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Abstract: Cancer stem cells have been defined as cells within a tumor that possesses the capacity
to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor.
Experimental evidence showed that these highly tumorigenic cells might be responsible for
initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer
stem cells, the root of the problem, has been considered as a promising target in prostate cancer
treatment to improve the prognosis for patients with advanced stages of the disease.
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1. Introduction

Prostate cancer continues to be the most common cancer diagnosed in male patients and
the second leading malignancy of cancer-related deaths in Europe and the United States [1,2].
Most patients with advanced stages of the disease respond to the current treatment (hormonal
therapy, radiotherapy, or chemotherapy) only in the beginning, mostly developing progression and
subsequently widespread metastasis, resistant to prostate cancer therapeutic methods. Numerous
basic research studies on the mechanisms of carcinogenesis did not significantly improve the
prognosis and therapy outcome of patients with prostate cancer [3–5].

Early observations in the 1960s based on experiments conducted on blood neoplasms, proved
cell heterogeneity within the tumor mass, suggesting the existence of immature cell population that
may arise from the entire population of tumor cells [6,7]. The first evidence confirming the hypothesis
of the existence of cancer stem cells derives from the 1990s and is based on the study of blood diseases
such as acute myeloid leukemia (AML) [8]. The following years of research showed the presence of
cancer stem cells also in other types of tumors, inter alia, prostate cancer [9–11].

Although still controversial, the cancer stem cell maybe the root cell of cancer and the most
crucial target in the treatment of the disease. Therefore, the understanding of its biology might
allow this cell type to be eliminated by targeted therapy, leading to improvement in therapeutic
outcome [12].

Prostate cancer research is now focused on the cancer stem cells to get better understanding of
the tumor initiation mechanisms, progression and metastasis formation, and it will eventually help
to provide the patients with a better therapeutic effect [13–16].

This review is focused on the following aspects: the main differences between stem cells and
cancer stem cells, prostate cancer stem cell identification and their molecular markers, current theories
on the origin of prostate cancer stem cells, and finally the current research helping to understand
biology of castration-resistant prostate cancer (CRPC) and develop new strategies to eliminate all
cancer cells.
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2. Stem Cells and Cancer Stem Cells (CSC)

Stem cells are immature cells characterized by significant proliferative properties, self-renewal,
and the potential to differentiate into specialized cells in a tissue [17]. Stem cell division may be
symmetric or asymmetric. A stem cell during asymmetric division gives rise to one mother cell that
is identical to the cell of origin (has the same proliferative potential) and another daughter cell that
will differentiate. Thus the population of stem cells remains constant. The other type of division
results in two identical stem cells and it is defined as symmetric [18,19]. Fundamentally, there are two
kinds of normal stem cells: embryonic which are pluripotent and can give rise to all cell types, and
non-embryonic stem cells with a limited potential to differentiate into other cell types [17].

Cancer stem cells (CSCs) possess stem-like nature to a degree sufficient to compare them with
normal stem cells. According to American Association for Cancer Research (a statement accepted in
2006) a cancer stem cell is “a cell within a tumor that possesses the capacity to self-renew and to cause
the heterogeneous lineages of cancer cells that comprise the tumor” [20].

According to the definition, both normal and cancer stem cells share at least one feature—the
ability to self-renew. The self-renewal is defined as the ability to produce posterity which retains
stem-like characteristics. Therefore the division of cancer stem cell results in one or two daughter cells
that have the same ability to proliferate and generate new cells—identical as the original, parental
cell [19,20].

These cancer stem cells possess the capacity to extend the cancer stem cell population and
moreover, after differentiation, become other cancer cell types which constitute the tumor bulk of
cells [20,21]. The tumor is then organized in a cellular hierarchy, like it is arranged in the normal
tissues. The non-stem cells in the tumor have high, but not unrestricted ability to proliferate.
Therefore, the only cells within the tumor with unlimited potential are cancer stem cells, so they are
capable of driving growth and metastasis [18,20]. Because the time between divisions in CSC is very
long, it has been suggested that this phenomenon can be responsible for the resistance to treatment.
For this reason, CSC which are relatively insensitive to therapies currently focused on eradication of
dividing cells, may be a source of cancer relapse [22–24].

The main difference between CSCs and normal stem cells is their frequency of occurrence.
Normal stem cells are present in the tissues in a very small amount. Contrariwise, CSCs can be a
rather large population in the bulk of tumor cells [21]. The proportion of cancer stem cells in the
whole tumor mass may be very different depending on the type of cancer, and it has been reported to
have certain significance for predicting the prognosis [25–27].

