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Abstract: This study investigated the effect of alendronate (Aln) released from biphasic calcium
phosphate (BCP) scaffolds. We evaluated the in vitro osteogenic differentiation of Aln/BCP scaffolds
using MG-63 cells and the in vivo bone regenerative capability of Aln/BCP scaffolds using a rat tibial
defect model with radiography, micro-computed tomography (CT), and histological examination.
In vitro studies included the surface morphology of BCP and Aln-loaded BCP scaffolds visualized
using field-emission scanning electron microscope, release kinetics of Aln from BCP scaffolds,
alkaline phosphatase (ALP) activity, calcium deposition, and gene expression. The in vitro studies
showed that sustained release of Aln from the BCP scaffolds consisted of porous microstructures,
and revealed that MG-63 cells cultured on Aln-loaded BCP scaffolds showed significantly increased
ALP activity, calcium deposition, and gene expression compared to cells cultured on BCP scaffolds.
The in vivo studies using radiograph and histology examination revealed abundant callus formation
and bone maturation at the site in the Aln/BCP groups compared to the control group. However,
solid bony bridge formation was not observed at plain radiographs until 8 weeks. Micro-CT analysis
revealed that bone mineral density and bone formation volume were increased over time in an
Aln concentration-dependent manner. These results suggested that Aln/BCP scaffolds have the
potential for controlling the release of Aln and enhance bone formation and mineralization.
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1. Introduction

With recent developments in tissue engineering and regenerative medicine, bone graft
substitutes are becoming standard for reconstructing large skeletal defects after trauma, tumor, and
joint surgery. The optimal bone graft substitute should offer osteoconduction, osteoinduction, and
osteogenesis [1]. Various type of tissue engineered scaffolds have been developed [2]; among them,
bioceramics, such as calcium phosphates, are attractive owing to their degradability, bioactivity,
biocompatibility, and osteoconductivity [3]. The most widely investigated calcium phosphates are
hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP), and mixtures thereof, referred to as
biphasic calcium phosphate (BCP) [4].

BCP is similar to the mineral phase of natural bone and has been approved by the Food and Drug
Administration (FDA) for many applications in the fields of dental and orthopedic surgery [5–7].
BCP-based scaffolds have several advantages including bioactivity, partial biodegradation, and
resorption a few months after implantation. Moreover, these materials enhance osteoblast
proliferation, as well as osteogenic differentiation [4,8,9]. Nevertheless, although BCP scaffolds
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have efficient bone-forming capacity, they often do not stimulate adequate revascularization, cellular
reconstitution, or osteogenesis necessary for successful biointegration. Therefore, BCP scaffolds
containing osteoinductive materials are required for more effective bone regeneration.

Bisphosphonates are a class of drugs usually used in treating bone disorders such as
osteoporosis, Paget’s disease, fibrous dysplasia, hypercalcemia of malignancy, and inflammation
related bone loss [10–12]. Among the bisphosphonates, alendronate (Aln) is one of the most
commonly used drugs that effectively inhibit bone resorption. Recent studies have reported that
Aln induces osteogenic differentiation of osteoblasts, bone marrow mesenchymal stem cells, and
adipose-derived stem cells [13–15]. However, Aln easily dissolved in aqueous conditions during
fabrication because of its high hydrophilicity. Therefore, better-controlled drug release systems
capable of achieving efficient osteogenesis are urgently needed; in response, researchers have tried
to find proper carriers that can provide an osteoconductive matrix and impart handling properties
required for implantation at the repair site in order to improve Aln loading and avoid side
effects [16–18].

There have been several attempts to develop calcium phosphate based scaffolds as delivery
systems for bisphosphonate [19–21]. However, clinical use of calcium phosphate based scaffolds had
been limited due to several drawbacks—such as the difficulty in molding [22], unspecified irregular
shapes and sizes [21], limited drug loading content [19], and burst release upon administration [17].

BCP scaffolds consisted with unique dual pore structure, which enables increased biological
affinity to neovascularization, osteoblast cell migration, and osteoblast cell integration. Furthermore,
BCP scaffolds could provide more controlled release of Aln due to its dual pore structure.

In this study, we prepared BCP scaffolds that maintained Aln concentration at the repair site
long enough to allow bone-forming cells to migrate to the defect site, proliferate, and differentiate
in response to Aln. The characteristics of BCP scaffolds containing Aln were analyzed, and we tried
to determine that (1) Aln/BCP scaffolds could facilitate osteogenic differentiation of bone-forming
cells in vitro and (2) the in vivo bone regenerative capability of Aln/BCP scaffolds using a rat tibial
defect model.

2. Results

2.1. Characterization of Biphasic Calcium Phosphate (BCP) and Modified BCP Scaffolds

Field-emission scanning electron microscopy (FE-SEM) of the morphologies of BCP,
Aln (1 mg)/BCP, and Aln (5 mg)/BCP scaffolds showed open dual pore microstructures and
round-shaped pores with diameters ranging 100 to 300 µm (Figure 1A–I). The surface elemental
composition of the BCP scaffold consisted of carbon, oxygen, phosphorus, and calcium. In contrast,
Aln-containing BCP scaffolds revealed the presence of carbon, oxygen phosphorous, calcium, and
nitrogen (Table 1). This result indicates that Aln was successfully anchored on BCP scaffold.
The average loading amount of Aln on BCP scaffold was 786.28 ˘ 6.68 µg in Aln (1 mg)/BCP scaffold
and 3638.49 ˘ 7.12 µg in Aln (5 mg)/BCP scaffold, and their loading efficiency was 78.63% ˘ 0.67%
and 72.77% ˘ 0.14%, respectively (Table 2).
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Figure 1. (A–I) 50× magnification of scanning electron microscope (SEM) images of (A) BCP, (B) Aln 
(1 mg)/BCP and (C) Aln (5 mg)/BCP. The scaffolds in each groups showed open pore microstructures 
and round-shaped pores with diameters ranging 100 to 300 μm; The characteristic dual pores were 
visualized in 200× magnification images of (D) BCP, (E) Aln (1 mg)/BCP and (F) Aln (5 mg)/BCP; 
Micropores were visualized at 3000× magnification images of (G) BCP, (H) Aln (1 mg)/BCP and (I) 
Aln (5 mg)/BCP. 

