

Sahin, O. Localization- and mutation-dependent microRNA (miRNA) expression signatures in 

gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 

14q32.31. J. Pathol. 2010, 220, 71–86. 

34. Koelz, M.; Lense, J.; Wrba, F.; Scheffler, M.; Dienes, H.P.; Odenthal, M. Down-regulation of  

miR-221 and miR-222 correlates with pronounced KIT expression in gastrointestinal stromal 

tumors. Int. J. Oncol. 2011, 38, 503–511. 

35. Subramanian, S.; Lui, W.O.; Lee, C.H.; Espinosa, I.; Nielsen, T.O.; Heinrich, M.C.; Corless, C.L.; 

Fire, A.Z.; van de Rijn, M. MicroRNA expression signature of human sarcomas. Oncogene 2008, 

27, 2015–2026. 

36. Hirota, S.; Isozaki, K.; Moriyama, Y.; Hashimoto, K.; Nishida, T.; Ishiguro, S.; Kawano, K.; 

Hanada, M.; Kurata, A.; Takeda, M.; et al. Gain-of-function mutations of c-KIT in human 

gastrointestinal stromal tumors. Science 1998, 279, 577–580. 

37. Heinrich, M.C.; Corless, C.L.; Duensing, A.; McGreevey, L.; Chen, C.J.; Joseph, N.; Singer, S.; 

Griffith, D.J.; Haley, A.; Town, A.; et al. PDGFRA activating mutations in gastrointestinal 

stromal tumors. Science 2003, 299, 708–710. 

38. Liegl-Atzwanger, B.; Fletcher, J.A.; Fletcher, C.D. Gastrointestinal stromal tumors. Virchows Arch. 
2010, 456, 111–127. 

39. Heinrich, M.C.; Maki, R.G.; Corless, C.L.; Antonescu, C.R.; Harlow, A.; Griffith, D.; Town, A.; 

McKinley, A.; Ou, W.B.; Fletcher, J.A.; et al. Primary and secondary kinase genotypes correlate 

with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal 

tumor. J. Clin. Oncol. 2008, 26, 5352–5359. 

40. Maleddu, A.; Pantaleo, M.A.; Nannini, M.; di Battista, M.; Saponara, M.; Lolli, C.; Biasco, G. 

Mechanisms of secondary resistance to tyrosine kinase inhibitors in gastrointestinal stromal 

tumours (review). Oncol. Rep. 2009, 21, 1359–1366. 

41. Rossi, S.; Gasparotto, D.; Toffolatti, L.; Pastrello, C.; Gallina, G.; Marzotto, A.; Sartor, C.; 

Barbareschi, M.; Cantaloni, C.; Messerini, L.; et al. Molecular and clinicopathologic 

characterization of gastrointestinal stromal tumors (GISTs) of small size. Am. J. Surg. Pathol. 
2010, 34, 1480–1491. 

42. Assämäki, R.; Sarlomo-Rikala, M.; Lopez-Guerrero, J.A.; Lasota, J.; Andersson, L.C.;  

Llombart-Bosch, A.; Miettinen, M.; Knuutila, S. Array comparative genomic hybridization  

analysis of chromosomal imbalances and their target genes in gastrointestinal stromal tumors. 

Genes Chromosomes Cancer 2007, 46, 564–576. 

43. Wozniak, A.; Sciot, R.; Guillou, L.; Pauwels, P.; Wasag, B.; Stul, M.; Vermeesch, J.R.; 

Vandenberghe, P.; Limon, J.; Debiec-Rychter, M. Array CGH analysis in primary gastrointestinal 

stromal tumors: Cytogenetic profile correlates with anatomic site and tumor aggressiveness, 

irrespective of mutational status. Genes Chromosomes Cancer 2007, 46, 261–276. 

44. Chi, P.; Chen, Y.; Zhang, L.; Guo, X.; Wongvipat, J.; Shamu, T.; Fletcher, J.A.; Dewell, S.;  

Maki, R.G.; Zheng, D.; et al. ETV1 is a lineage survival factor that cooperates with KIT in 

gastrointestinal stromal tumours. Nature 2010, 467, 849–853. 



Int. J. Mol. Sci. 2015, 16 15607 

 

 

45. Ran, L.; Sirota, I.; Cao, Z.; Murphy, D.; Chen, Y.; Shukla, S.; Xie, Y.; Kaufmann, M.C.; Gao, D.; 

Zhu, S.; et al. Combined inhibition of map kinase and KIT signaling synergistically destabilizes 

ETV1 and suppresses GIST tumor growth. Cancer Discov. 2015, 5, 304–315. 

46. Nannini, M.; Biasco, G.; Astolfi, A.; Pantaleo, M.A. An overview on molecular biology of 

KIT/PDGFRA wild type (WT) gastrointestinal stromal tumours (GIST). J. Med. Genet. 2013, 50, 

653–661. 

47. Daniels, M.; Lurkin, I.; Pauli, R.; Erbstösser, E.; Hildebrandt, U.; Hellwig, K.; Zschille, U.;  

Lüders, P.; Krüger, G.; Knolle, J.; et al. Spectrum of KIT/PDGFRA/BRAF mutations and 

phosphatidylinositol-3-kinase pathway gene alterations in gastrointestinal stromal tumors (gist). 

