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Abstract: One of the most conspicuous features of neurodegenerative diseases (NDs) is 

the occurrence of dramatic conformation change of individual proteins. We performed a 

mutational spectrum analysis of disease-causing missense mutations in seven types of NDs 

at nucleotide and amino acid levels, and compared the results with those of non-NDs. The 

main findings included: (i) The higher mutation ratio of G:C→T:A transversion to 

G:C→A:T transition was observed in NDs than in non-NDs, interpreting the excessive 

guanine-specific oxidative DNA damage in NDs; (ii) glycine and proline had highest 

mutability in NDs than in non-NDs, which favor the protein conformation change in NDs; 

(iii) surprisingly low mutation frequency of arginine was observed in NDs. These findings 

help to understand how mutations may cause NDs. 
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1. Introduction 

Protein destabilization is a common mechanism by which amino acid substitutions cause human 

diseases. Neurodegenerative diseases (NDs), including Alzheimer’s disease, Parkinson’s disease,  

prion diseases, etc., are a group of chronic disorders characterized by progressive nervous system 

dysfunction. One of the most conspicuous features of NDs is the occurrence of dramatic conformation 
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change of individual proteins and thus, these diseases are also known as “neurodegenerative 

conformational diseases”. 

Many NDs are reported to be caused by genetic mutations as specific substitutions of one amino 

acid to another can exert their deleterious effects by compromising protein structure and/or function. 

At the molecular level, this arises from an inability of the mutant residue to fulfill the roles of the wild-type 

amino acid. For instance, of the known disease-causing missense mutations released in Human Gene 

Mutation Database [1], the vast majority (up to 80%) resulted in protein destabilization [2]. As 

dramatic conformational changes are involved in individual proteins in NDs, it is rational to speculate 

that the missense mutations associated with these diseases should engender more deleterious changes 

in protein structural stability than those in other non-conformational diseases. Thus, elucidating the 

underlying patterns of the disease-causing missense mutations in NDs can provide useful clues for 

understanding their pathogenesis. Here, we conducted a systematic analysis of a mutational spectrum 

of disease-causing missense mutations in NDs at both the nucleotide and amino acid levels. Further, 

we also performed a parallel analysis of the missense mutations annotated as pathogenic in the Single 

Nucleotide Polymorphism database (dbSNP) to represent the status in other human diseases (non-NDs). 

Through comparing the two data sets, we found some distinct differences in both the type and 

frequency of missense mutations between NDs and non-NDs. 

2. Results and Discussion 

2.1. Distribution Patterns of Pucleotide Substitutions 

The distribution of nucleotide substitution types and their proportions of NDs in comparison with 

non-NDs were illustrated in Figure 1a. It was found that the distribution patterns of nucleotide 

substitutions were uneven. The transition substitutions A/G and C/T (A/G represents the sum of all 

A→G and G→A substitutions and so on) in NDs (56.84%) was lower compared to that in non-NDs 

(65.73%). Further, the transition substitutions A/G and C/T both decreased, while all the transversion 

substitutions, i.e., A/C, G/T, A/T, C/G, increased. The ratio of transitions over transversions (Ts/Tv) 

showed that NDs displayed a lower overall ratio than non-NDs (1.31 for NDs vs. 1.92 for non-NDs), 

indicating that the differences of transition bias between NDs and other diseases were noteworthy. 

Transitions are generally favored over transversions among spontaneous mutations, and transversions 

are associated with functionally important amino acid alterations. Thus, the high proportion of 

transversion mutations would exert deleterious effects on protein structure and function in NDs in 

comparison with non-NDs. 

