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Abstract: Morus alba L. fruits have long been used in traditional medicine by many cultures. 

Their medicinal attributes include cardiovascular, hepatoprotective, neuroprotective and 

immunomodulatory actions. However, their mechanism of macrophage activation and  

anti-cancer effects remain unclear. The present study investigated the molecular 

mechanisms of immune stimulation and improved chemotherapeutic effect of M. alba L. 

fruit extract (MFE). MFE stimulated the production of cytokines, nitric oxide (NO) and 

tumor necrosis factor-α (TNF-α) and tumoricidal properties of macrophages. MFE activated 

macrophages through the mitogen-activated protein kinase (MAPKinase) and nuclear  

factor-κB (NF-κB) signaling pathways downstream from toll-like receptor (TLR) 4. MFE 

was shown to exhibit cytotoxicity of CT26 cells via the activated macrophages, even though 

MFE did not directly affect CT26 cells. In a xenograft mouse model, MFE significantly 

enhanced anti-cancer activity combined with 5-fluorouracil and markedly promoted 

splenocyte proliferation, natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) 

activity and IFN-γ production. Immunoglobulin G (IgG) antibody levels were significantly 

increased. These results indicate the indirect anti-cancer activity of MFE through improved 

immune response mediated by TLR4 signaling. M. alba L. fruit extract might be a potential 

anti-tumor immunomodulatory candidate chemotherapy agent. 
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1. Introduction 

Cancer treatment strategies include surgery, chemotherapy, and radiation therapy. Many cancer 

chemotherapeutic agents can produce toxicity, which particularly leads to myelosuppression and 

immunosuppression [1]. Immune status is important for growth and the combatting of cancer. 

Enhancement of host immune response has been accepted as a tool for defense against cancer 

without any side effects. Effective immune enhancement for anti-tumor activity requires antigen 

presenting cells, T lymphocytes, and natural killer (NK) cells [2,3]. Many candidate cancer 

chemotherapeutic agents activate significant antigen presenting cells, such as dendritic cells and 

macrophages, through toll-like receptors (TLRs), which are able to perform antigen uptake, processing 

and initiation of T cell responses. TLRs are very important in early innate immune defense. The TLR 

agonists have a potential of tumoricidal activity via TLR-activated innate immune responses. Some 

TLR agonists are being clinically investigated [4,5]. 

Natural herbs have been used as complementary and alternative medicine for a long time.  

Among other things, they were used to reduce side effects and enhance tumoricidal effects of 

chemotherapy in cancer patients. [4,6]. Morus alba L. is widely distributed in Asia and has  

been traditionally used in Korea. Pharmacological functions attributed to M. alba L. include  

anti-oxidative, anti-inflammatory, anti-diabetic, and immune stimulating effects, and cardiovascular, 

hepatoprotective, and neuroprotective actions [7,8]. M. alba L. fruit contains anthocyanins [9,10], 

alkaloids [10], flavonoids [11,12], and polysaccharides [13]. 

Our previous study has shown that M. alba L. has immune-stimulatory effects in macrophages [14]. 

Also, pyrrole alkaloids in M. alba fruits having immune-stimulating were reported [15]. However,  

the underlying mechanism of stimulatory activity remains unclear. To investigate the immune modulatory 

behavior of M. alba fruit, the underlying mechanism of the immune-stimulatory effect was investigated. 

Also, the enhancement of therapeutic potential with 5-fluorouracil (5-FU) was estimated in a mouse 

tumor xenograft model. 

2. Results 

2.1. Mechanisms of Macrophage Stimulation by M. alba L. Fruit Extract (MFE) 

Pattern recognition receptors, such as TLR2, TLR4, and TLR6, are involved in the binding of 

natural products to macrophages, which leads to macrophage activation [16,17]. To study the effect of 

Pattern recognition receptor (PRR) blockade, macrophages were incubated with 10, 30, 100 μg/mL of 

MFE with or without TLR 2, 4 and 6 antibodies for 24 h. Treatment with MFE significantly increased 

production of  nitric oxide (NO) and TNF-α without antibodies (Table 1). The MFE associated 

increase of NO and TNF-α was significantly decreased by TLR4 antibodies to 73%–82% and  

64%–71% of antigen free control, respectively. NO production stimulated by MFE was inhibited only 
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by TLR4 antibodies. TLR2 and TLR6 antibodies did not inhibit NO and TNF-α production. TLR4 

antibodies most potently inhibited secretion of TNF-α with secretion inhibited less by TLR2 and TLR6 

antibodies (Table 1). 

