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Abstract: Akirin2 plays an important role in skeletal myogenesis. In this study, we found 

that porcine Akirin2 (pAkirin2) mRNA level was significantly higher in fast extensor 

digitorum longus (EDL) and longissimus lumborum (LL) muscles than in slow soleus 

(SOL) muscle of pigs. Overexpression of pAkirin2 increased the number of myosin heavy 

chain (MHC)-positive cells, indicating that pAkirin2 promoted myoblast differentiation. 

We also found that overexpression of pAkirin2 increased the mRNA expressions of MHCI 

and MHCIIa and decreased the mRNA expression of MHCIIb. Myocyte enhancer factor 2 

(MEF2) and nuclear factor of activated T cells (NFAT) are the major downstream effectors 

of calcineurin. Here we also observed that the mRNA expressions of MEF2C and NFATc1 

were notably elevated by pAkirin2 overexpression. Together, our data indicate that the role 

of pAkirin2 in modulating MHCI and MHCIIa expressions may be achieved through 

calcineurin/NFATc1 signaling pathway. 
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1. Introduction 

Skeletal muscle is comprised of muscle fibers, whose characteristics affect both lean meat production 

and meat quality [1,2]. Three main fiber types (slow oxidative type (I), fast oxiditave-glycotic type 

(IIa), and fast glycotic type (IIb)) can be distinguished according to their myosin ATPase stability after 

acid or alkali pretreatment [3]. Myosin ATPase is localized to the globular head of the myosin heavy 

chain (MHC) [4]. Therefore, MHC seems to represent the most appropriate marker for muscle fiber 

type. Four MHC isoforms of mammalian skeletal muscles are codified by four genes such as slow-twitch 

oxidative type I (MHCI), and three fast types, namely oxidative type IIa (MHCIIa), oxido-glycolytic 

type IIx (MHCIIx), and glycolytic type IIb (MHCIIb) [5,6]. Muscle fiber type composition, one of the 

main factors influencing meat quality, directly affects the muscle color, tenderness, and the content of 

intramuscular fat (IMF) in farm animals [7]. 

Improvement in meat quality is an important animal breeding goal, and consumers pay particular 

attention to meat quality. Regulation of muscle fiber type composition may be advantageous to achieve 

good meat quality in farm animals. Therefore, it is necessary to identify candidate genes that might 

contribute to improve meat quality by regulating muscle fiber type composition. 

The Akirin2 gene was previously reported to be associated with nuclear factor-κB (NF-κB) and to 

be involved in immune reactions, embryonic development and skeletal myogenesis [8–12]. The Akirin2 

gene has been previously shown to possess expression differences in musculus longissimus muscle 

between low-marbled and high-marbled steer groups and to be located within genomic region of a 

quantitative trait locus for marbling (the amount of IMF) [13]. Analysis of single nucleotide polymorphism 

(SNP) of Akirin2 suggests that it is associated with marbling and may be useful for effective 

marker-assisted selection to increase the levels of marbling in Japanese black beef cattle [14,15].  

A recent study also demonstrated that the SNP of Akirin2 was significantly associated with longissimus 

muscle area and marbling score in Korean native cattle [16]. These studies suggested that the Akirin2 

gene may be associated with the content of IMF and affect the meat quality. 

Until now, very little research has been conducted on the function of porcine Akirin2 (pAkirin2).  

In our previous study, we cloned the pAkirin2 cDNA and examined its tissue distribution [17]. The 

pAkirin2 cDNA was sub-cloned into prokaryotic expression vector pET28a(+), and target protein was 

successfully induced to express and was purified as expected [18]. Moreover, the purified recombinant 

pAkirin2 significantly increased the proliferation of C2C12 cells [18]. In the present study, we 

examined the pAkirin2 mRNA expression in different types of muscle tissues of pigs and the effect of 

pAkirin2 on differentiation of C2C12 myoblasts. We also examined the effects of pAkirin2 on 

expressions of MHC isoform and oxidative muscle fiber genes in C2C12 myotubes. 
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2. Results 

2.1. pAkirin2 mRNA Expression in Different Types of Muscle Tissues of Pigs 

The expression of pAkirin2 mRNA in the soleus (SOL) muscle, longissimus lumborum (LL) muscle, 

and extensor digitorum longus (EDL) muscle of Duroc × Landrace × Yorkshire (DLY) pigs was 

assessed by real-time quantitative PCR. As shown in Figure 1, the expression of pAkirin2 mRNA was 

higher in the EDL and LL muscles than in the SOL muscle of pigs. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

SOL LL EDLR
e

la
ti

v
e

 A
k

ir
in

2
 m

R
N

A
 e

x
p

re
s

s
io

n

****
*

 

Figure 1. Relative Akirin2 mRNA expression in different types of muscle tissues of pigs. 