The relative frequencies of nucleotide substitutions from A, T, C and G to any other nucleotide 

were also listed in Table 1. Among the four bases, guanine was the most mutable nucleotide, with a 

relative frequency of 40.15% in NDs, while A and T were the least mutable ones, with relative 

frequencies of 18.69% and 15.9%, respectively. Although guanine was also the most mutable 

nucleotide (40.87%) in non-NDs, its substitution frequencies to A, T, C were markedly different with 

NDs. For instance, the transition substitution frequency of G→A 27.14% in non-NDs is higher than 

22.91% in NDs, while the transversion substitution frequencies of G→T (6.94% vs. 8.79%) and G→C 

(6.79% vs. 8.45%) in non-NDs were both lower than those in NDs, respectively. Notably, guanine in 
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genomic DNA is highly susceptible to oxidative stress due to its lowest oxidation potential resulting  

in the high occurrence of G:C→T:A transversion substitutions [3]. Thus, the ratio of G:C→T:A 

transversion to G:C→A:T transition mutation can be used to assess the degree of oxidative DNA 

damage. The ratio from the present study was 0.34 and 0.23 for NDs and non-NDs, respectively, 

suggesting that the oxidative DNA damage level was much higher in NDs than in non-NDs. 
Considering significant elevations of the chief guanine oxidation product 8-oxo-7,8-dihydro-guanine in 

patients brains with NDs, e.g., Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, etc., 

compared with control groups [4–10], it can be speculated that excessive guanine-specific oxidative 

DNA damage may be a potential risk factor for NDs. 

Table 1. Pattern of nucleotide substitution in neurodegenerative diseases (NDs) and non-NDs a. 

From 
To  

A T C G Total 

A ― 3.56 (2.09) 5.01 (2.76) 10.12 (9.19) 18.69 (14.04) 
T 2.22 (2.94) ― 8.90 (10.35) 4.78 (4.08) 15.90 (17.37) 
C 4.12 (3.90) 14.91 (19.05) ― 6.23 (4.77) 25.26 (27.72) 
G 22.91 (27.14) 8.79 (6.94) 8.45 (6.79) ― 40.15 (40.87) 

Total 29.25 (33.98) 27.26 (28.06) 22.36 (19.91) 21.13 (18.04) ― 
a Table entries are the inferred percentage of nucleotide changes in NDs. Values in parentheses correspond to non-NDs. 

2.2. Position Distribution Patterns of Nucleotide Substitution 

Nucleotide substitutions can occur in three codon positions for each single point mutation; however, 

changes in the first or second nucleotide position are more likely to alter the encoded amino acid than in the 

third position. Thus, it is intriguing to explore the frequency of nucleotide substitutions in three codon 

positions in NDs and non-NDs. As listed in Table 2, the mutation frequency of nucleotides in three codon 

positions was distributed unevenly. Mutation frequency in second codon position was the highest both in 

NDs and non-NDs (49.28% vs. 52.78%). However, in comparison with non-NDs, the proportion of 

transition mutation in the second codon position decreased by 6.42% and transversion increased by 2.92% 

in NDs. In general, codons in the second position with a pyrimidine tend to code for hydrophobic amino 

acids, while codons with purines usually code for polar amino acids. The transition mutations in the second 

position will simply replace one amino acid with a chemically similar one, while transversion mutations 

will alter the chemical property of amino acid. Therefore, based on the results of the present analysis, the 

increased transversion mutations in the second position in NDs will engender changes of residual chemical 

property, which may subsequently attenuate the protein structural stability. 

Table 2. Position distribution patterns of nucleotide substitution in NDs and non-NDs. 

Position 
NDs Non-NDs 

Ts (%) Tv (%) Total (%) Ts (%) Tv (%) Total (%) 

First 26.97 16.75 43.72 29.79 12.24 42.03 
Second 29.04 20.24 49.28 35.46 17.32 52.78 
Third 0.67 6.34 7.01 0.47 4.72 5.19 
Total 56.68 43.32 100 65.72 34.28 100 
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2.3. Distribution of Amino Acid Substitutions 

The amino-acid substitution spectrum of disease-causing missense mutations in NDs and non-NDs 

were illustrated in Figure 1b. It can be seen that the amino-acid mutation frequencies varied 

considerably from one another. Among of them, glycine (G) and arginine (R) were the most frequent 

mutations both in NDs and non-NDs, which was 14.72% and 11.65% in NDs, 10.95% and 17.33% in 

non-NDs, respectively. Several studies have also found larger contributions of G and R than other 

amino acids in human genetic diseases [11,12]. Also, consistent with the present results of R and G in 

non-NDs, mutations at R residue occurred more frequently than mutations at G residue [11,12]. In 

contrast, in NDs, mutations at G residue had higher mutability than R residues (14.72% vs. 10.95%). 