CSCs are similar to normal stem cells in that they are long lived, slow cycling, self-renewing
cells in undifferentiated state, which can generate a large number of differentiated progeny cells.
CSCs frequently express many early developmental markers of normal stem cells. The difference lies
in the regulation and control of their proliferation [20,28]. Normal stem cell functions are under strict
control, while the divisions of cancer stem cells are out of control. There are also emerging evidences
that cancer stem cells gain independence from factors suppressing their proliferation, including the
role of their microenvironment (niche), and get the ability to occupy other niches [29–31]. These cells
are programmed to maintain tumor growth and development by producing a large number of cancer
cells [17–20].

3. The CSC Hypothesis

Two models of tumor development have been proposed; the stochastic model and the hierarchy
model which assume the existence of CSCs. The stochastic model (which has only historical
significance nowadays) predicts that any cell in the tumor has an identical probability to be
the tumor-initiating cell, when it develops the ability to self-renew. This process is controlled
stochastically. The second model, originally proposed in the mid-19th century by Rudolf Virchow
is the model of cancer stem cells [32]. Although this concept is not new, because it has been discussed
already decades ago, the identification and isolation of stem—like cells in human malignancies was
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not successful until 1997. This was accomplished by Bonnet and Dick in acute myeloid leukemia
(AML) who showed that small subset of leukemic cells (CD34+CD38´) was able to initiate the disease
when transplanted into a NOD/SCID mouse (non-obese diabetic/ severe combined immunodeficient
mouse) [8]. Since then, this method has become the gold standard in stem cell research [20]. For
the solid tumors proving the presence of cancer stem cells was much more difficult for several
reasons. These cells are an integral part of the tissue which makes them less accessible. Furthermore
the markers for cancer stem cells from solid tumors have not been investigated enough yet. Only
several years later it was observed that CD44+CD24´{low cells isolated from human breast cancer can
induce breast cancer in NOD/SCID mice, while the remainder of cells failed to induce tumors. These
innovative experiments suggested existence of cancer stem cells also in solid tumors [33]. In the last
decade, CSCs have been identified and isolated in other solid tumors, including colon cancer [34],
prostate cancer [35], hepatocellular carcinomas [36], or brain tumors [37] (Table 1). These studies
provide evidence that tumor tissue is organized hierarchically, and only a sub-population of cells
possesses the ability to initiate the tumor growth and survival.

Table 1. Cancer stem cell (CSC) in solid tumors and their first isolation year.

Cancer Types Markers of CSCs Year of Identification Reference

Brain tumor CD133+ 2004 [37]
Breast cancer CD44+/CD24´ 2003 [33]
Colon cancer CD133+ 2007 [34]

Hepatic carcinoma CD90+/CD45´/CD44+ 2008 [38]
Lung cancer CD133+ 2005 [39]
Melanoma ABCB5+ 2008 [40]

Ovarian cancer CD44+/CD117+ 2008 [41]
Pancreatic cancer CD44+/CD24+/ESA+ 2007 [42]
Prostate cancer CD44+/α2β1

(hi)/CD133+ 2005 [35]

Moreover, it was established for human AML stem cells which are capable of regenerating
the tumor that these cells display CD34+CD38´ cell surface markers. This kind of phenotype is
similar to one typical of normal human hematopoietic progenitors. It may suggest that AML stem
cells arise from normal stem cells [20]. However this statement is not necessarily true for all types
of cancer. Actually, three hypotheses for the origin of CSCs exist. One of them declares that
CSCs come just from normal adult stem cells that have acquired many genetic mutations. Another
hypothesis states that CSCs develop from tumor cells across cellular dedifferentiation through
the EMT (epithelial-mesenchymal transition) pathway [43]. The third one is related to induced
pluripotent stem cells (iPS) [44]. Nowadays, most studies support the hypothesis that stem cells
existing in normal adult tissue are the targets of carcinogenesis and transformation. The accumulation
of mutations is a long lasting process and can take even several years. In this context, the only cells
that live long enough in adult organism are normal stem cells. This premise makes adult stem cells
ideal candidates for the cells of origin for cancer stem cells. According to the theory of carcinogenesis,
malignant transformation may occur as result of wide range of mutagenic agents acting on stem cells
present in the adult tissue.