Gene expressions of TLR2 and TLR4 in macrophages were knocked-down by transfection with the 

respective siRNA. Significantly reduced production of NO was observed in TLR4 gene knock-down 

cells (Figure 1A). There was no effect of TLR2 gene knockdown on NO production. To examine  

the effects of MyD88 and TIR-domain-containing adapter-inducing interferon-β (TRIF) knockdown on 

the MFE-triggered TLR4 signaling, the cytokines TNF-α, IL-12 and IFN-β in the siRNA-transfected 

macrophages were measured. MyD88 and TRIF siRNA-transfected macrophages were significantly 

inhibited by MFE-induced TNF-α, IL-12 and IFN-β expression as compared to negative siRNA-transfected 

macrophages (Figure 1B–D). 

 

 

Figure 1. Cont. 
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Figure 1. MFE activates macrophages in a TLR4-dependent manner. (A) After 

transfection with TLR2 or TLR4 siRNA, cells were activated with LPS or MFE for 24 h. 

NO production was determined using Griess reagent. Macrophages were transfected  

with MyD88 siRNA, TRIF siRNA, or scramble siRNA, respectively. Twenty-four hours 

after transfection, macrophages were treated with 30 or 100 μg/mL of MFE; (B) TNF-α; 

(C) IL-12 and (D) IFN-β expression were measured by real-time PCR. The values  

are presented as means ± S.D. * p < 0.05, ** p < 0.01, significantly different from the  

negative siRNA group. MFE: Morus alba L. Fruit Extract; TLR: toll-like receptor;  

LPS: lipopolysaccharide; NO: nitric oxide; TNF-α: tumor necrosis factor-α; TRIF:  

TIR-domain-containing adapter-inducing interferon-β; IFN-β: interferon-β; UN: untreated. 
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Table 1. Inhibition of MFE induced NO and TNF-α production by the TLR antibodies in macrophage. 

NO (%) TNF-α (%) 

Ab Free TLR2 Ab TLR4 Ab TLR6 Ab Ab Free TLR2 Ab TLR4 Ab TLR6 Ab 

Untreated 100.0 ± 2.4 100.0 ± 3.3 100.0 ± 2.6  100.0 ± 2.4 100.0 ± 3.2 100.0 ± 3.6 100.0 ± 2.6 100.0 ± 1.4 

MFE (μg/mL)
10 140.4 ± 22.4 138.3 ± 22.7 115.7 ± 12.6 * 126.2 ± 19.4 131.9 ± 8.0 121.6 ± 5.3 90.6 ± 4.3 * 131.3 ± 7.8 
30 312.9 ± 12.3 280.4 ± 13.5 231.6 ± 13.4 * 277.8 ± 14.6 160.4 ± 12.2 150.1 ± 3.4 102.7 ± 4.6 * 150.5 ± 14.5 

100 466.4 ± 10.3 392.4 ± 12.5 340.4 ± 8.3 * 340.1 ± 7.3 172.9 ± 3.2 159.6 ± 24.6 122.7 ± 5.3 * 167.2 ± 18.3 

MFE: Morus alba L. Fruit Extract; NO: nitric oxide; TNF-α: tumor necrosis factor-α; TLR: toll-like receptor. The values were presented as means ± S.D. * p < 0.05, 

significantly different from the Ab-free group. 
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We investigated the mechanism of macrophage activation via the mitogen-activated protein kinase 

(MAPK) by MFE. The phosphorylation of extracellular signal-regulated kinase (ERK), and c-jun  