Then, it was intriguing to explore why R residue exerted low mutability and G residue exerted high 

mutability in NDs than in non-NDs. Arginine is represented by six codons: CGA, CGG, CGU, CGC, 

AGG and AGA. Among these, four codons have a CpG dinucleotide that can spontaneously mutate by 

deamination either to TG or CA dinucleotides, resulting in the very high mutability of arginine [13]. 

However, Khan et al. found that R had clearly the highest relative mutability among the original 

disease-associated residues, while its mutation frequency within different structure types was distinct [12]. 

They found that R had significantly higher mutation frequency in the outside secondary structural 

elements than in α-helices, β-structures, turns and bends [12]. Considering the crucial pathogenic role 

of protein conformational conversion from α-helix to β-sheet in NDs, we speculated that the mutation 

of R residue outside secondary structural elements may not cause disease in most cases, which may 

account for the surprisingly lower disease-causing mutation frequency of R in NDs. 

Glycine is a conformational residue and sometimes known as “helix breaker”. Glycine is the only 

non-chiral amino acid because it contains a very small volume of hydrogen atom as its side chain, 

which gives G an extraordinary role in making the local peptide structure flexible and adopts a much 

larger range of conformations than other residues. Thus, the outcome for G mutation will increase the 

volume of the protein and disturb the protein structural stability. Besides G, proline (P) is another 

commonly known residue to disrupt secondary structure because in α-helice and β-strand, the 

introduction of a pyrrolidine ring often causes steric clashes to neighboring residue side chains. As 

shown in Figure 1b, the mutation of G and P both occurred more frequently in NDs than in non-NDs. 

Thus, the higher mutation proportion of G and P in NDs than in non-NDs also favored the dramatic 

conformation changes of NDs. 
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Figure 1. Cont. 
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Figure 1. (a) The distribution of nucleotide substitution types and their proportions of NDs 

in comparison with non-NDs; (b) The amino-acid substitution spectrum of disease-causing 

missense mutations in NDs and non-NDs. 

3. Experimental Section 

Thanks to the previous endeavor, several comprehensive mutation databases of NDs have been 

constructed [14–18]. Our interest focused on the mutation data set containing information on single 

nucleotide polymorphism and a total of seven types of NDs, i.e., Alzheimer’s disease, Frontotemporal 

dementia, Parkinson’s disease, Wilson’s disease, Amyotrophic lateral sclerosis, Huntington’s disease 

and prion diseases, were selected in the present analysis. The required mutation data were obtained 

from five databases including the Alzheimer Disease and Frontotemporal Dementia Mutation Database 

(AD & FTDMDB) [14], Parkinson’s Disease Mutation Database (PDmutDB) [15], Wilson Disease 

Mutation Database [16,17], Amyotrophic lateral sclerosis mutation database [18], and two websites 

regarding prion diseases [19] and Huntington’s disease [20]. 

In total, 899 non-redundant nonsynonymous single-nucleotide polymorphisms (nsSNPs) associated 

with NDs were considered. To discriminate the spectrum of disease-causing mutations in NDs vs. non-NDs, 

5826 non-redundant mutations published in the literature with annotation as pathogenic in the dbSNP 

until August 2014, were selected as disease-causing missense mutations in non-NDs. 

4. Conclusion 

In summary, a mutational spectrum analysis of disease-causing missense mutations was performed 

at nucleotide and amino acid levels and compared with non-NDs. The findings deepened our 

knowledge on how mutations may cause NDs, including the excessive DNA oxidative damage and 

dramatic protein conformational changes in NDs. 
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