4. Prostate Cancer Stem Cells

4.1. Prostate Epithelial Stem Cells in the Adult Gland

Normal, mature prostatic epithelium consists of three basic cell types: basal, luminal (secretory),
and neuroendocrine that are identified by distinct marker expression. Additionally, there is a small
group of intermediate cells that express both basal and luminal cell markers. These cells are referred
to as transient amplifying cells (Figure 1).
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The luminal cells are the most differentiated cells in the prostatic epithelium, express high levels
of androgen receptor (AR) and low molecular weight keratins, secrete prostatic specific antigen
(PSA), and prostatic acid phosphatase (PAP). Luminal cells are the main cell type in the epithelium
and depend on androgens for survival in contrast to basal cells which do not express AR and are
androgen-independent and undifferentiated [9,10].
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Figure 1. Schematic diagram of prostatic cellular compartments and their identity markers. 
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(NSE) but do not express AR or PSA. Neuroendocrine cells are distributed in prostatic glands in all 
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are characterized by the expression of high-molecular weight cytokeratins 5 and 14 (CK5 and CK14) 
[47,48], CD44 [49], integrin α6β1 [50,51], and p63 (a member of p53 transcription factors family) [52]. 

Basal and luminal cells are hierarchically related. Basal cells are the progenitors of secretory cells, 
forasmuch as the existence of intermediate cells between these two types has been observed. These 
cells with an intermediate phenotype represent the transient amplifying cells [10,53–56]. One of the 
markers expressed on these cells is a CD24 surface molecule. CD24 distinguishes between low 
differentiated basal cells and transient amplifying cells and may play a significant role in the prostate 
gland cells differentiation [57]. 

A small number of cells among the population of basal cells have been recognized as the stem 
cells of the prostate both in mice and human. It is unclear how many subtypes of basal cells are 
present in the prostate and which subtype contains the main stem cell niche in the adult prostate 
[54,58]. 

Goldstein et al. [59] reported that specific marker, namely, tumor-associated calcium signal 
transducer 2 (TACSTD2/Trop2/M1S1/GA733-1) functionally discriminates between the two distinct 
basal cells subpopulations. Only the basal cells that express high levels of Trop 2 had the stem cell 
characteristics in the murine and human prostate [59]. Whereas, Lee et al. [58] identified seven basal 
cells subpopulations according to their p63, cytokeratin 14 and 5 expression. This group discovered 
that p63+/CK5−/CK14− subpopulation contain self-renewable stem cells with the greatest potential for 
differentiation [58]. 

In the adult human prostate CD133 (also known as Prominin-1) expression is thought to be 
characteristic of stem-like populations based on their expression of α2β1 integrin and high clonogenic 
properties. Moreover, CD133 expression has been reported for prostate cancer stem cells [60,61].  
CD133 expression is not restricted to the prostate gland; adult stem cells in other tissues also can often 
exhibit expression of this surface marker [62–64]. 

4.2. Origin of Prostate Cancer 

The origin of prostate cancer remains controversial. The cell-of-origin of cancer—is the first cell 
which gains the mutations leading to cancer initiation. Whereas, cancer stem cells, defined by self-

Figure 1. Schematic diagram of prostatic cellular compartments and their identity markers.

Neuroendocrine cells are very rare cells located in the luminal epithelial layer. These
differentiated cells express chromogranin A, synaptophysin, calcitonin, and neuron specific enolase
(NSE) but do not express AR or PSA. Neuroendocrine cells are distributed in prostatic glands in all
anatomic areas and they constitute less than 1% of prostatic epithelium [45,46].

The basal cells are located on the basement membrane in prostate gland epithelium. These
cells are characterized by the expression of high-molecular weight cytokeratins 5 and 14 (CK5 and
CK14) [47,48], CD44 [49], integrin α6β1 [50,51], and p63 (a member of p53 transcription factors
family) [52].

Basal and luminal cells are hierarchically related. Basal cells are the progenitors of secretory
cells, forasmuch as the existence of intermediate cells between these two types has been observed.
These cells with an intermediate phenotype represent the transient amplifying cells [10,53–56]. One
of the markers expressed on these cells is a CD24 surface molecule. CD24 distinguishes between low
differentiated basal cells and transient amplifying cells and may play a significant role in the prostate
gland cells differentiation [57].

A small number of cells among the population of basal cells have been recognized as the stem
cells of the prostate both in mice and human. It is unclear how many subtypes of basal cells are present
in the prostate and which subtype contains the main stem cell niche in the adult prostate [54,58].