Total RNA from slow soleus (SOL), longissimus lumborum (LL) and extensor digitorum 

longus (EDL) muscles of three healthy Duroc × Landrace × Yorkshire (DLY) pigs was 

used to perform the real-time quantitative PCR. Samples were performed in duplicate.  

The amount of Akirin2 mRNA was normalized to the amount of pβ-actin mRNA. Data were 

presented as means ± SE (n = 3), in arbitrary units. * p < 0.05, *** p < 0.001. 
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Figure 2. Effect of pAkirin2 on myoblast differentiation. C2C12 myoblasts were seeded  

in a 24-well plate at 1 × 104 cells/well. The cells were transfected with 0.5 µg/well of  

the plasmid pcDNA3.1(+)-pAkirin2 or the empty vector pcDNA3.1(+) when they reached 

~90% confluence and induced to differentiate for 5 days before analysis. Myosin heavy chain 

(MHC) expression was analyzed by immunofluorescence microscopy (DAPI staining  

also shown). The images are representative of the results obtained from two independent 

experiments. Magnification: ×100. 
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2.2. Effect of pAkirin2 on Myoblast Differentiation 

MHC is a marker for later stages of myogenesis. To assess the function of pAkirin2 in myoblast 

differentiation, we introduced pAkirin2 into C2C12 myoblasts. As shown in Figure 2, overexpression  

of pAkirin2 increased the number of MHC-positive cells, suggesting that pAkirin2 promoted 

myoblast differentiation. 

2.3. Effect of pAkirin2 on MHC Isoform Expression in C2C12 Myotubes 

We evaluated the effect of pAkirin2 on MHC isoform expression. As shown in Figure 3,  

the mRNA expressions of MHCI and MHCIIa were significantly increased, whereas the mRNA 

expression of MHCIIb was significantly decreased, in C2C12 myotubes transfected with the 

plasmid pcDNA3.1(+)-pAkirin2. 
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Figure 3. Effect of pAkirin2 on MHC isoform expression in C2C12 myotubes. C2C12 

myoblasts were cultured and transfected as in Figure 2. Two days after the transfection, the 

mRNA levels of MHCI, MHCIIa and MHCIIb were determined using real-time quantitative 

PCR. Samples were performed in duplicate. The amount of MHCI, MHCIIa and MHCIIb 

mRNA were normalized to the amount of GAPDH mRNA and mβ-actin mRNA. Data were 

presented as means ± SE (n = 3). ** p < 0.01. 

2.4. Effect of pAkirin2 on Oxidative Muscle Fiber Gene Expression in C2C12 Myotubes 

To explore the effect of pAkirin2 on oxidative muscle fiber gene expression, we measured the 

expressions of MEF2C (myocyte enhancer factor-2C), NFATc1 (nuclear factor of activated T cells, 

cytoplasmic 1), and MCIP1.4 (modulatory calcineurin interacting protein 1 exon 4 isform) by real-time 

quantitative PCR. The data obtained showed that overexpression of pAkirin2 significantly increased  

the mRNA expressions of MEF2C, NFATc1 and MCIP1.4 in C2C12 myotubes on day 4 (Figure 4).  

On day 8, overexpression of pAkirin2 strongly increased MEF2C mRNA expression but had no 

significant effect on NFATc1 and MCIP1.4 mRNA expressions (Figure 4). 
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Figure 4. Effect of pAkirin2 on oxidative muscle fiber gene expression in C2C12 myotubes. 

C2C12 myoblasts were cultured and transfected as in Figure 2. After a transfection of  

4 and 8 days, the mRNA levels of MEF2C, NFATc1 and MCIP1.4 were determined by 

real-time quantitative PCR. Samples were performed in duplicate. The amount of MEF2C, 

NFATc1 and MCIP1.4 mRNA were normalized to the amount of GAPDH mRNA and  

mβ-actin mRNA. Data were presented as means ± SE (n = 3). ** p < 0.01, *** p < 0.001. 

3. Discussion 

Skeletal muscle is composed of three groups of muscle fibers (slow, fast and intermediate).  

In animal production industry, specific combinations of fast and slow muscles affect the meat  

quality [19]. In the present study, we determined the expression of pAkirin2 mRNA in the fast EDL 

and LL muscles and slow SOL muscle of pigs. We found that pAkirin2 mRNA expression was most 

abundant in the EDL muscle, followed by the LL muscle, and to a lesser extent in the SOL muscle. 

Our data suggested that the expression of pAkirin2 was significantly higher in fast muscles than in 

slow muscles and might be closely related to the expression of muscle fiber type-related genes. 