N-terminal kinase (JNK) were measured in macrophages. MFE time- and dose-dependently induced 

phosphorylation of p38, ERK and JNK in macrophages (Figure 2A,B). MFE also increased nuclear 

factor-κ B (NF-κB) heterodimer (p65/p50 subunits) protein expression in the cytoplasm and nuclear 

translocation. These results suggest that MFE activates macrophages medicated through MAPK and  

NF-κB signaling pathways. To confirm the relationship of MAPK and NF-κB activation to MFE,  

MAPK and NF-κB inhibitors (SB203580 for p38, SP600125 for JNK, PD98059 for ERK,  

and pyrrolidinedithiocarbamate (PDTC) for NF-κB) in MFE-treated macrophages were investigated. 

MFE-induced NO production was significantly decreased after treatment with SB203580, PD98059, 

and PDTC. But, treatment with SP600125 did not affect MFE-induced production of NO (Figure 2C). 

MFE induced TNF-α production was inhibited significantly after treatment with SB203580, 

SP600125, PD98059, and PDTC. These results suggest that the p38, ERK, and NF-κB pathways are 

required for MFE-mediated NO production and that the p38, ERK, JNK MAPK pathways, and  

NF-κB-mediated pathway are required for MFE-mediated TNF-α production (Figure 2D). 

 

 

Figure 2. Cont. 
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Figure 2. Effect of MFE on MAPK and NF-κB mediating pathways. (A) Macrophages 

were treated with LPS (0.1 μg/mL) or MFE (30 μg/mL) for 0, 30, 60, and 120 min;  

(B) Cells were treated with LPS (0.1 μg/mL) or MFE (10, 30 and 100 μg/mL) for 60 min. 

Phosphorylated-p38, JNK, ERK and NF-κB were detected by Western blotting with 

specific antibodies. Macrophages were pretreated with MAPK and NF-κB inhibitors for  

2 h in medium. Thereafter, cells treated with MFE were incubated in fresh medium for  

24 h. LPS was used as the positive control; (C) NO and (D) TNF-α production  

in supernatants were measured using ELISA. The values were presented as means ± S.D.  

* p < 0.01, significantly different from the untreated group. MAPK: mitogen-activated 

protein kinase; NF-κB: nuclear factor-κ B; JNK: c-jun N-terminal kinase; ERK: 

extracellular signal-regulated kinase. 

2.2. Macrophage Activation of MFE for Tumor Cytotoxicity 

Macrophages can attack tumor cells when they are exposed to certain stimuli [18]. We examined 

the cytotoxicity of MFE in CT26 cells. As shown in Figure 3A, MFE at concentration on 10, 30 and 

100 μg/mL did not have any antitumor activity in CT26. However cytotoxicity against CT26 in the group 

treated with MFE was significantly higher compared to untreated group in peritoneal macrophages 

(Figure 3B). These results suggested that cytotoxicity against tumor cells by MFE might be associated 

with activation of macrophages. 
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Figure 3. Cytoxicity of MFE in vitro. (A) The effect of MFE on the proliferation of CT26 

tumor cells; (B) The effect of MFE on macrophage-mediated cytotoxicity against CT26 

tumor cells. Macrophages were activated by MFE and co-cultured with CT26 tumor cells 

for additional 24 h at the ratio of 10:1 (macrophage to CT26). The values are presented as 

mean ± S.D. ** p < 0.01, significantly different from the untreated group. 

2.3. Enhancement of Chemotherapeutic Effects by MFE in Xenograft Mice 

MFE inhibited the growth of tumor cells in xenograft mice (Figure 4A). MFE 300 mg/kg in 

combination with 5-fluorouracil (5-FU) significantly reduced the tumor volume more than with 5-FU 

alone. In this experimental condition, 5-FU showed a 21% inhibitory rate on colon cancer weight. 

Interestingly, the inhibitory rate was significantly increased in a dose-dependent fashion from 21% to 

29% and 42% when 5-FU and MFE were applied together (Table 2). 
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Table 2. Effects of MFE on leukocytes and the growth of tumors in the xenograft mice. 