Goldstein et al. [59] reported that specific marker, namely, tumor-associated calcium signal
transducer 2 (TACSTD2/Trop2/M1S1/GA733-1) functionally discriminates between the two distinct
basal cells subpopulations. Only the basal cells that express high levels of Trop 2 had the stem cell
characteristics in the murine and human prostate [59]. Whereas, Lee et al. [58] identified seven basal
cells subpopulations according to their p63, cytokeratin 14 and 5 expression. This group discovered
that p63+/CK5´/CK14´ subpopulation contain self-renewable stem cells with the greatest potential
for differentiation [58].

In the adult human prostate CD133 (also known as Prominin-1) expression is thought to be
characteristic of stem-like populations based on their expression of α2β1 integrin and high clonogenic
properties. Moreover, CD133 expression has been reported for prostate cancer stem cells [60,61].
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CD133 expression is not restricted to the prostate gland; adult stem cells in other tissues also can
often exhibit expression of this surface marker [62–64].

4.2. Origin of Prostate Cancer

The origin of prostate cancer remains controversial. The cell-of-origin of cancer—is the
first cell which gains the mutations leading to cancer initiation. Whereas, cancer stem cells,
defined by self-renewal and differentiation potential are the group of cells that maintain the tumor
proliferation. The connection between both types is not completely understood yet. Their phenotypes
may be different but they can also dynamically change. Two experimental approaches are used
to characterize these two types of cells: transplantation assay and lineage-tracing assay [65].
Transplantation assay is a current “gold standard” for identifying cancer stem cells. This assay is
based on xenografting isolated cells (with a specific phenotype) into immunodeficient mice. It has
been used to prove the existence of cancer stem cells in several human cancers [20,33–35]. On the
other hand, lineage-tracing assay is used to identify the potential cell-of-origin of cancer, however
it can be also helpful in studying cancer stem cells. Lineage-tracing assay involves genetic labeling
to determine individual cell fate. Then transformed, lineage-traced cells that formed a tumor can be
analyzed to establish if they have cancer stem cells properties [65,66]. However, these classic types
of experiments are not perfect in their design. Some authors impute that since they are performed
in immune-deficient animals, they do not reflect the real state. If similar studies were done in
immune-competent animals they would be more solid and reliable [67].

There are two possible cell-of-origin in prostate cancer, specifically—basal cell or luminal cell
of origin. The prostate cancer cells usually have phenotype of the luminal cells, but they are not
terminally differentiated as normal luminal cells. The cancer cells possess the unlimited proliferative
capacity, unlike normal luminal cells, and they resemble more the basal cell characteristics. Firstly, it
was assumed that the luminal cells were the source of all tumorigenicity, forasmuch as they constitute
the bulk of the tumor mass. Nevertheless, several studies have brought evidence that prostate cancer
stem cells are involved in the process of oncogenesis in the prostate gland. Basal cells in the prostate
gland express surface molecules that regulate stem cell self-renewal such as p63, CD44, CD49f, CD133,
therefore the prostate basal cells have been proposed to contain stem cells [7,35,68–70].

Cancer stem cells can arise from normal stem cells which are located in the basal layer of prostate
gland. In the normal state, the stem cells can give rise to a second population—transient amplifying
cells which subsequently differentiate into mature secretory cells [58,71,72]. It has been proposed
that during carcinogenesis the normal stem cells accumulate mutations and are converted to highly
tumorigenic and metastasis—initiating cancer stem cells. The main assumption was that cancer may
arise as a result of genetic mutation in these cells, and this mutation concerns mainly oncogenes
and tumor suppressor genes, in consequence resulting in uncontrolled cell growth [73–78]. It has
been revealed that the tumorigenic prostate cancer stem cells can express specific markers such as
telomerase, CD44, CD133, α2β1-integrin, multidrug resistance proteins, aldehyde dehydrogenase,
and low or undetectable levels of AR. Moreover, several studies in prostate regenerative systems
and xenograft mouse models confirmed that prostate cancer stem cells could play critical role in
carcinogenesis, metastasis, and resistance to currently used therapies [73,75–77,79–81].