Oxidative fibers (type I and type IIa) seem to be positively related to the color, water-holding 

capacity and tenderness of meat [20]. Type IIb fibers have a larger diameter than other fiber types and 

contribute to increase in muscle mass [21]. However, in pigs, higher percentage of type IIb fiber has 

been shown to be negatively related to pH45 min and positively to drip loss and R-value (adenine/inosine 

ratio), thereby resulting in reducing the meat quality [20,22]. In this study, we found that MHCI  

and MHCIIa were upregulated, whereas MHCIIb was downregulated, by pAkirin2 overexpression. 

Although the result is in contradiction to the finding that pAkirin2 mRNA is higher expressed in fast 

than in slow muscle of pigs, the reason for this remains unclear. Taken together, these results 

suggested that the pAkirin2 gene may have an important function in regulating meat quality by affecting 

fiber type-specific gene expression. 

The calcineurin signaling pathway has been implicated in the regulation of slow skeletal muscle 

fiber gene expression [23,24]. MEF2 and NFAT proteins are the major downstream effectors of 

calcineurin [23–27]. NFAT is one of the primary cofactors for MEF2 [28]. Elevated calcium signaling 

is essential for optimal expression of the MHCI via calcineurin/NFAT pathway [24,29–31]. In the 
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present study, overexpression of pAkirin2 increased the expression of transcription factors MEF2C and 

NFATc1, both involved in the regulation of oxidative muscle fiber genes. It should be noted that 

activated NFATc1 (dephosphorylated in the nuclear) is known to promote slow fiber type-specific 

gene expression, whereas inactivated NFATc1 (phosphorylated in the cytoplasma) can also be found in 

fast muscles [32]. In addition, NFATc1 can interact with MEF2 isoforms in slow fiber type-specific 

gene expression depending on the promoter context. For example, together with NFATc1, the isoform 

MEF2D regulates the slow MHCI promoter [33], but the isoform MEF2C is involved in fast MHCIIa 

and fast MHCIIx promoter activation [34,35]. Because activation of MEF2C at target promoters occurs 

primarily via phosphorylation, increased expression is not necessary. However, since activation of the 

calcineurin/NFATc1 signaling pathway is accompanied by the increase of certain NFATc1 mRNA and 

protein levels [36] and the primers used for NFATc1 in this study include the induced isoforms, the 

observed increase in NFATc1 mRNA expression by pAkirin2 overexpression can be utilized as an 

indication for activation of the calcineurin/NFATc1 signaling pathway in this experimental setup. 

MCIP1.4 is a direct downstream target of the calcineurin/NFAT pathway, which has recently been 

renamed as regulator of calcineurin 1 (RCAN1) [37]. MCIP1.4 was reported to increase the number of 

MHCI-expressing slow fibers [38]. Here we also observed that overexpression of pAkirin2 enhanced 

the expression of MCIP1.4. Together, our results suggest that the role of pAkirin2 in regulating MHCI 

and MHCIIa expressions may be achieved through calcineurin/NFATc1 signaling pathway. 

4. Materials and Methods 

4.1. Animals and Tissue Sample Collection 

Three 10-week-old female DLY pigs (body weight of 31.27 ± 0.18 kg) were slaughtered in a 

humane manner according to protocols approved by the Animal Care Advisory Committee of Sichuan 

Agricultural University under permit No. YYS130125. The SOL, LL and EDL muscles were removed 

and immediately snap frozen in liquid nitrogen before being stored at −80 °C for RNA isolation. 

4.2. RNA Isolation and Reverse Transcription 

Total RNA was isolated using RNAiso Plus reagent (TaKaRa, Dalian, China) according to the 

manufacturer’s instructions. The concentrations of total RNA were quantified using a Beckman  

DU–800 spectrophotometer (Beckman Coulter, Fullerton, CA, USA). cDNA was synthesized from one 

microgram of total RNA using a PrimeScript® RT reagent Kit with gDNA Eraser (TaKaRa) according 

to the manufacturer’s protocols. The first-strand cDNA was subsequently used as a template for  

real-time quantitative PCR. 

4.3. Cell Culture and Transfection 

Mouse C2C12 myoblasts (CRL-1772) were obtained from American Type Culture Collection 

(ATCC, Rockville, MD, USA). The cell line was grown in Dulbecco modified Eagle medium 

(DMEM) (Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS) 

(Invitrogen) and 100 U/mL penicillin and 100 μg/L streptomycin (ATCC) at 37 °C in a 5% CO2 

atmosphere. The cells were induced to differentiate with DMEM containing 2% horse serum (ATCC) 
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when they reached approximately 90% confluence. Medium was then renewed every day before 

analysis. C2C12 cells were transfected with pcDNA3.1(+)-pAkirin2 [17] or pcDNA3.1(+) using 

Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instruction. 