Group 
Dose 

(mg/kg) 

Leukocyte 

(103/mL) 
Weight of Spleen (g) Weight of Tumor (g) 

Inhibition Rate of 

Tumor (%) 

Control - 12.3 ± 1.35 0.45 ± 0.04 5.81 ± 1.35 - 

5-FU 50 8.32 ± 1.35 0.32 ± 0.23 4.62 ± 1.24 21 

5-FU + MFE 
50 + 100 12.5 ± 0.65 * 0.43 ± 0.20 4.26 ± 0.65 29 

50 + 300 14.2 ± 0.95 * 0.52 ± 0.08 * 3.75 ± 0.95 42 

The values are presented as mean ± S.D. * p < 0.05, significantly different from the 5-FU-only group.  

5-FU: 5-fluorouracil. 

Figure 4. Cont. 
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Figure 4. Effect of MFE on cellular and humoral immune response in a mouse xenograft 

model. (A) Changes of tumor volume in the tumor xenograft mice. The values are presented 

as mean ± S.D. * p < 0.05 significantly different from the 5-FU group; (B) Splenocyte 

proliferation. The values are presented as mean ± S.D. * p < 0.05, ** p < 0.01 significantly 

different from the control group; (C) NK cells and (D) CTL activity were measured by the 

MTT assay. The values are presented as mean ± S.D. * p < 0.05, ** p < 0.01 significantly 

different from the control group; (E) Contents of IFN-γ in the culture supernatants were 

determined by ELISA. The values are presented as mean ± S.D. * p < 0.05 significantly 

different from the control group and (F) Serum antigen-specific IgG, IgG1, and IgG2a 

antibodies were measured by ELISA. The values are presented as mean ± S.D. * p < 0.05, 

** p < 0.01 significantly different from the control group. 5-FU: 5-fluorouracil; NK: 

natural killer; CTL: cytotoxic T lymphocyte. 

Leukocyte counts of mice treated with 5-FU group were decreased significantly, while counts 

increased significantly in mice treated with 5-FU + MFE (Table 2). 5-FU, as an immune suppressor, 

significantly decreased spleen weight 29% more of than that of the control group. However, high doses 

of MFE significantly increased the spleen weight as compared to 5-FU groups (p < 0.05). MFE 

alleviated the loss of spleen weight induced by 5-FU (Table 2). Additionally, the stimulating effect on 

proliferation by MFE was determined using a splenocyte in the tumor xenograft mice (Figure 4B). LPS 

stimulates B cell proliferation and Concanavalin A (ConA) stimulates T cell proliferation. MFE could 

significantly enhance ConA- and LPS-induced splenocyte proliferation in the tumor xenograft mice  

(p < 0.05 and p < 0.01, respectively). However, the 5-FU group did not display an increase that  

was significant compared to the control group. These results suggested that MFE might be related to 

stimulation of T cells and B cells, also humoral and cell-mediated immunity in the tumor xenograft 

mice. Tumor cell elimination is mediated in part by the cytotoxic activity of NK cells and CTL. 

However, 5-FU + MFE significantly increased the NK cells and CTL activity in the tumor xenograft 

mice (p < 0.05 and p < 0.01, respectively). The effect of MFE on the production of interferon-γ (IFN-γ) 

in ConA-stimulated splenocytes was measured (Figure 4E). The production of IFN-γ was dramatically 

increased by MFE (p < 0.05). The effect of MFE on humoral immunity was investigated by total IgG 

and IgG subclasses (IgG1 and IgG2a) in serum. MFE did not affect IgG and IgG1 antibody levels. On 



Int. J. Mol. Sci. 2015, 16 24149 

 

 

the other hand, IgG2a antibody levels were significantly enhanced by treatment with MFE in the tumor 

xenograft mice (Figure 4F). 