However, there is some evidence that supports an existence of luminal cells with stem activity.
Several groups have investigated if luminal progenitor cells are luminal-restricted or not. It has been
described earlier, that PTEN protein is involved in the stem cell self-renewal [82,83]. Korsten et al. [84]
demonstrated that, in the prostate specific Pten-knockout mouse model, this type of deletion results
in prostatic hyperplasia. In this model, a shift in the balance of differentiation was showed. Complete
Pten inactivation is also observed in primary prostate tumors in human. This study showed that
hyperplastic cells in Pten-knockout mice overexpress CK8, CK19, and Sca-1 which is characteristic
for luminal epithelial progenitor cells. The obtained data led researchers to conclusion that luminal
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epithelial progenitor cells identified in the study are strong candidates for tumor initiating cells in the
Pten-knockout prostate cancer model [84].

Moreover, Wang et al. [85] demonstrated that in the castrated mouse a rare luminal cell
persists which expresses Nkx3.1 (regulator of prostate epithelial differentiation, marker of stem cell
population). These cells are defined as CARNs (castration-resistant Nkx3.1-expressing cells). The
lineage-tracing assay was used to identify CARNs as rare luminal epithelial population, possessing
stem cell properties in prostate regeneration. CARNs cells were demonstrated to self-renew, and
reconstitute prostate ducts in renal grafts after transplantation in immune-deficient mice. Eventually,
a deletion of the Pten gene in CARNs resulted in rapid formation of carcinoma. These observations
might indicate a novel luminal stem cell population as a cell-of-origin in prostate cancer [85].

Another group has recently performed a lineage-marking of basal and luminal cells to determine
whether these cells contribute to tumors in a diverse range of mouse models. Their study showed that
luminal cells are favored as the cell of origin for prostate cancer, however, explanted basal cells from
these mice can generate tumors in grafts, after differentiation into luminal cells [86]. This results
lead to the conclusion that both luminal and basal prostate cells can be a potential cellular origin for
prostate cancer.

The hierarchy theory of the origin of prostate cancer suggests that rare tumor initiating cells
can be identified in the population of whole tumor mass and they are distinct from the other cells.
This model also predicts that the eradication of the stem cells will lead to complete eradication of the
tumor [3,76,77,87–89].

The identification of these cells depends on the understanding of prostate cell differentiation
lineage during development as well as adult prostate epithelium renewal. On the basis of this
knowledge, the isolation and characterization of prostate cancer stem cells will become a true
possibility and it should provide an explanation for the known clinical and molecular heterogeneity
of human prostate cancer.

4.3. The Prostate Cancer Stem Cell Niche

The cancer stem cell hypothesis can partially explain the minimal residual disease occurrence.
After radical prostatectomy, the persistence of one single cell in an appropriate environment could
be the source of relapse. Several studies suggest the existence of functional microenvironments
that support CSCs which is called the CSC niche. The signals that originate from this tumor
niche regulate CSCs self-renewal, survival, and ability to invade tissues and the metastases
development [18,20,74,90,91].

Microenvironment of the tumor might play the critical role in maintenance of stem-like features
of prostate cancer cells. Cancer cell subpopulations can interact with other normal cells which are
present in the tumor environment cooperating with them for benefits or even more often, taking
advantage of them. Mateo et al. [92] recently described the co-operative interactions between
the two clonal subpopulations of the PC-3 prostate cancer cell line. They found out that the
invasiveness of a cancer stem cell enriched subpopulation is enhanced by a non-CSC subpopulation
and can result in a significant increase of tumorigenic and metastatic potential of cancer stem cells.
The knockdown and complementation experiments supported that SPARC protein (osteonectin, a
matricellular glycoprotein, regulating tissue repair, and remodeling the extracellular matrix) is the
main factor mediating the cooperation between CSCs and non-CSCs [92].

Furthermore, it has been observed that some changes in the tumor environment such as hypoxia,
may induce, through HIF (hypoxia inducing factor) generation, the reprogramming of prostate
cancer cells and increase the expression of stemness markers like CD44, Oct-3/4, Nanog, and drug
resistance-associated molecules or anti-apoptotic proteins [93–96].

Eventually, CSC niches can also exist or be created in other, even distant from the primary tumor
growth, locations. It is believed that a subpopulation of circulating tumor cells exists, which can settle
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down in the new environment such as bone marrow. The cells which create this microenvironment
are defined as disseminated tumor cells (DTCs) [97].