4.4. Real-Time Quantitative PCR 

Real-time quantitative PCR was performed on a 7900HT Real-time PCR system (384-cell standard 

block) (Applied Biosystems, Foster, CA, USA) in a final volume of 10 μL. The gene specific primers 

used are listed in Table 1. The PCR mixture consisted of 1 μL of the first-strand cDNA sample, 1 μL 

each of forward and reverse primers from 10 μM stocks, 2 μL DEPC-treated water, and 5 μL of SYBR 

select Master Mix (Applied Biosystems). The initial denaturation step at 95 °C for 10 min was 

followed by 45 cycles of denaturation for 15 s at 95 °C, and annealing and extension for 30 s at 60 °C. 

Each primer pair used yielded a single peak in the melting curve and a single band with the 

expected size in agarose gel. Identities of the PCR products were confirmed by DNA sequencing. 

Data analysis was performed using the comparative Ct method [39] with GAPDH and/or β-actin as  

an endogenous control. 

Table 1. List of genes, primer sequences, GenBank accession numbers, and product sizes in this study. 

Gene 
Name 

Primer Sequence 
GenBank 

Accession No. 
Product Size 

(bp) 

MHCI 
Forward 5'-CTTCTACAGGCCTGGGCTTAC-3' 

NM_080728 128 
Reverse 5'-CTCCTTCTCAGACTTCCGCAG-3' 

MHCIIa 
Forward 5'-TTCCAGAAGCCTAAGGTGGTC-3' 

NM_001039545 94 
Reverse 5'-GCCAGCCAGTGATGTTGTAAT-3' 

MHCIIb 
Forward 5'-CTTGTCTGACTCAAGCCTGCC-3' 

NM_010855 158 
Reverse 5'-TCGCTCCTTTTCAGACTTCCG-3' 

Akirin2 
Forward 5'-GATGGGACTGGATTATCGC-3' 

JN227885 154 
Reverse 5'-GCACAAGATGAGTATGCGG-3' 

MCIP1.4 
Forward 5'-CCGTTGGCTGGAAACAAG-3' 

NM_019466 153 
Reverse 5'-GGTCACTCTCACACACGTGG-3' 

NFATc1 
Forward 5'-AATAACATGCGAGCCATCATC-3' 

AF239169 109 
Reverse 5'-TCACCCTGGTGTTCTTCCTC-3' 

MEF2C 
Forward 5'-GATCTCCGCGTTCTTATCCC-3' 

L13171 91 
Reverse 5'-CCAATGACTGAGCCGACTG-3' 

GAPDH 
Forward 5'-AGGGCATCTTGGGCTACAC-3' 

NM_008084 211 
Reverse 5'-TGGTCCAGGGTTTCTTACTCC-3' 

mβ-actin 
Forward 5'-CCTTCCTTCTTGGGTATGGA-3' 

NM_007393 88 
Reverse 5'-GGTCTTTACGGATGTCAACG-3' 

pβ-actin 
Forward 5'-CCACGAAACTACCTTCAACTCC-3' 

DQ845171 132 
Reverse 5'-GTGATCTCCTTCTGCATCCTGT-3' 

4.5. Cell Immunofluorescence Assay 

Cells were fixed in 4% formaldehyde in phosphate-buffered saline (PBS) for 20 min and 

permeabilised with 0.1% Triton X-100 in PBS for 20 min. Cells were then blocked in 5% bovine 
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serum albumin (BSA) for 30 min and incubated with MHC antibody (Santa Cruz Biotechnology;  

sc-20641, 1:100, Santa Cruz, CA, USA) at 4 °C overnight. The cells were rinsed with PBS and incubated 

with FITC-conjugated secondary antibody (Santa Cruz Biotechnology; 1:200) for 1 h at room temperature. 

To stain the nuclei, the cells were incubated in the DNA stain 4'6-diamidino-2-phenylindole (DAPI) 

for 10 min. Images were captured using a Nikon Eclipse TS100 inverted fluorescence microscope 

(Nikon, Tokyo, Japan). 

4.6. Statistical Analysis 

All data were expressed as means ± SE (standard error) and were analyzed using SPSS11.5 

software (SPSS Inc., Chicago, IL, USA). Group differences were analyzed by ANOVA and the 

differences between groups were considered to be statistically significant when p < 0.05. 

5. Conclusions 

In conclusion, we found that pAkirin2 mRNA expression level is higher in the EDL and LL muscles 

than in the SOL muscle. Overexpression of pAkirin2 promoted differentiation of C2C12 myoblasts. 

Moreover, we also provided the evidence that overexpression of pAkirin2 led to up-regulation of MHC 

isoform (MHCI and MHCIIa) and oxidative muscle fiber gene (MEF2C, NFATc1 and MCIP1.4) 

expressions. This study contributes to understand the role of Akirin2 in the regulation of muscle fiber 

types using pig as a model organism and helps to explore the key genes regulating meat quality. 
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