3. Discussion 

TLRs are existent in various cell and tissues. Above all, the role of TLRs is important in 

macrophage and dendritic cells. TLRs make an important link between the innate and adaptive 

immune systems because their activation leads to the expression of co-stimulatory molecules of 

immune cells, which convert them into defective antigen presenting cells. The TLR families are made 

up of thirteen different TLR molecules which differ in the microbial structures they recognize. TLRs 

are preferentially expressed on phagocytes, dendritic cells, and epithelial cells at sites at which bacteria 

enter into the host. The binding of microbial components to the TLRs effectively acts as a signal to 

increase immune stimulation and allows them to activate T and B lymphocytes [19,20]. 

The binding of LPS to TLR4 is a critical event in immune activation [21]. MFE and LPS have  

a similar chemical structure, and they share the same pathways for TLR4 signaling. 

M. alba fruit is enriched in anthocyanins [9], alkaloids [10], flavonoids [11,12], and some 

polysaccharides [13,22–24]. Potential synergy effects occur in plants or healthy foods due to the 

complex mixture of various phytochemicals [25]. Therefore, these studies were performed using 

extracts instead of individual compounds to understand the beneficial effects of M. alba fruit extract, 

specifically the mechanisms of its immune-stimulatory effects and cytotoxicity against cancer through 

immune responses. 

MFE was associated with the release of immune-stimulating cytokines like TNF-α and NO in  

a dose-dependent manner in macrophages. The blocking of TLR4 antibodies significantly inhibited 

MFE-induced NO production and TNF-α secretion. Moreover, MFE-induced NO production was 

attenuated by gene knockdown of TLR4. Therefore, immune activity by MFE may occur through 

activation of the TLR4 signaling pathway. 

The TLR4 signal can use both MyD88 and TRIF pathways in response to gram-negative 

endotoxins. Why TLR4 signaling uses both of these pathways is unclear [26]. The two different 

pathways of TLR result in two types of adaptors. The MyD88 pathways induced early phase activation 

of NF-κB through the interleukin-1 receptor-associated kinase (IRAK), and the IRAK proteins 

interacted with and activated TNF receptor-associated factor-6 (TRAF6). TRAF6 promotes 

ubiquitination of downstream signaling mileculesm and activates TGF-β activated kinase 1 (TAK1), 

which in turn initiates the MAPK and NF-κB. The TRIF pathway requires the TRIF-associated 

molecule (TRAM) and results in both NF-κB activation and interferon regulatory factor  

(IRF)-7-dependent synthesis of type I interferon (IFN). MFE-induced TNF-α, IL-12 and IFN-β 

production were analyzed to investigate the role of both pathways. Knock-down of MyD88 

substantially inhibited MFE-induced TNF-α and IL-12 production. Knock-down of TRIF sensitively 

inhibited MFE-induced IFN-β production. Our results indicate that MFE led to activation of both 

MyD88-dependent and TRIF-dependent signaling pathways of TLRs. The NF-κB signaling pathway is 

activated following clustering of the TLRs. NF-κB generally regulates various types of inducible 

transcriptional promoting in macrophages [27]. NF-κB is presented in the cytoplasm via interaction 

with the inhibitory protein IκB [28]. Expression of this protein demonstrated that MFE increased  
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the level of NF-κB in macrophages. MFE stimulated NF-κB nuclear activation and IκBα degradation 

in cytoplasm. Therefore, MFE induced macrophage activation through the NF-κB signaling pathway. 

The NF-κB and MAPK pathways were mostly important in macrophage activation by MFE. MAPK 

pathways are activated by cytokines and a variety of cellular activities [29,30]. MFE increased  

the phosphorylation of ERK, JNK, and p38 in a time- and dose-dependent manner. MAPK inhibitors 

and PDTC pretreatment inhibited MAPK and NF-κB signaling, which led to the inhibition of  

the production of NO and TNF-α. These results suggest that MFE-mediated macrophage activation 

largely depends on MAPK and NF-κB signaling. Taken together, the results demonstrate that MFE can 

be a macrophage activator and immune-stimulator through the TLR4 signaling pathway. 