Some patients that appear cured of prostate cancer can develop bone metastases even years
after radical prostatectomy. This phenomenon indicates that prostate cancer cells can metastasize
very early, and are present in the bone marrow at the time of surgical resection. For many
years, these cells remain dormant, until they develop clinically detectable metastases. DTCs are a
heterogeneous population but some of them might have characteristics of cancer stem cells. It has
been revealed that the microenvironment within the bone marrow plays a crucial role in the process of
metastasis [29–31,98]. It has been recently discovered that DTCs take over the bone marrow
hematopoietic stem cells niche, and even direct competition for the niche was demonstrated.
Eventually, it was shown that disseminated tumor cells affect the function of bone marrow, while
settled in the marrow niche [30].

Some cells in the tumor microenvironment such as macrophages, endothelial cells, and
fibroblasts may support prostate cancer progression. It was demonstrated that the bone
marrow-derived mesenchymal stem cells (BM-MSCs) also participate in this process. Luo et al. [99]
found out that BM-MSCs could be recruited into prostate tumor and lead to the increase of metastatic
ability by the augmentation of cancer stem cell population respectively. Prostate cancer cells when
cocultured with BM-MSCs grew as floating spheres which is characteristic feature of stem cells. They
also showed that BM-MSCs coculture led to increased expression of stem cell markers such as CD133,
OCT4, and Sox2 in the prostate cancer cell population [99].

The results of these findings confirm the importance of the tumor microenvironment and cancer
stem cell niche during carcinogenesis and metastasis formation.

4.4. Markers of Prostate Cancer Stem Cells

For the distinction of prostate cancer stem cells from the other cells in tumor, several candidate
markers have been tested. The most important are CD24, CD44 [69], CD49f [59], CD133 [35,61],
CD166 [71], and α2β1 integrins [35]. Those markers have been tested alone and in several
combinations but the ideal combination has not been found yet, which could clearly lead in the all
cases to distinct cancer stem cells. The cause of this situation is the considerable diversity in the tumor
histotypes and their genetic heterogeneity [35,71,100].

CD133 (Prominin-1 or AC133) is a cell surface glycoprotein whose biological function is
poorly characterized, except that it interacts with cholesterol in cell membrane and is a marker of
cholesterol-based “lipid raft” [101]. This membrane protein has been identified first as hematopoietic
stem cell marker [102]. Richardson et al. [61] showed that approximately 1% of normal human
prostate basal cells express the marker CD133, and these cells when restricted also to α2β1

hi

population, possessed high in vitro proliferative potential. Moreover, this group demonstrated
the ability of α2β1

hi/CD133 normal prostate stem cells to form acini with prostatic—specific
differentiation when grafted into athymic, nude mice [61]. CD133 has been proposed to be a
putative surface marker in a number of tumors, however Collins et al. [35] used this marker to
identify the prostate cancer stem cell population, and reported for the first time the identification
and characterization of a cancer stem cell population from human prostate tumors. Cancer stem
cells isolated by this group had a CD44+/α2β1

hi/CD133+ phenotype, and possessed a significant
capacity for self-renewal [35]. CD133 is often expressed in adult stem cells and it is believed
that CD133—cholesterol microdomains might be implicated in the determination of cell fate and
maintaining stem cell properties [103]. It has been investigated, using a series of anti-CD133
monoclonal antibodies, that attachment and growth of normal CD133+ prostate epithelial cell cultures
requires expression of full-length glycosylated CD133 protein. In contrast to normal adult stem cells,
prostate cancer stem cells do not require functional CD133 [103,104].

CD133+ prostate cancer stem cells have been also identified based on their integrin expression
pattern. Rentala et al. [105] have recently identified the role of integrin profile in the prostate cancer
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stem cells isolated from the tissue specimens of patients with prostate cancer. They showed that the
levels of β1 and α2β1 integrins were significantly higher than those of other integrins. CD133+ cells
presented an increased degree of attachment to extracellular matrix protein. The study revealed for
the first time the importance of the role of α1 and β1 integrins in the homing and differentiation of
prostate cancer stem cells in vitro [105].

CD44 is a glycoprotein which exists as a standard isoform and a range of variant isoforms that
are produced as a result of extensive alternative splicing. This alternative splicing mechanism and
expression of variant isoforms contributes to uncontrolled tumor cell proliferation and transformation
and induces metastasis formation [90,106,107]. CD44 antigen was first described as a lymphocyte
homing receptor but it can be expressed by a wide range of cells. It belongs to the family of cartilage
link proteins, while the ligands for this protein are collagen, laminin, fibronectin, E-selectin, L-selectin,
and the extracellular matrix glycosaminoglycan hyaluronic acid (HA) [90,108–110]. In one of the
studies performed in vitro and in vivo on cell lines and xenograft tumor models, Patrawala et al. [70]
showed that CD44+ prostate cancer stem cells have stem—like properties such as increased clonoge
nic and metastatic potential. These cells can form colonies in soft agar and have the potential to
form tumors in NOD/SCID mice. It was concluded that this population of CD44+ stem cells is a
heterogeneous population where primitive cells coexist with later progenitor cells [70]. These results
provided convincing evidence that CD44 is associated with stem cells in prostate tumors.