Table 1. Surface elemental composition of Biphasic Calcium Phosphate (BCP) and Alendronate 
(Aln)/BCP scaffolds. 

Samples 
Elements  

C (%) O (%) P (%) Ca (%) N (%) Total (%) 
BCP 22.20 53.19 12.32 12.29 0 100 

Aln (1 mg)/BCP 9.87 45.66 11.76 21.68 11.03 100 
Aln (5 mg)/BCP 16.55 38.75 10.36 22.87 11.47 100 

BCP: Biphasic calcium phosphate. 

Table 2. Loaded amount of Aln on BCP scaffolds. 

Samples Loading Amount (µg) Loading Efficiency (%) 
Aln (1 mg)/BCP 786.28 ± 6.68 78.63 ± 0.67 
Aln (5 mg)/BCP 3638.49 ± 7.12 72.77 ± 0.14 

BCP: Biphasic calcium phosphate. 
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Figure 2A shows the release profiles of Aln from Aln (1 mg)/BCP and Aln (5 mg)/BCP scaffolds. 
Sustained release of Aln from Aln (1 mg)/BCP and Aln (5 mg)/BCP scaffolds was observed for up to 
28 days. On the first day, 196.36 ± 0.02 μg and 290.77 ± 0.01 μg of Aln were released from Aln (1 
mg)/BCP and Aln (5 mg)/BCP scaffolds, respectively. A total of 569.42 ± 0.03 μg and 705.34 ± 0.02 μg of 
Aln were released from Aln (1 mg)/BCP and Aln (5 mg)/BCP scaffolds, respectively. However, the 
proportion of released Aln was different depending on their concentration of Aln in BCP scaffolds. 
High concentration of Aln (5 mg)/BCP scaffold shows more sustained release of Aln during the test 
up to 28 days. During 28 days, more than 70% (72.42 ± 1.01) of Aln was released from Aln (1 
mg)/BCP scaffold, whereas less than 20% (19.36 ± 0.16) of Aln was released from Aln (5 mg)/BCP 
scaffold (Figure 2B). 
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Sustained release of Aln from Aln (1 mg)/BCP and Aln (5 mg)/BCP scaffolds was observed for
up to 28 days. On the first day, 196.36 ˘ 0.02 µg and 290.77 ˘ 0.01 µg of Aln were released from
Aln (1 mg)/BCP and Aln (5 mg)/BCP scaffolds, respectively. A total of 569.42 ˘ 0.03 µg and
705.34 ˘ 0.02 µg of Aln were released from Aln (1 mg)/BCP and Aln (5 mg)/BCP scaffolds,
respectively. However, the proportion of released Aln was different depending on their concentration
of Aln in BCP scaffolds. High concentration of Aln (5 mg)/BCP scaffold shows more sustained release
of Aln during the test up to 28 days. During 28 days, more than 70% (72.42 ˘ 1.01) of Aln was released
from Aln (1 mg)/BCP scaffold, whereas less than 20% (19.36 ˘ 0.16) of Aln was released from Aln
(5 mg)/BCP scaffold (Figure 2B).
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Figure 3. Alkaline phosphatase (ALP) activity of MG-63 cells cultured on BCP, Aln (1 mg)/BCP, and 
Aln (5 mg)/BCP after three, seven, and 10 days of incubation. The error bars represent mean ± SD (n = 
5). (* p < 0.05 and ** p < 0.01). 
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Figure 2. (A) Cumulative in vitro release profile of Aln from Aln (1 mg)/BCP and Aln (5 mg)/BCP
scaffolds, respectively. The amounts of Aln released from BCP scaffold were similar in spite of
different concentrations; and (B) the percentage of cumulative in vitro release profile of Aln shows
different releasing pattern depending on their concentration. On the first day, 31.33% ˘ 1.58% of Aln
was released from Aln (1 mg)/BCP scaffold, whereas 7.99% ˘ 0.08% of Aln was released from Aln
(5 mg)/BCP scaffold. On the 28th day, 72.42% ˘ 1.01% of Aln was released from Aln (1 mg)/BCP
scaffold, whereas 19.36% ˘ 0.16% of Aln was released from Aln (5 mg)/BCP scaffold.

2.3. Alkaline Phosphatase (ALP) Activity and Calcium Contents

Figure 3 shows the ALP activity of MG-63 cells cultured on BCP, Aln (1 mg)/BCP, and Aln
(5 mg)/BCP scaffolds at three, seven, and 10 days. The ALP activity of MG-63 cells grown
on all scaffolds gradually increased with incubation times up to 10 days. The ALP activity of
MG-63 cells cultured on Aln-containing BCP scaffolds was higher compared with those cultured
on BCP scaffolds at three days. At days seven and 10, the ALP activity of MG-63 cells cultured
on Aln (1 mg)/BCP and Aln (5 mg)/BCP scaffolds was significantly different than those cultured
on BCP scaffolds (** p < 0.01). In addition, there was also a significant difference in the ALP
activity of MG-63 cells cultured on Aln (5 mg)/BCP scaffolds compared with Aln (1 mg)/BCP
(** p < 0.01). Calcium deposition was measured after MG-63 cells were cultured for 21 days on
BCP, Aln (1 mg)/BCP, and Aln (5 mg)/BCP scaffolds (Figure 4). There was a statistically significant
difference in the amount of calcium deposited on MG-63 cells between the Aln-containing BCP and
BCP scaffolds (** p < 0.01).