There were observed enhanced anti-tumor effects in the tumor xenograft mice. The cytotoxicity of 

MFE against tumor cells was not direct, but indirect through the activation of macrophages. These 

results show that the enhanced tumoricidal effect of MFE was mediated macrophage activation. 

5-FU is considered the standard drug for the treatment of colon cancer [31]. The pyrimidine  

anti-metabolite of 5-FU is a chemotherapeutic agent used for various types of solid cancers, alone or in 

combination with an adjuvant such as leucovorin (LV) [32]. The 5-FU group induced a significant 

decrease in leucocyte counts in the tumor xenograft mice. Whereas, the MFE treatment complemented 

the immune suppression induced by 5-FU. 

MFE significantly increased the proliferation of ConA and LPS stimulated splenocyte in the tumor 

xenograft mice. The results indicate that MFE might initiate a potential activation of T and B 

lymphocytes and enhance the humoral and cell-mediated immunity in tumor xenograft mice. 

When tumor cells invade healthy tissue, the immune system can counterattack [18]. The immune 

system plays an important role in the fight against cancer. Many reported studies have shown that 

tumoricidal effects of natural products are mediated by the activation of the immune response.  

The basis of cancer immunotherapy is to boost the body’s natural immune defenses against the tumors. 

Recently the antitumor activity of natural products through the immune response has been focused on 

developing chemotherapeutic agents [33]. The host contains a population of naturally occurring 

lymphocyte-like cells that are cytotoxic to tumor cells. NK lymphocytes are considered important 

players at inhibiting tumors [34]. NK cells do not need to recognize antigens on the immune cells. 

Whereas, CTL was promoted because it recognizes antigens in the surface of immune cells [35,36]. 

MFE significantly increased the NK cells and CTL activities in the tumor xenograft mice, suggesting 

that MFE could enhance specific and non-specific cytotoxicity against tumor cells. 

Macrophages, NK cells and even NK T cells themselves can produce IFN-γ during the innate 

immune response and exhibit immune stimulatory properties and anti-tumor activities that can inhibit 

cancer cell proliferation and tumor angiogenesis [37,38]. The increase in the levels of IFN-γ secretion 

from splenocytes in MFE treated mice could explain the antitumor properties of MFE. 

Th1 T cells provide both IFN-γ for macrophage activation and B cell help to produce IgG 

subclasses for the opsonization of pathogens. MFE promoted an immune response involving the Th1 

type response in the tumor xenograft mice, a response that is related to the significant increase of 

IgG2a levels. Further studies are necessary to confirm whether MFE could stimulate the humoral 

immune response caused by the model system using TLR4 knockout mice [39]. 
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4. Experimental Section 

4.1. Chemical and Reagents 

Dulbecco’s Modified Eagle’s medium (DMEM), Roswell Park Memorial Institute medium 1640 

(RPMI) and fetal bovine serum (FBS) were obtained from GIBCO (Grand Island, NY, USA). A nitric 

oxide (NO) detection kit was obtained from INTRON Biotechnology (Sungnam, Korea). Trizol was 

obtained from Invitrogen (Carlsbad, CA, USA). Interleukin (IL)-12, interferon-γ (IFN-γ) and tumor 

necrosis factor-α (TNF-α) were obtained from R&D Systems (Minneapolis, MN, USA). A PCR 

relative kit, small interfering siRNA and primer were obtained from Applied Biosystems  

(Franklin Lakes, NJ, USA). Penicillin, streptomycin, neutral red, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT), lipopolysaccharide (LPS), cholera toxin (CT), and all other 

chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA). 

4.2. Cell Culture and Animal Care 

RAW264.7 (TIB-71) and CT26 (CRL-2638) were obtained from the American Type Culture 

Collection (Manassas, VA, USA). Cells were grown in DMEM or RPMI medium supplemented with 

10% heat-inactivated FBS, 100 U/mL of penicillin, and 100 μg/mL of streptomycin. Cells were grown at  

37 °C in a humidified 5% CO2 incubator. Mice were housed in specific pathogen-free (SPF) conditions 

at 21 to 24 °C and between 40% and 60% relative humidity with a 12 h light-dark cycle. All animals 

were acclimatized for at least 1 week prior to the start of experiments. All studies were performed in 

accordance with the guide for animal experimentation by Wonkwang University and approved by the 

university’s institutional animal care and use committee (Approval No. WKU11-43). 