In 2008, Hurt et al. [69] defined human prostate CD44+CD24´ subpopulation as prostate cancer
stem cells with the ability to grow as nonadherent spheres in serum replacement medium. Only
CD44+CD24´ population, but not CD44+CD24´ depleted population, had the potential to form
tumors in NOD/SCID mice. This study defined an additional marker for prostate cancer stem cells
and identified an almost homogenous population of stem cells with preserved colony—initiation
ability [69]. Recent papers identified CD44+CD24´ cells in different prostate cancer cell
lines [111,112]. These reports showed that both in primary and established prostate cancer cell lines,
cancer stem cells can be more invasive. The data revealed that CD44+ subpopulation of stem-like
cells actively invaded Matrigel, while CD44´ cells were characterized by a lack of invasiveness.
Moreover, CD44+ cells were more tumorigenic when transplanted in NOD/SCID mice compared
with non-invasive CD44´ cells [111].

Jiao et al. [71] identified subsequently CD166 as a surface molecule that can enrich sphere forming
activity of Lin´Sca1+CD49fhi population of cells in murine model. The aforementioned phenotype
cannot be used for isolation of human cancer stem cells, because Sca-1 is only expressed in the mouse.
However, CD166 is expressed in human organs and can be upregulated in certain tumor types.
Therefore, this group found out that CD166 expression is upregulated in human prostate cancer,
particularly in castration-resistant prostate cancer subpopulations. Similar to previous findings with
murine prostate cells, the sphere forming activity was identified in the cells expressing high levels of
CD166 surface molecule [71].

Altogether, all these studies of cell markers suggest that cancer stem cells may be derived from
normal stem cells, since the expression patterns in these two cell types are very similar.

5. Implications for Prostate Cancer Treatment

Prostate cancer is one of the most common malignancies in male patients. Despite the progress
that has been made in understanding of the molecular basis of carcinogenesis, and the introduction of
early diagnostics protocols or effective therapeutic intervention, the disease progression to invasive
and metastatic castration-resistant prostate cancers (mCRPCs) is still observed. Moreover, it is almost
always associated with poor prognosis. In the beginning, advanced prostate cancer is treated with
androgen deprivation therapy (ADT). Although it is initially very effective, it will finally lead to the
development of aggressive and usually incurable conditions [1,2,113,114]. The current anti-androgen
therapy and chemotherapy against CRPCs show limited survival benefits, because these types of
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treatment target primarily the bulk of neoplastic, fast-growing cancer cells but not cancer stem
cells [115,116].

Prostate cancer stem cells are resistant to hormonotherapy, chemotherapy, and radiotherapy,
so cancer relapse may be due to preferential killing of more differentiated cells while leaving
undifferentiated stem cancer cells. Currently existing therapies often lead to an increase of resistant
cancer stem cell subpopulation by selecting the most resistant clones within a heterogeneous
population of cancer cells [116–118].

Several mechanisms for the development of CRPC have been described, most of which are based
on the AR signaling regulation. Therefore, targeting the dysregulation of AR signaling in prostate
cancer cells has been among the main interests in prostate cancer research [119–123].

Kregel et al. [124] have recently investigated the role of Sox2 (Sex determining region
Y-box 2) transcription factor in normal and malignant prostate cancer cells. Sox2 is an oncogene and
the fundamental regulator of the survival and pluripotency of stem cells, promoting more aggressive
tumor phenotypes. Prostate tumors which are Sox2 positive have also high score in Gleason scale.
They revealed that the expression of Sox2 was repressed by AR signaling in castration-resistant
prostate cancer cells lines. However, AR—mediated repression of Sox2 expression can be reversed
by the treatment with the anti-androgen factor. Moreover, in the castration-sensitive cell line which
does not express Sox2 and does not normally form tumors in castrated nude mouse, lentiviral Sox2
expression was sufficient to significantly increase tumor formation in a castrated host [124]. This
model points to the eventuality that the increased castration-resistant tumor formation may be due
to the promotion of cancer stem cell proliferation and survival by Sox2 increased expression.