Int. J. Mol. Sci. 2015, 16, page–page 

4 

(A) (B) 
Figure 2. (A) Cumulative in vitro release profile of Aln from Aln (1 mg)/BCP and Aln (5 mg)/BCP 
scaffolds, respectively. The amounts of Aln released from BCP scaffold were similar in spite of 
different concentrations; and (B) the percentage of cumulative in vitro release profile of Aln shows 
different releasing pattern depending on their concentration. On the first day, 31.33% ± 1.58% of Aln 
was released from Aln (1 mg)/BCP scaffold, whereas 7.99% ± 0.08% of Aln was released from Aln (5 
mg)/BCP scaffold. On the 28th day, 72.42% ± 1.01% of Aln was released from Aln (1 mg)/BCP 
scaffold, whereas 19.36% ± 0.16% of Aln was released from Aln (5 mg)/BCP scaffold 

2.3. Alkaline Phosphatase (ALP) Activity and Calcium Contents 

Figure 3 shows the ALP activity of MG-63 cells cultured on BCP, Aln (1 mg)/BCP, and Aln (5 
mg)/BCP scaffolds at three, seven, and 10 days. The ALP activity of MG-63 cells grown on all 
scaffolds gradually increased with incubation times up to 10 days. The ALP activity of MG-63 cells 
cultured on Aln-containing BCP scaffolds was higher compared with those cultured on BCP 
scaffolds at three days. At days seven and 10, the ALP activity of MG-63 cells cultured on Aln (1 
mg)/BCP and Aln (5 mg)/BCP scaffolds was significantly different than those cultured on BCP 
scaffolds (** p < 0.01). In addition, there was also a significant difference in the ALP activity of MG-63 
cells cultured on Aln (5 mg)/BCP scaffolds compared with Aln (1 mg)/BCP (** p < 0.01). Calcium 
deposition was measured after MG-63 cells were cultured for 21 days on BCP, Aln (1 mg)/BCP, and 
Aln (5 mg)/BCP scaffolds (Figure 4). There was a statistically significant difference in the amount of 
calcium deposited on MG-63 cells between the Aln-containing BCP and BCP scaffolds (** p < 0.01). 

 
Figure 3. Alkaline phosphatase (ALP) activity of MG-63 cells cultured on BCP, Aln (1 mg)/BCP, and 
Aln (5 mg)/BCP after three, seven, and 10 days of incubation. The error bars represent mean ± SD (n = 
5). (* p < 0.05 and ** p < 0.01). 

Time (days)

0 5 10 15 20 25 30A
le

n
d

ro
n

a
te

/B
C

P
 C

u
m

u
la

ti
ve

 
R

e
le

a
se

 (
μg

/m
L

)

0

200

400

600

800
Aln (1 mg)/BCP
Aln (5 mg)/BCP

Time (days)

0 5 10 15 20 25 30A
le

n
d

ro
n

at
e/

B
C

P
 C

u
m

u
la

ti
ve

 
R

el
ea

se
 (

%
)

0

20

40

60

80

100
Aln (1 mg)/BCP
Aln (5 mg)/BCP

Time (days)

A
L

P
 A

ct
iv

it
y 

( μ
M

/m
in

/ μ
g

 p
ro

te
in

)

0

1

2

3

4

5

6
BCP
Aln (1 mg)/BCP
Aln (5 mg)/BCP

3 7 10

*
*

**
** **

**
** **

Figure 3. Alkaline phosphatase (ALP) activity of MG-63 cells cultured on BCP, Aln (1 mg)/BCP, and
Aln (5 mg)/BCP after three, seven, and 10 days of incubation. The error bars represent mean ˘ SD
(n = 5). (* p < 0.05 and ** p < 0.01).
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Figure 4. Calcium deposition by MG-63 cells cultured on BCP, Aln (1 mg)/BCP, and Aln (5 mg)/BCP 
after 21 days of incubation. The error bars represent mean ± SD (n = 5). (** p < 0.01). 
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in MG-63 cells grown on Aln-containing BCP scaffolds compared with those grown on BCP scaffolds 
after 21 days of culture (** p < 0.01). The mRNA expression levels of OCN and OPN in MG-63 cells 
cultured on Aln (5 mg)/BCP scaffolds were markedly higher compared to those cultured on Aln (1 
mg)/BCP scaffolds after 21 days of culture (** p < 0.01). 

 
Figure 5. Real-time PCR analysis for (A) osteocalcin and (B) osteopontin expression of MG-63 cells 
cultured on BCP, Aln (1 mg)/BCP and Aln (5 mg)/BCP after seven and 21 days of incubation. The 
error bars represent mean ± SD (n = 5). (** p < 0.01). 
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As shown in Figure 6, sharp margin of the osteotomy sites were disappeared with laps of time 
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Figure 4. Calcium deposition by MG-63 cells cultured on BCP, Aln (1 mg)/BCP, and Aln (5 mg)/BCP
after 21 days of incubation. The error bars represent mean ˘ SD (n = 5). (** p < 0.01).

2.4. Gene Expression

mRNA expression of osteocalcin (OCN) and osteopontin (OPN) in MG-63 cells cultured on BCP,
Aln (1 mg)/BCP, and Aln (5 mg)/BCP scaffolds was characterized by real-time PCR after culturing
for 21 days (Figure 5A,B). The mRNA expression of OCN and OPN were significantly higher in
MG-63 cells grown on Aln-containing BCP scaffolds compared with those grown on BCP scaffolds
after 21 days of culture (** p < 0.01). The mRNA expression levels of OCN and OPN in MG-63 cells
cultured on Aln (5 mg)/BCP scaffolds were markedly higher compared to those cultured on Aln
(1 mg)/BCP scaffolds after 21 days of culture (** p < 0.01).
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at four and eight weeks in all specimens. However, those blunt margins were still remained until 
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Figure 5. Real-time PCR analysis for (A) osteocalcin and (B) osteopontin expression of MG-63 cells
cultured on BCP, Aln (1 mg)/BCP and Aln (5 mg)/BCP after seven and 21 days of incubation.
The error bars represent mean ˘ SD (n = 5). (** p < 0.01).