4.3. Extract of Morus alba Fruits 

Dried M. alba fruits were purchased from a local herbal market in Jeonbuk, Korea. The fruits were 

pulverized into powder and extracted twice with hot water (70 °C) for 3 h. The solvent was removed 

under reduced pressure in a RV10 rotary evaporator (IKA, Staufen, Germany) to yield M. alba fruit 

hot water extract (MFE; 59.3%, w/w). The extract was dried to a powder and kept in a closed container  

until use. To avoid variations in activity for different preparations, enough extract was obtained  

in one batch for use throughout the experiment. The content of the marker pyrrole alkaloid,  

2-formyl-5-(methoxymethyl)-1-H-pyrrole-1-butanoic acid in MFE was quantitated using high 

performance liquid chromatography (HPLC). 

4.4. HPLC Estimation of Pyrrole Alkaloid 

For HPLC analysis, MFE was dissolved in HPLC grade methanol to obtain a 5 mg/mL 

concentration, and filtered through a 0.45 μm syringe filter. These solutions were further  

used for HPLC analysis. Reference standard pyrrole alkaloid was prepared as 0.1 mg/mL of  

2-formyl-5-(methoxymethyl)-1-H-pyrrole-1-butanoic acid in 1 mL of HPLC grade methanol. HPLC 

analysis was performed as described previously. The HPLC system consisted of a model 515 pump 

and model 717 autosampler (Waters, Beverly, MA, USA). Reverse phase separation was performed at 
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room temperature using Gemini-NX (5 μm, 10.0 mm × 150.0 mm; Phenomenex, Torrance, CA, USA). 

The mobile phase consisted of 60% water containing 0.5% H3PO4 and 40% acetonitrile. The flow rate 

was kept at 1 mL/min and the peak was detected at 300 nm. The marker compound was identified by 

comparing the UV spectrum and retention time. The estimation of pyrrole alkaloid content in aqueous 

extracts with the marker compound pyrrole alkaloids 2-formyl-5-(methoxymethyl)-1-H-pyrrole-1-

butanoic acid was performed for standardization (Figure 5). 

 

Figure 5. HPLC analysis of Morus alba L. fruits and the chemical structure of  

pyrrole alkaloid. 

4.5. Proliferation Assay 

Cell proliferation was evaluated by the MTT assay. Cells (2 × 105/well) were incubated with LPS, 

Concanavalin A (ConA), or MFE (10–100 μg/mL) in wells of a 96-well plate. MTT was added to each 

well to a final concentration of 1 mg/mL. During incubation for 3 h, formazan crystals were formed  

by the action of mitochondrial enzymes in viable cells. The crystals were solubilized in dimethyl 

sulfoxide. The absorbance was measured at 590 nm using a microplate reader (Molecular Devices, 

Sunnyvale, CA, USA). 

4.6. NO and Cytokine Assays 

Cells (2 × 105/well) were incubated with LPS or MFE (10–100 μg/mL) in 96-wells plate. After 24 h 

the plate was centrifuged at 3000 rpm for 5 min, and the supernatants were collected for the detection 

of TNF-α and IFN-γ levels using commercial ELISA kits. Nitrite accumulation in the culture medium 

as an indicator of NO production was determined using a Griess reaction kit. 