Past findings beg the question why the cells can survive androgen deprivation therapy which
eventually leads to tumor relapse? Recent studies have revealed that AR splice variants without
ligand-binding domain, can be found in androgen independent cell lines. These other forms
of the receptor are usually constitutively expressed, therefore their activity is not regulated by
androgens [125–128]. Tumor relapse and metastatic potential was shown to be connected to
EMT phenotype (epithelial-to-mesenchymal transition). Moreover, EMT phenotype is linked with
androgen deprivation therapy application [129]. Kong et al. [130] showed that overexpression of one
of the AR variants—AR3 led to induction of EMT phenotype and is also involved in the regulation
of the expression of stem cells marker genes. Besides, it was showed that androgen deprivation
therapy enhanced AR and AR spliced variants expression leading authors to the conclusion that this
upregulation is involved in progression to castration-resistant prostate cancer [130].

There is still a pressing need for the discovery of more effective therapy for advanced prostate
cancer which would target the CSCs. Interestingly, metformin, a common oral biguanide used
to treat type 2 diabetes, has been demonstrated to have anticancer effects as well. It was shown
that metformin acts selectively on CSCs in several types of cancer among others: breast cancer,
pancreatic cancer, colon cancer and finally prostate cancer. Metformin targets the mitochondria
and reduces ATP production by oxidative phosphorylation which is the main energy source in
CSCs [131–135]. Therefore metformin could be used to increase CSC sensitivity to existing therapies,
enhance treatment efficacy and prevent relapses. Bilen et al. [136] has observed, in a case series,
that metformin used alone or in combination with Zyflamend (herbal extract containing turmeric,
holy basil, green tea, oregano, ginger, rosemary, Chinese goldthread, hu zhang, barberry, and basil
skullcap) decreased level of PSA in prostate cancer patients in metastatic stage of disease. Authors
proposed this treatment as a maintenance therapy for castration-resistant prostate cancer patients.
Metformin and/or Zyflamend presumably target cancer stem cells and the tumor niche and keep the
cancer in a dormant state [136].

Iliopoulos et al. [133] showed that metformin acts together with several chemotherapeutic agents
to prevent relapse in xenografts generated with prostate and lung cancer cell lines. Consequently, it
could be used as a part of combined therapy or to reduce the chemotherapy dose in patients treated
for prostate cancer [133].

27441



Int. J. Mol. Sci. 2015, 16, 27433–27449

Furthermore, several articles have been published regarding phytochemicals and plant extracts
which are able to target and selectively eliminate CSCs in many different types of cancer. It
has been shown that sulforaphane, curcumin, piperine, β-carotene, and Sasa quelpaertensis extract
exhibit not only anti-tumor properties but also are able to kill CSCs [137,138]. In relation to
prostate cancer, anti-CSC effects were observed in the case of curcumin, the principal bright-yellow
colored curcuminoid of turmeric (a plant of the ginger family). Curcumin was showed to cause
effect on cell death and proliferation mediated by Wnt signaling in androgen-dependent and
androgen-independent prostate cancer cell lines [139]. Recently Botchkina et al. [140] reported that
structural analog of curcumin as a single agent or in combination with new-generation taxoid can
exhibit significant activity against prostate CD133hi/CD44+/hi cells. Moreover these drugs have been
shown to inhibit expression of stem-related genes and even to induce expression of silent genes,
which could potentially reverse drug resistance in these cells [140].

These recent findings support a better understanding of the prostate cancer stem cells’ role in
the process of tumorigenesis. However, it is still essential to investigate the signaling pathways that
regulate the self-renewal and survival of CSCs. In the future, such research may help to introduce
novel therapeutic strategies for eliminating aggressive tumor cells and possibly prolong survival in
patients with CRPC.

6. Conclusions

The stem cell theory provides a new framework for viewing the molecular mechanisms that
underlie cancer cell hierarchy and heterogeneity within tumor mass. Clear understanding of the
lineage hierarchy in prostate cancer cells will provide insights into the properties and characteristics
of the origin of prostate cancer cells. An increasing body of evidence has shown that cancer stem
cells represent a significant effort to effective cancer treatment in view of resistance to currently used
clinical therapy. However, there is still a pressing need for the discovery of unique cancer stem cell
markers to distinguish the cancer stem cells from the normal stem cells. But the ultimate challenge in
the next few years will be developing new stem cell—directed drugs and reducing risk of relapse.
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