2.5. Bone Formation Evaluation

As shown in Figure 6, sharp margin of the osteotomy sites were disappeared with laps of time at
four and eight weeks in all specimens. However, those blunt margins were still remained until eight
weeks in all specimens, even though more bone formation and high radio-opaque consolidation of the
defect areas were observed at eight weeks in Aln (5 mg)/BCP scaffold model specimens. Moreover,
no solid bony bridging was observed in any of the all three groups, the Aln/BCP groups showed
abundant callus formations compared to the control group.
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Figure 6. Plain radiographs of rat tibial defect model. The sharp margin of the osteotomy sites were 
disappeared with laps of time at four and eight weeks in all specimens. More bone formation and 
high radio-opaque consolidation of the defect areas were observed at eight weeks in Aln (5 mg)/BCP 
scaffold model specimens. However, no solid bony bridging was observed in any of the all three 
groups, the Aln/BCP groups showed relatively abundant callus formations compared to the control 
group. 

Micro-CT was used to evaluate the amount of bone formation at four and eight weeks post 
operation (Figure 7A–C). Three-dimentional micro-CT images of three groups at the eight week 
show relatively consolidated new bone formation compared to the images taken at the fourth week 
post operation. The bone mineral density increased over time in an Aln-concentration-dependent 
manner (Figure 8). Bone formation volume (%BV) was calculated as the percentage of new bone 
area in the total augmented area, including all tissues within the boundaries of the newly formed 
bone. Bone formation volume was significantly increased at four and eight weeks in Aln (5 
mg)/BCP scaffold model specimens compared to the control group (Figure 9). 

   
Figure 7. (A–C) Micro-computed tomography (CT) analysis was performed for analyzing the 
amount of bone formation at the fourth and eight weeks post operation. (A) Three-dimensional 
micro-CT image shows incomplete bony bridge formation at the defect site; (B) the amount of bone 
formation was evaluated within boundaries of the newly formed bone (white dotted square) using 
bone mineral density and bone formation volume (%BV); (C) 3-dimentional micro-CT images of 
three groups at the eighth week shows relatively consolidated new bone formation compared to the 
images taken at the fourth week post operation. 

Figure 6. Plain radiographs of rat tibial defect model. The sharp margin of the osteotomy sites
were disappeared with laps of time at four and eight weeks in all specimens. More bone formation
and high radio-opaque consolidation of the defect areas were observed at eight weeks in Aln
(5 mg)/BCP scaffold model specimens. However, no solid bony bridging was observed in any of
the all three groups, the Aln/BCP groups showed relatively abundant callus formations compared to
the control group.

Micro-CT was used to evaluate the amount of bone formation at four and eight weeks post
operation (Figure 7A–C). Three-dimentional micro-CT images of three groups at the eight week show
relatively consolidated new bone formation compared to the images taken at the fourth week post
operation. The bone mineral density increased over time in an Aln-concentration-dependent manner
(Figure 8). Bone formation volume (%BV) was calculated as the percentage of new bone area in the
total augmented area, including all tissues within the boundaries of the newly formed bone. Bone
formation volume was significantly increased at four and eight weeks in Aln (5 mg)/BCP scaffold
model specimens compared to the control group (Figure 9).
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Figure 7. (A–C) Micro-computed tomography (CT) analysis was performed for analyzing the amount
of bone formation at the fourth and eight weeks post operation. (A) Three-dimensional micro-CT
image shows incomplete bony bridge formation at the defect site; (B) the amount of bone formation
was evaluated within boundaries of the newly formed bone (white dotted square) using bone mineral
density and bone formation volume (%BV); (C) 3-dimentional micro-CT images of three groups at the
eighth week shows relatively consolidated new bone formation compared to the images taken at the
fourth week post operation.
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Figure 8. Bone mineral density at four and eight weeks after implantation. The error bars represent 
mean ± SD (n = 5). (* p < 0.05). 

 
Figure 9. Bone formation volume (%) at four and eight weeks after implantation. The error bars 
represent mean ± SD (n = 5). (* p < 0.05). 

2.6. Histological Evaluation 

Histological analysis confirmed that Aln/BCP scaffolds showed improved new bone formation 
in vivo. H and E staining showed scanty bone formation at 40× and 200× magnification in the control 
group, whereas abundant osteoid tissues were observed at eight weeks in Aln (5 mg)/BCP scaffolds 
group specimen (Figure 10A,B). 

Masson’s trichrome staining showed active new bone formation in specimens four weeks 
post-operation at 40× and 200× magnification, whereas scanty bone formation was visible in the 
control group. At eight weeks, the defect area was filled with mature bone tissue (Figure 10C,D). 
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Figure 8. Bone mineral density at four and eight weeks after implantation. The error bars represent
mean ˘ SD (n = 5). (* p < 0.05).
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Figure 9. Bone formation volume (%) at four and eight weeks after implantation. The error bars
represent mean ˘ SD (n = 5). (* p < 0.05).

2.6. Histological Evaluation

Histological analysis confirmed that Aln/BCP scaffolds showed improved new bone formation
in vivo. H and E staining showed scanty bone formation at 40ˆ and 200ˆ magnification in the control
group, whereas abundant osteoid tissues were observed at eight weeks in Aln (5 mg)/BCP scaffolds
group specimen (Figure 10A,B).

