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Abstract: Algal biofuels are investigated as a promising alternative to petroleum fuel sources
to satisfy transportation demand. Despite the high growth rate of algae, predation by rotifers,
ciliates, golden algae, and other predators will cause an algae in open ponds to crash. In this study,
Chlorella kessleri was used as a model alga and the freshwater rotifer, Brachionus calyciflorus, as a
model predator. The goal of this study was to test the selective toxicity of the chemical, quinine
sulfate (QS), on both the alga and the rotifer in order to fully inhibit the rotifer while minimizing its
impact on algal growth. The QS LC50 for B. calyciflorus was 17 µM while C. kessleri growth was not
inhibited at concentrations <25 µM. In co-culture, complete inhibition of rotifers was observed when
the QS concentration was 7.7 µM, while algal growth was not affected. QS applications to produce
1 million gallons of biodiesel in one year are estimated to be $0.04/gallon or ~1% of Bioenergy
Technologies Office’s (BETO) projected cost of $5/gge (gallon gasoline equivalent). This provides
algae farmers an important tool to manage grazing predators in algae mass cultures and avoid
pond crashes.
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1. Introduction

Algae are considered a promising source of biofuel for the future [1] due to high energy prices [2],
the use of non-agricultural land for algal production [3], high algal areal productivity [4], potential
net greenhouse-gas (GHG) emissions benefits [5], and potential use of wastewater as a nutrient source
and CO2 from power plants [6,7]. However, in open pond systems, algae are preyed upon by higher
organisms such as rotifers, ciliates, other algae, etc. which must be controlled in order for algae
biofuel’s true potential to be realized.

Among the common small (<200 um) invertebrates, rotifers are recognized as a vital component
of aquatic ecosystems [8]. According to an article written by Montemzzani et al. (2015) [9], rotifers
grow faster than ciliates and can form large population densities—1000 to 500,000 individuals/L
in highly eutrophic environments. Rotifers perform the most rapid reproduction of metazoan
zooplankton and can reproduce asexually with doubling times less than a day under circumstances
with high nutrients, neutral pH, and high temperature [9]. Due to all these reasons, it is vital to
control algal predators if algae are needed to produce biofuels.
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B. calyciflorus belongs to the animal kingdom, lives in freshwater environments, and is an ideal
test organism because of its global distribution, sensitivity, easy cultivation, and short generation
time [10]. B. calyciflorus can eat thousands of algae cells and cause a pond crash within days [11].
As it is difficult to remove rotifers via mechanical methods, chemical treatment is suggested as an
alternative solution [9]. Preferred chemicals are selectively toxic to rotifers and not as toxic to algae.
In order to inhibit predation, chemicals can be introduced to algae ponds which are selectively toxic
to predators while not affecting the growth of algae.

In this study, quinine sulfate (QS) was chosen as the chemical, B. calyciflorus was chosen as the
model predator, and Chlorella kessleri was chosen as the model alga. QS is a cinchona alkaloid, which
is very basic and usually present as a salt. This alkaloid used to be extracted from cinchona tree bark
but now all quinine is synthesized [12]. QS is an anti-protozoan agent and was first used to target
the protozoan parasite, species of Plasmodium (Plasmodium sp.), which causes malaria. QS is effective
in curing malaria as it can inhibit the growth of Plasmodium sp. by inhibiting glycolysis, as well as
the synthesis of protein and nucleic acid. It creates hemozoin which decreases the detoxification of
heme [13]. It kills the schizont—acting on the erythrocyte stage of Plasmodium sp. QS is considered
a schizonticidal agent because it targets organisms that reproduce by schizogony or asexually [14].
Rotifers, a type of algal predators, reproduce asexually via diploid, ameiotic parthenogenesis [12],
and thus the hypothesis of this study is that QS is selectively toxic to rotifers at concentrations not
affecting algae growth. The QS may also inhibit mitochondrial ATP-regulated potassium channels
which may not be present in algae [13].