Cancer Lett 2011, 312, 43–54. 

48. Falchook, G.; Long, G.; Kurzrock, R.; Kim, F.K.; Arkenau, T.; Brown, M.; Hamid, O.;  

Infante, J.R.; Millward, M.; Pavlick, A.C.; et al. Dabrafenib in patients with melanoma, untreated 

brain metastases, and other solid tumours: A phase 1 dose-escalation trial. Lancet 2012, 379,  

1893–1901. 

49. Falchook, G.; Trent, J.; Heinrich, M.; Beadling, C.; Patterson, J.; Bastida, C.; Blackman, S.; 

Kurzrock, R. BRAF mutant gastrointestinal stromal tumor: First report of regression with BRAF 

inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired 

resistance. Oncotarget 2013, 4, 310–315. 

50. Nannini, M.; Astolfi, A.; Paterini, P.; Urbini, M.; Santini, D.; Catena, F.; Indio, V.; Casadio, R.; 

Pinna, A.D.; Biasco, G.; et al. Expression of IGF-1 receptor in KIT/PDGF receptor-α wild-type 

gastrointestinal stromal tumors with succinate dehydrogenase complex dysfunction. Future Oncol. 
2013, 9, 121–126. 

51. Belinsky, M.G.; Rink, L.; Flieder, D.B.; Jahromi, M.S.; Schiffman, J.D.; Godwin, A.K.; Mehren, M. 

Overexpression of insulin-like growth factor 1 receptor and frequent mutational inactivation of 

SDHA in wild-type SDHB-negative gastrointestinal stromal tumors. Genes Chromosomes Cancer 
2013, 52, 214–224. 

52. Miettinen, M.; Wang, Z.F.; Sarlomo-Rikala, M.; Osuch, C.; Rutkowski, P.; Lasota, J. Succinate 

dehydrogenase-deficient GISTs: A clinicopathologic, immunohistochemical, and molecular  

genetic study of 66 gastric GISTs with predilection to young age. Am. J. Surg. Pathol. 2011, 35, 

1712–1721. 

53. Janeway, K.A.; Kim, S.Y.; Lodish, M.; Nosé, V.; Rustin, P.; Gaal, J.; Dahia, P.L.; Liegl, B.;  

Ball, E.R.; Raygada, M.; et al. Defects in succinate dehydrogenase in gastrointestinal stromal 

tumors lacking KIT and PDGFRA mutations. Proc. Natl. Acad. Sci. USA 2011, 108, 314–318. 

54. Pantaleo, M.A.; Astolfi, A.; Urbini, M.; Nannini, M.; Paterini, P.; Indio, V.; Saponara, M.;  

Formica, S.; Ceccarelli, C.; Casadio, R.; et al. Analysis of all subunits, SDHA, SDHB, SDHC, 

SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur. J.  
Hum. Genet. 2014, 22, 32–39. 

55. Killian, J.K.; Kim, S.Y.; Miettinen, M.; Smith, C.; Merino, M.; Tsokos, M.; Quezado, M.;  

Smith, W.I., Jr.; Jahromi, M.S.; Xekouki, P.; et al. Succinate dehydrogenase mutation underlies 

global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 2013, 3, 648–657. 



Int. J. Mol. Sci. 2015, 16 15608 

 

 

56. Killian, J.K.; Miettinen, M.; Walker, R.L.; Wang, Y.; Zhu, Y.J.; Waterfall, J.J.; Noyes, N.; 

Retnakumar, P.; Yang, Z.; Smith, W.I.; et al. Recurrent epimutation of SDHC in gastrointestinal 

stromal tumors. Sci. Transl. Med. 2014, 6, 268ra177, doi:10.1126/scitranslmed.3009961. 

57. Pantaleo, M.A.; Nannini, M.; Corless, C.L.; Heinrich, M.C. Quadruple wild-type (WT) GIST: 

Defining the subset of gist that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling 

pathways. Cancer Med. 2015, 4, 101–103. 

58. Hedegaard, J.; Thorsen, K.; Lund, M.K.; Hein, A.M.; Hamilton-Dutoit, S.J.; Vang, S.;  

Nordentoft, I.; Birkenkamp-Demtröder, K.; Kruhøffer, M.; Hager, H.; et al. Next-generation 

sequencing of RNA and DNA isolated from paired fresh-frozen and formalin-fixed  

paraffin-embedded samples of human cancer and normal tissue. PLoS ONE 2014, 9, e98187. 

59. Van Allen, E.M.; Wagle, N.; Stojanov, P.; Perrin, D.L.; Cibulskis, K.; Marlow, S.; Jane-Valbuena, J.; 

Friedrich, D.C.; Kryukov, G.; Carter, S.L.; et al. Whole-exome sequencing and clinical 

interpretation of formalin-fixed, paraffin-embedded tumor samples to guide precision cancer 

medicine. Nat. Med. 2014, 20, 682–688. 

60. Nannini, M.; Astolfi, A.; Urbini, M.; Biasco, G.; Pantaleo, M.A. Liquid biopsy in gastrointestinal 

stromal tumors: A novel approach. J. Transl. Med. 2014, 12, 210. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