Masson’s trichrome staining showed active new bone formation in specimens four weeks
post-operation at 40ˆ and 200ˆ magnification, whereas scanty bone formation was visible in the
control group. At eight weeks, the defect area was filled with mature bone tissue (Figure 10C,D).
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Figure 10. (A–D) Representative sections of (A) hematoxylin and eosin staining and (C) Goldner’s 
trichrome staining four and eight weeks after implantation (40× magnification). Abundant 
surrounding fibrous tissue formation and woven bone formation at the defect are visible in the Aln (5 
mg)/BCP scaffold. Similar findings were observed on high power field (200× magnification) (B,D). 

3. Discussion 

In bone tissue engineering, scaffolds should provide improved cell adhesion, proliferation, and 
mineralization. BCP scaffolds are considered osteoconductive bone substitutes. Osteoconductive 
materials provide a framework for vascular and cellular infiltration, but do not stimulate osteogenic 
differentiation of mesenchymal stem cells or osteoblast-like cells. For more effective bone 
regeneration, BCP scaffolds containing osteoinductive materials are required. Although the 
principal mode of action of Aln is inhibition of osteoclast function by inhibiting the mevalonate 
pathway of cholesterol synthesis [12], recent studies showed that local delivery of Aln by calcium 
phosphate scaffolds promote osteoblast differentiation and mineralization in vitro [23,24]. Previous 
studies have revealed that Aln can up-regulate mRNA expression during osteogenic differentiation 
in vitro, including that of bone morphogenetic protein 2, type I collagen, osteocalcin, and osteopontin 
[16,25]. Aln can also increase osteocalcin expression, mineralization, and unprenylated Rap1 in 
human mesenchymal stem cells [26]. Local Aln treatment enhanced proliferation and differentiation 
of bone-forming cells adjacent to the bone surface in vivo mediated through inhibition of the 

Figure 10. (A–D) Representative sections of (A) hematoxylin and eosin staining and
(C) Goldner’s trichrome staining four and eight weeks after implantation (40ˆ magnification).
Abundant surrounding fibrous tissue formation and woven bone formation at the defect are
visible in the Aln (5 mg)/BCP scaffold. Similar findings were observed on high power field
(200ˆ magnification) (B,D).

3. Discussion

In bone tissue engineering, scaffolds should provide improved cell adhesion, proliferation, and
mineralization. BCP scaffolds are considered osteoconductive bone substitutes. Osteoconductive
materials provide a framework for vascular and cellular infiltration, but do not stimulate osteogenic
differentiation of mesenchymal stem cells or osteoblast-like cells. For more effective bone
regeneration, BCP scaffolds containing osteoinductive materials are required. Although the principal
mode of action of Aln is inhibition of osteoclast function by inhibiting the mevalonate pathway of
cholesterol synthesis [12], recent studies showed that local delivery of Aln by calcium phosphate
scaffolds promote osteoblast differentiation and mineralization in vitro [23,24]. Previous studies
have revealed that Aln can up-regulate mRNA expression during osteogenic differentiation in vitro,
including that of bone morphogenetic protein 2, type I collagen, osteocalcin, and osteopontin [16,25].
Aln can also increase osteocalcin expression, mineralization, and unprenylated Rap1 in human
mesenchymal stem cells [26]. Local Aln treatment enhanced proliferation and differentiation of
bone-forming cells adjacent to the bone surface in vivo mediated through inhibition of the mevalonate
pathway [27]. However, the local delivery of Aln is composed of two-step process—first, preparation
of BCP scaffolds, and second, the Aln loading on BCP scaffolds. Therefore, there have been several
concerns of limited drug loading content, heterogeneous drug distribution within the scaffold,
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uncontrolled release kinetics [19,21]. Accordingly, we tried to analyze the characteristics of BCP
scaffolds containing Aln, and investigate whether MG-63 cells cultured on BCP scaffolds containing
Aln had enhanced osteoblast activity compared with those cultured on BCP-only scaffolds, and
performed in vivo study of Aln/BCP scaffolds in a rat tibial defect model.

One of the main advantages of a BCP scaffold is its unique, dual pore structure, which is
comprised of macro- and micro-pores. Macro-pores enable easy neovascularization and osteoblast
cell migration, while micro-pores have a high binding affinity to osteoblast cells. In our study, FE-SEM
images confirmed multiple porous structures consisted with the coating of Aln on BCP scaffolds by
elemental composition analysis. Increased N content was observed with increasing concentrations
of Aln coated on BCP scaffolds. Moreover, Aln-coated BCP scaffolds were also evaluated by XPS
K-Alpha spectroscopy to confirm the presence of Aln functional groups. The hydroxyl and P=O
functional groups of Aln were observed on BCP scaffolds containing Aln, not on BCP-only scaffolds.
These results indicate that Aln was successfully coated on BCP scaffolds.

In this study, the Aln release was sustained over 30 days, and the release showed relatively
linear kinetics, except for a burst release during the initial 24 h (Figure 2A,B). The initial burst release
might be attributed the Aln bound on the BCP scaffold surface. And sustained and slow release
of Aln might be ascribed the biphasic characteristics of BCP, by the calcium phosphate mineral
dissolution [17,28–30]. When considering the sustained release kinetics, the Aln/BCP scaffold might
release Aln over several months. Therefore, this Aln/BCP scaffolds may serve as useful long-term
local Aln delivery systems in bone defect model in vivo. However, we should not overlook the
possibility of mismatch between the in vitro release study and in vivo situation. Therefore, future
study using in vivo labeling of the Aln could be considered to know the real concentration of Aln at
the defect site.