In previous toxicity studies, the concentration of toxicant, temperature, pH, and fluid motion
were tested [15,16]. In the study of controlling predator ciliates of Dunaliella salina, the result showed
that QS can eliminate ciliates while not affecting the algae [17]. The 72 h EC50 for algae was 14.5 mg/L,
while the 24 h LC100 for the ciliate was 12–14 mg/L. An algae pond resisted the attack from ciliates and
recovered when a dose of 10 mg/L QS was added. QS is able to block potassium channel and disrupt
osmotic regulation in ciliates. Species of Dunaliella (Dunaliella sp.), can survive the presence of QS as
it has a high percentage of organic osmolytes to resist the effect of blocked potassium channels [15].
In the study investigating how fluid motion modifies pentachlorophenol (PCP) toxicity to
B. calyciflorus, the LC50 of B. calyciflorus decreased from 738 µg/L in static conditions to 262 µg/L
in fluid motion which suggests QS would work better in more mixed ponds [16].

2. Results and Discussion

This experiment consisted of three parts. The first part tested QS toxicity on B. calyciflorus
(Figure 1). As QS increased, rotifer mortality increased. The 24 h QS LC50 on B. calyciflorus
was approximately 17.4 µM (14 mg/L) and 100% mortality was observed at concentrations above
23 µM. The second part tested QS toxicity on C. kessleri (Figure 2). According to the LC50 obtained
for the rotifer, QS concentrations of 0, 15, 18, 20, and 23 uM were tested in 100 mL algae shake flask
suspensions. QS at concentrations up to 23 µM did not have any effect on the growth of C. kessleri.
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QS concentrations lower than the rotifer LC50 are effective in co-cultures because only rotifer 
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quinine sulfate on B. calyciflorus. (Circles stand for the rotifer mortality at different quinine sulfate 
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The persistence of QS over 10 days was confirmed by re-inoculating the 26 µM QS experiment 
with newly hatched rotifers. 100% rotifer mortality was observed after 24 h which shows that QS 
remains toxic to rotifers for at least 10 days in solution. 

In order to produce 1 million gallons of biodiesel in a year, we calculate a QS cost of $0.04/gallon 
biodiesel or ~1% of Bioenergy Technologies Office’s projected cost of $5/gallon gasoline equivalent 
(gge) by 2019. This assumes a QS cost of $1/kg, an algae production rate of 20 g·m−2·day−1, 50% lipid 
content, a biodiesel density of 880 kg/m3, and a QS application of 7.7 µM which persists for two weeks 
(26 doses per year) [16,19]. 
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The third part tested QS toxicity on a co-culture of C. kessleri and B. calyciflorus at QS
concentrations of 0, 0.6, 7.7, 15, and 26 µM. On day seven, when control rotifers reached their
peak population, the relative rotifer mortality rate of the treatments were calculated (Figure 3).
At QS concentrations above 7.7 µM, rotifer mortality approached 100% while algae growth did
not differ from the positive controls. On average, the algae growth rate (an increase of 0.37 OD
units/day) at the highest QS concentration of 25 µM did not differ from the controls (an increase
of 0.38 OD units/day). QS concentrations lower than the rotifer LC50 are effective in co-cultures
because only rotifer reproduction needs to be inhibited—immediate rotifer mortality is not necessary
if reproduction is inhibited [18]. At QS concentrations less than 7.7 µM, QS did not inhibit the rotifers
and predation reduced algae growth to <50% of the positive controls causing the flasks to eventually
crash (i.e., the algae flocculated and a solid mass of rotifers, digested algae, and coagulated algae
developed in the center of the flask separate from the clear supernatant (Figure 4). On day 7, rotifer
numbers reached approximately 14,000, 9000, and 1000 rotifers/100 mL at QC concentrations of 0,
0.6, and 7.7 µM, respectively.
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Figure 4. Before (left) and after (right) photos of a C. kessleri pond crash by B. calyciflorus. 
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transferred into each well and were incubated for 24 h. The well plates were examined under the
stereomicroscope for rotifer mortality after 24 h to calculate LC50s (the LC50 is the concentration that
causes mortality to 50% of the population). The number of live and dead rotifers was recorded, with
rotifers not moving for 10 s regarded as dead.
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Erlenmeyer shake flask batch experiments in which different amounts of QS were added. The shake
flask experiments were illuminated from above with a light path of ~48 cm. The temperature was
23 ˝C and the mixing speed was 150 rpm (Platform Shaker: Innova 2100, New Brunswick Scientific,
Enfield, CT, USA).
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C. kessleri experiments. Tests were conducted in triplicate. OD was measured daily between 0 and
96 h to determine algal growth rate as a function of QS concentration.

