
 

 

Supplementary Information 

S1. Calculation of Förster Radius for Homo-Transfer between Common Fluorescent Proteins 

The Förster distance 0R , defined as the separation at which FRET activity accounts for half of the 

decays from the excited state, given by [9] 
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where DQ  is the fluorescence quantum yield of the donor molecule, n  the refractive index of the 

medium and AN  Avogadro’s number. 2κ  is the dipole orientation factor which gives a measure of the 

relative orientation of the donor and acceptor molecules dipole moments. The overlap integral, J , gives 

a measure of the overlap between the donor and acceptor spectra, ( )λdq  is the normalised  

donor emission intensity as a function of wavelength and ( )λa  the extinction coefficient of the 

acceptor as a function of wavelength. The Förster distances shown in Figures 1 and S1 were calculated  

using Equation (1) using the photophysical properties of the fluorescent proteins collated by the  

Tsien lab [56]. The overlap integration J was calculated numerically using the fluorescent protein 
extinction spectra ( ( )λa ) and emission spectra ( ( )λdq ) published on the Tsien lab website [57] 

measured at 1 nm intervals. The quantum efficiency (QD) of the fluorescent proteins was taken  

from [56]. The refractive index n was taken to be 1.33, the refractive index of water. The dipole 

orientation factor was assumed to take a value of 2 2
3κ = , the value found in the dynamic averaging 

case [9], enabling the relative distances to be compared. 

 

Figure S1. Förster distances for pairs of common fluorescent proteins. Theoretical Förster 
distance 0R  calculated based on published excitation and emission spectra, extinction 

coefficients and quantum yields. 
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S2. Reconstruction of (Polarisation-Independent) Intensity Decay from Polarisation  

Resolved Data 

It is sometimes desirable to reconstruct the polarisation independent decay ( )tI t  from the 

polarisation resolved measurements. Using Equation (1) it is clear, neglecting the effect of the instrument 

response function, that 

( ) ( ) 2 ( )tI t I t I t⊥= + ⋅  (2)

If the IRF is identical for both channels then Equation (2) may be used since convolution is 

distributive. Since two different detectors are used for the polarisation channels, however, Equation (2) 

does not apply. In particular there is a path length difference between the two detectors and the sample, 

leading to a time delay between the channels. 

We may take advantage of the commutivity of convolution (denoted by ⊗ ) to obtain the decay from 
each channel convolved with the combined IRF, g g⊥ ⊗   by computationally convolving each channel 

with the IRF from the other channel (i.e., g⊥  or g ). The convolution was performed using the 

MATLAB function. The polarisation independent decay, convolved with the combined IRF, ( )tI t , may 

then be obtained using Equation (2) and the re-convolved decays as follows 

 (3)

S3. Time Evolution of Excitation States in a Cluster 

Consider a population of N  identical, randomly oriented fluorophores with fluorescence lifetime τ  

in a cluster where one fluorophore is stimulated into the excited state at time 0t = . We wish to 

determine the probability that the initially excited fluorophore is in the excited state, ( )1ρ t  and the 

probability that one of the remaining 1N −  fluorophores is in the excited state, ( )ρi t . 

The rate of change of the probability that the initially excited fluorophore is in the excited state,  

( )1ρ t , is determined by three processes, (A) the rate at which the fluorophore decays via non-FRET 

radiative or non-radiative processes; (B) the rate at which FRET occurs from the initially excited 

fluorophore to other 1N −  fluorophores in the cluster and (C) the rate at which FRET occurs from the 

other fluorophores in the cluster to the initially excited fluorophore. If the lifetime of the fluorophores 

in the absence of FRET is τ  and the rate constant of FRET between any two fluorophores in the cluster, 
assumed to be constant (i.e., the separation distance is equal between all fluorophores) is Fk , then the 

rate of change is given by 
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The rate of change of the probability that one of the remaining 1N −  fluorophores is in the excited 

state, ( )ρi t , is determined by four processes; (A) the rate at which the fluorophore decays via  

non-FRET radiative or non-radiative processes; (B) the rate at which FRET occurs from the other 1N −
fluorophores in the cluster to the fluorophore; (C) the rate at which FRET occurs from the fluorophore 

to the initially excited fluorophore and (D) the rate at which FRET occurs from the fluorophore to the 

other 2N −  fluorophores in the rest of the cluster. 
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The boundary conditions for the rate equations are given by 
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Assume that a solution exists of the form 
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Using the initial conditions given by Equation (6), by inspection it may be seen that 1A B+ =  and 

0C D+ =  so that 
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Substituting Equations (9) and (10) into Equation (4) gives 
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Considering Equation (11) in the limit t → ∞  gives 
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Comparing terms which are multiples of αte−  in Equation (11) and using Equation (12) gives 
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Inserting Equations (7), (8) and (12) into Equation (5) gives 
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Combining Equations (13) and (14) gives 
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and so the solution to the system of Equations (4)–(6) is given by 
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