To demonstrate enhanced osteogenesis for all BCP groups, ALP activity and calcium deposition,
which are important markers for early and late osteogenic differentiation of osteoblast-like
cells [18,31], were analyzed. Previous studies demonstrated that synovial mesenchymal stem cells
grown on Aln-loaded poly lactic-co-glycolic acid (PLGA)/HAp-sintered microspherical scaffolds
and osteoblasts cultured on Aln-loaded novel PLGA/HAp microspheres have higher ALP activity
compared with the control group [15,32]. More recently, Moon et al. [16] and Kim et al. [18]
showed that the ALP activity and calcium deposition of MC3T3-E1 cells and MG-63 cells cultured
on Aln-immobilized titanium (Ti) and Aln-eluting chitosan scaffolds, respectively, were significantly
different compared to the control group. In our study, the ALP activity of MG-63 cells was evaluated
after a culture period of 10 days. The ALP activity increased over the 10-day period for all
BCP scaffolds. However, the activity of MG-63 cells grown on BCP scaffolds containing Aln was
significantly higher than those grown on BCP-only scaffolds after three days. In addition, the ALP
activity of MG-63 cells cultivated on Aln (5 mg)/BCP was significantly different from the ALP activity
of MG-63 cells cultivated on Aln (1 mg)/BCP after seven days. As expected from the ALP activity
data in the present study, the amount of calcium deposition on MG-63 cells grown on Aln-containing
BCP scaffolds was significantly higher than those grown on BCP-only scaffolds after 21 of incubation.
Taken together, these findings indicate that Aln can stimulate early and late osteogenic differentiation.

After 21 days of culture, expression of OCN and OPN genes in MG-63 cells grown on all
BCP scaffolds confirmed osteogenic differentiation. Previous studies reported that OCN and OPN
genes, markers of osteoblast differentiation, are up-regulated after osteoblast differentiation [33,34].
In the present study, expression of OCN and OPN genes in MG-63 cells cultured on BCP scaffolds
containing Aln was markedly upregulated compared to cells cultured on BCP-only scaffolds.
These results indicate that BCP scaffolds containing Aln stimulated osteogenic differentiation of
MG-63 cells by releasing Aln. Particularly, Aln (5 mg)/BCP scaffolds showed significantly greater
osteogenic differentiation of MG-63 cells compared to Aln (1 mg)/BCP scaffolds. Thus, BCP scaffolds
containing Aln effectively stimulated osteogenic differentiation, indicating the potential use for
regeneration of bone defects.
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We performed in vivo studies to determine whether Aln/BCP scaffolds show improved
bone-regenerating capabilities compared with BCP scaffolds alone using a rat tibial defect model.
In our study, x-ray images and micro-CT analysis revealed that bone growth of Aln/BCP scaffolds
increased with increased Aln content. However, we could not determine the quality and mechanical
strength of regenerate bone, and patterns of biodegradation of BCP scaffolds. Moreover, there
were no significant differences in bone mineral density and bone formation volume between the
lower-dose Aln (1 mg)/BCP scaffold group and the control group. It is hard to determine that the
results arise from long term cumulative effect of Aln or dose dependent effect of Aln. In histological
analysis revealed abundant woven bone formation with Aln (5 mg)/BCP scaffolds four weeks after
implantation, and the majority of the woven bone had been converted into mature bone at eight
weeks. These findings suggested that Aln/BCP scaffolds had good potential of osteoinduction,
enhancing osteogenesis, and bone regeneration.

Although Aln has been widely used to treat various conditions [10–12], there have been concerns
about the uncoupling effect [35–37]. Systemic administration and long term usage of Aln are likely
related to the potent over-suppression of bone turnover and inhibitory effects on osteogenesis [37,38].
In this study, local delivery of Aln using BCP scaffolds did not show any negative effect on bone
regeneration up to eight weeks after implantation in the rat tibia defect model. However, the
Aln/BCP scaffold did result in a significant difference in bone formation over an eight-week period
with higher dose of Aln (5 mg). The results of this study suggest that in vivo applications of Aln/BCP
scaffolds is efficacious for bone regeneration.

This study has several limitations. First, cumulative effect of Aln should be investigated more
than eight weeks after implantation. Previous clinical studies using BCP reported that BCP granules
last longer than two years and did not completely remodel [39,40]. The locally delivered Aln
might affect remodeling of newly regenerated bone as well as osteoclast-related material absorption.
Radiographic evaluation should be considered to test the length of bony consolidation, remodeling,
and material absorption. Second, biomechanical study of regenerated bone should be performed.
The quality and structural stability of the regenerated bone should be evaluated thoroughly.

4. Experimental Section

4.1. Materials

Biphasic calcium phosphate (BCP, HAp = 60%, TCP = 40%) scaffolds were kindly donated
by OssGen Corporation (Gyeongbuk, Korea). Aln was obtained from Samjin Pharmaceutical
Corporation (Seoul, Korea). Dulbecco’s Modified Eagle’s Medium (DMEM), phosphate buffer
saline (PBS), fetal bovine serum (FBS), and 1% antibiotics (100 U/mM penicillin and 0.1 mg/mL
streptomycin) were purchased from Life Technologies Corporation (Grand Island, NY, USA).
2-(N-Morpholino) ethanesulfonic acid (MES) was supplied from Sigma Chemical Co. (St. Louis,
MO, USA). MG-63 cells (human osteosarcoma cell line) were obtained from Korea Cell Line Bank
(KCLB No. 21427, Seoul, Korea).

4.2. Preparation of BCP Scaffold Coated with Alendronate (Aln)

Two different Aln concentrations (1 mg or 5 mg) were dissolved in 0.1 M MES buffer (pH 5.6),
respectively. The concentrations of Aln were determined based on our previous studies [18,41].
BCP scaffolds were then immersed in 0.1 M MES buffer dissolved Aln and allowed to react for
24 h with gentle shaking. Aln-coated BCP scaffolds were collected, washed with distilled water,
and vacuum-dried for one day.