3.3. QS Toxicity Tests on a Co-Culture of B. calyciflorus and C. kessleri

In order to represent an algae pond susceptible to predation, the rotifer and alga were co-cultured
to determine the toxic effect of QS on B. calyciflorus in the presence of algae. The same setup as
in Section 3.2 was used, except rotifers were added to the algae cultures. Two experiments were
conducted with different QS concentrations (0.6, 7.7, 15.3 and 25.5 µM) in triplicate. Initial rotifer
densities averaged six rotifers per mL. One positive control with algae, rotifers, and no QS was
conducted in triplicate. The initial OD of the algae was 0.2. Rotifers were counted each day over
8 days. Rotifers were counted in 1 mL samples in a well plate under the stereomicroscope. If the
number of rotifers per 1 mL sample was greater than 40, the field of view of the well plate was divided
into four quarters and each quarter was counted and multiplied by four to get the rotifer number per
1 mL sample in the co-cultures; this rotifer count multiplied by 100 is rotifer number in the flask. If the
rotifer count in each quarter exceeded 40, a smaller sample size of 0.2 mL was used and the number of
rotifers was then multiplied by 500 to obtain the rotifer number in in each flask. The relative mortality
of the rotifers and the growth of algae were calculated using the positive controls when the rotifer
concentrations were at their peak according to: Abs (1´ (rotifer # in the experiment/positive control
rotifer #)) ˆ 100 (see Equation (1)), which # stands for the count of rotifer number. The standard
deviation is the average standard deviation of each experiment/positive control rotifer # ˆ 100
(see Equation (2)).

ˇ

ˇ

ˇ

ˇ

1 ´
# of rotifers in the experiment

# of rotifers in the positive control

ˇ

ˇ

ˇ

ˇ

ˆ 100 (1)

average standard deviation of each experimental run
# of rotifers in the positive control

ˆ 100 (2)

The relative growth of the alga at each QS concentration is the average growth rate/growth
rate at the highest concentration of QS ˆ 100 (see Equation (3)). The standard deviations are of the
replicate relative growth rates of the alga.

average growth rate at a QS concentration
growth rate at the highest QS concentration

ˆ 100 (3)

3.4. Testing the Persistence of QS

The persistence of quinine sulfate in the environment is not well documented although it is
said to be stable under normal temperatures and pressures and may decompose when exposed
to light [15]. In order to confirm QS persistence, the co-culture experiment with 25.5 µM QS was
re-inoculated after 10 days with newly hatched rotifers.

4. Conclusions

B. calyciflorus is more sensitive to QS than C. kessleri with a rotifer LC50 of 17.4 µM. In co-culture,
after seven days of QS exposure, a QS concentration greater than 7.7 µM was adequate to reduce
predation low enough to allow C. kessleri to grow at its maximum rate. Recycling of the algae harvest
water would retain QS in a closed looped system which would reduce application costs and alleviate
any discharge impacts on the environment. The data and calculations from these experiments aid in
the development of algal biofuels and QS may be a useful tool to help algae farmers protect their crop.
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