4.3. Characterization of BCP and Aln-Coated BCP

To demonstrate the surface morphologies and elemental compositions of BCP, Aln (1 mg)/BCP,
and Aln (5 mg)/BCP, field-emission scanning electron microscopy (FE-SEM, JSM-6700F, JEOL, Tokyo,
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Japan) was performed at the College of Health Science on Korea University. The samples were coated
with platinum using a sputter-coater (Cressington 108; Cressington Scientific Instruments, Cranberry,
PA, USA). The accelerating voltage for FE-SEM was 10 kV.

4.4. Release Kinetics of Aln from BCP Scaffold

To evaluate the in vitro release kinetics of Aln from Aln (1 mg)/BCP and Aln (5 mg)/BCP
scaffolds, each sample was immersed in 1 mL of PBS buffer (pH 7.4) with gentle shaking (100 rpm)
at 37 ˝C. At predetermined time intervals of one, three, five, and 10 h, and one, three, five, seven,
14, 21, and 28 days, the supernatants of the specimens were collected and replaced with an equal
volume of fresh PBS solution. The samples were collected and stored at ´20 ˝C prior to analysis.
The absorbance of the Aln was determined using a Flash Multimode Reader (Varioskan™, Thermo
Scientific, Waltham, MA, USA) at a wavelength of 293 nm with a complex of Aln and standard
iron(III) chloride solution.

4.5. Osteogenic Differentiation Conditions

To demonstrate the enhancement of osteogenic differentiation on all scaffolds, alkaline
phosphatase (ALP) activity and calcium content analyses were used. Prior to ALP activity, calcium
content, and performing gene expressions analyses, all scaffolds were sterilized with 70% ethanol
for 1 min and rinsed with PBS. Osteogenic differentiation medium (ODM) composed of DMEM
supplemented with 10% FBS and 1% antibiotics in the presence of 50 µg/mL ascorbic acid, 10 nM
dexamethasone, and 10 mM β-glycerophosphate, were used to evaluate ALP activity, calcium
content, and gene expressions.

4.6. ALP Activity

MG-63 cells were seeded on BCP, Aln (1 mg)/BCP and Aln (5 mg)/BCP scaffolds in a 24-well
tissue-culture plate at a concentration of 1 ˆ 105 cells/scaffold and incubated for up to 10 days
in ODM. At predetermined time intervals of three, seven, and 10 days, the cells were lysed using
1ˆ radioimmunoprecipitation assay buffer. The cell lysates were centrifuged at 13,500 rpm for 3 min
at 4 ˝C. The supernatants were incubated with p-nitrophenyl phosphate solution for 30 min at 37 ˝C.
The reaction was stopped by adding 500 µL of 1 N NaOH. ALP activity was determined by measuring
the conversion of p-nitrophenyl phosphate to p-nitrophenol. Optical density was determined using a
Flash Multimode Reader (Varioskan™) at a wavelength of 405 nm.

4.7. Calcium Content

MG-63 cells were seeded at a concentration of 1 ˆ 105 cells/mL on BCP, ALN (1 mg)/BCP, and
ALN (5 mg)/BCP scaffolds in a 24-well tissue-culture plate. After 21 days of culture, 0.5 N HCl
was added to the cells/scaffolds. Calcium deposition was measured in the supernatants using a
QuantiChrom Calcium Assay Kit (DICA-500, BioAssay Systems, Hayward, CA, USA) according to
the manufacturer’s instructions. Optical density was determined using a Flash Multimode Reader
(Varioskan™) at a wavelength of 612 nm.

4.8. Gene Expression

To determine messenger RNA (mRNA) expression of osteogenic differentiation markers, such
as osteocalcin (OCN) and osteopontin (OPN), we performed real-time polymerase chain reaction
(PCR). MG-63 cells (1 ˆ 105 cells/mL) were seeded on BCP, Aln (1 mg)/BCP, and Aln (5 mg)/BCP
scaffolds in a 24-well tissue-culture plate. After 21 days of culture, cDNA was synthesized with 1 µg
total RNA and oligo (dT) primer using the Superscript First-Strand Synthesis System (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions. The following oligonucleotide
primers were used: OCN ((F) 51-TGA GAG CCC TCA CAC TCC TC-31, (R) 51-ACC TTT GCT GGA
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CTC TGC AC-3'); OPN ((F) 51-GAG GGC TTG GTT GTC AGC-31, (R) 5'-CAA TTC TCA TGG TAG
TGA GTT TTC C-3'); glyceraldehyde 3-phosphate dehydrogenase (GAPDH) ((F) 51-ACT TTG TCA
AGC TCA TTT CC-3', (R) 5'-TGC AGC GAA CTT TAT TGA TG-3'). Real-time PCR was performed
with the above-mentioned specific primers. PCR amplification and detection were carried out on
an ABI7300 Real-Time Thermal Cycler (Applied Biosystems, Foster, CA, USA) with the DyNAmo™
SYBRr Green qPCR Kit (Finnzymes, Espoo, Finland). The relative mRNA expression levels of OCN
and OPN were normalized to GAPDH expression.

4.9. Rat Tibial Defect and Treatment

Prior to the procedure of in vivo study using rat tibial defect model, our study were approved
by the Institutional Animal Care and Use Committee of the Korea University Medical Center
(KUIACUC-20130529-2). 24 Sprague-Dawley rats (Orient Bio Co., Seoul, Korea), aged eight weeks
and weighing a mean 310 ˘ 14 g, were used in this study. Rats were divided into three groups
as follows.

‚ Group I: BCP only
‚ Group II: Aln (1 mg)/BCP
‚ Group III: Aln (5 mg)/BCP

Anesthesia was induced with an intraperitoneal injection of a commercial combination of
tiletamine/zolazepam (143.75 mg/kg; Zoletil, Virbac Laboratories, Paris, France) and Xylazine
(2.33 mg/kg; Rompun, Bayer Healthcare Korea, Seoul, Korea). The left leg of rat was shaved and
prepared for sterile isolation. A 2 cm skin incision was made over the medial aspect of left tibia
mid-shaft area. The periosteum and soft tissue carefully retracted to expose the tibia. Two 0.9
mm Kirschner-wires (K-wire) (Zimmer, Warsaw, IN, USA) were used to drill both tibial cortices.
The K-wires were clamped bilaterally with custom-made external fixators. A 7-mm-sized diaphyseal
defect was made using a cutting bur between two K-wires, and three different types of scaffold
were applied according to each group. Subcutaneous tissue and skin was sutured (Figure 11).
The animals were allowed free movement in cages after recovery from anesthesia. At two different
time points (four and eight weeks), the progress of bone formation was evaluated with plain
radiograph, micro-CT, Bone formation, and histology.
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ABI7300 Real-Time Thermal Cycler (Applied Biosystems, Foster, CA, USA) with the DyNAmo™ 
SYBR® Green qPCR Kit (Finnzymes, Espoo, Finland). The relative mRNA expression levels of OCN 
and OPN were normalized to GAPDH expression. 

4.9. Rat Tibial Defect and Treatment 

Prior to the procedure of in vivo study using rat tibial defect model, our study were approved 
by the Institutional Animal Care and Use Committee of the Korea University Medical Center 
(KUIACUC-20130529-2). 24 Sprague-Dawley rats (Orient Bio Co., Seoul, Korea), aged eight weeks 
and weighing a mean 310 ± 14 g, were used in this study. Rats were divided into three groups as 
follows. 

Group I: BCP only 
Group II: Aln (1 mg)/BCP 
Group III: Aln (5 mg)/BCP 
Anesthesia was induced with an intraperitoneal injection of a commercial combination of 

tiletamine/zolazepam (143.75 mg/kg; Zoletil, Virbac Laboratories, Paris, France) and Xylazine (2.33 
mg/kg; Rompun, Bayer Healthcare Korea, Seoul, Korea). The left leg of rat was shaved and 
prepared for sterile isolation. A 2 cm skin incision was made over the medial aspect of left tibia 
mid-shaft area. The periosteum and soft tissue carefully retracted to expose the tibia. Two 0.9 mm 
Kirschner-wires (K-wire) (Zimmer, Warsaw, IN, USA) were used to drill both tibial cortices. The 
K-wires were clamped bilaterally with custom-made external fixators. A 7-mm-sized diaphyseal 
defect was made using a cutting bur between two K-wires, and three different types of scaffold 
were applied according to each group. Subcutaneous tissue and skin was sutured (Figure 12). The 
animals were allowed free movement in cages after recovery from anesthesia. At two different time 
points (four and eight weeks), the progress of bone formation was evaluated with plain radiograph, 
micro-CT, Bone formation, and histology. 

 
Figure 11. (A–C) Experimental animal model with a 7-mm-sized segmental diaphyseal tibial defect. 
(A) Rat’s tibia was exposed, and external fixator was applied; (B) 7mm sized segmental tibial defect 
was made; and (C) BCP scaffold of 7 mm length was inserted on the defect site. 

Figure 11. (A–C) Experimental animal model with a 7-mm-sized segmental diaphyseal tibial defect.
(A) Rat’s tibia was exposed, and external fixator was applied; (B) 7mm sized segmental tibial defect
was made; and (C) BCP scaffold of 7 mm length was inserted on the defect site.
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4.10. Analysis of Bone Formation

At four and eight weeks post operation, rats were sacrificed to evaluate bone formation
by simple radiography and micro-CT. Rat tibiae were fixed a 3.7% paraformaldehyde solution.
An X-ray apparatus (In vivo DXS 4000 Pro system, Carestream, Rochester, NY, USA) was used for rat
tibiae simple radiograms. Bone formation was evaluated using a micro-CT scanning system (Albira
II imaging system, Carestream). The CT system was operated at a voltage of 40 kV, and a of 250 µA
current with a nominal resolution of 9 µm/pixel. Bone mineral density (BMD) and percentage bone
volume (% BV) of defect site were obtained using micro-CT on four- and eight-week specimens.

4.11. Histological Evaluation

The rat tibiae/substrates were excised at four and eight weeks of post-operation period.
They were fixed in 10% neutral buffered formalin, decalcified and embedded in paraffin.
Tissue blocks were sectioned at 5 µm in thickness in the parallel longitudinal direction parallel and
stained with hematoxylin and eosin (H and E) and Masson’s trichrome. Photographs of defect area
were taken under 40ˆ magnification and 200ˆ magnification. New bone formation in defects was
evaluated with a light microscope (CX31RTSF, Olympus, Tokyo, Japan).

4.12. Statistical Analysis

The mean and standard deviation of the values were computed and statistical analysis was
performed using one-way ANOVA. Multiple comparison analysis was performed to test the
difference between control and test groups. All statistics were verified at 95% significance level.
Statistical significance was established at * p < 0.05 and ** p < 0.01. All statistical analyses were
performed with PASW for Windows, version 18.0 (SPSS, Inc., Chicago, IL, USA).

5. Conclusions

In this study, sustained release of Aln from the Aln/BCP scaffolds was demonstrated with
various concentrations. Aln/BCP scaffolds significantly enhanced the osteogenetic activity and
mineralization by demonstrating a significant increase in ALP activity compared to activity in BCP
scaffolds in vitro, and Aln/BCP scaffolds enhanced the osteogenetic effect in a rat tibia defect model
in vivo. In conclusion, Aln/BCP scaffold demonstrated potential for improved sustained release of
Aln, thus enhancing bone formation and mineralization. This scaffold could be a reasonable bone
graft material for large bone defect in clinical situations.
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