4.7. Antibody Inhibition Experiments 

Peritoneal macrophages were plated into wells of 96-well culture plates and pre-treated with 

monoclonal antibody (mAb) to TLR2, TLR4, TLR6, SB203580, or pyrrolidinedithiocarbamate 

(PDTC) for 2 h. MFE was added and incubated for 24 h. TNF-α in culture supernatants was analyzed 

by an ELISA kit according to the manufacturers’ directions (R&D Systems, Minneapolis, MN, USA). 
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4.8. siRNA Preparation and Transfection 

siRNA duplexes with the following gene-specific sense sequences were used: TLR2 (Mm. 87596), 

TLR4 (Mm. 38049), MyD88 (Mm. 213003), and toll/IL-1 receptor domain-containing adaptor 

inducing IFN-β (TRIF; Mm. 149280). Each sequence along with 100 nM of the specific siRNA was 

transfected into RAW 264.7 cells using Lipofectamin 2000 (Invitrogen, Carlsbad, CA, USA) 

according to the manufacturer’s protocol. Cells were incubated at 37 °C in a CO2 incubator for 24 h for 

gene knockdown. 

4.9. Western Blots 

Total cellular protein (50 μg) was resolved by polyacrylamide gels containing 10% sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to nitrocellulose membranes. 

After blocking, the membranes were incubated with the target antibody. Horseradish peroxidase 

secondary antibody conjugated to IgG was used. The blots were probed using the ECL Western blot 

detection system (GE healthcare, Maple Grove, MN, USA) as instructed by the manufacturer. 

4.10. Macrophage-Mediated Cytotoxicity 

Macrophages (effector cells; 1 × 105 cells/well) were plated into a 96-wells plate and incubated with 

various MFE concentrations for 18 h at 37 °C in a 5% CO2 incubator. The effector cells were washed 

with RPMI-FBS to remove the MFE and co-incubated with the CT26 (target cells; 1 × 104 cells/wells). 

MTT solution (1 mg/mL) was added to each well and the plate was incubated for another 4 h prior to 

the MTT assay. The cytotoxicity was expressed follows (Equation (1)) [40]: 

sample sample

blank

O.D. of (Target  cell + effector cell) O.D. of (only effector cell)
1 100

O.D. of (only Target cell)

−
− ×  (1)

4.11. Treatment and Drug Administration 

Female balb/c mice (n = 40) were shaved on their right flank and given a subcutaneous injection of  

2 × 105 CT26 cells to induce tumor formation. Control mice did not receive treatment. Cancer cells 

were allowed to grow into visible masses for 10 days, after which animals were divided into four 

groups of 10 mice each: the normal group (no treatment and no cancer), the control group (cancer),  

the 5-FU-treated group (50 mg/kg) and the 5-FU + MFE treated group (100, 300 mg/kg). The daily 

MFE administration of the mice in our study, 100 and 300 mg/kg body weight, was equivalent to  

an administration of approximately 8.1 and 24.3 mg/kg human body weight respectively, when 

calculated on the basis of normalization to body surface area under the recommendations of the USA 

Food and Drug Administration and Reagan-Shaw et al. [41]. 5-FU treatment was administered by one 

intraperitoneal injection and MFE was orally administered daily for 3 weeks. Animals were sacrificed 

after the end of the experiment. The tumor and visceral organ weights were excised and measured. 
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4.12. Evaluation of Tumor Volume, Leukocyte Count, Tumor Weight, and Organ Weight 

Body weight of each mouse was determined every day by a single observer. Tumor growth was 

monitored every 2 days by measuring two perpendicular tumor diameters with a caliper. Tumor volume (v) 

was calculated as: v = [(A − B)/A] × 100%, with A and B being the smallest and largest superficial 

diameter, respectively. Animals were sacrificed 21 days after inoculation. After the mice were 

sacrificed the tumor, organ weights, and leucocyte level were measured. 

4.13. Assay of NK Cells and CTL Activity 

NK cells and CTL activities were measured as described in the previous study [42]. Splenocytes were 

collected from the tumor xenograft mice as the effector cells, and were added at 1 × 106 cells/well. 

K562 cells (NK target) and CT26 cells (CTL target) were seeded in a 96-well, flat bottom microtiter 

plate at 2 × 104 cells/well to give an E/T ratio 50:1 in RPMI 1640 complete medium. The plate was 

incubated for 24 h at 37 °C in a 5% CO2 atmosphere. MTT solution was added to each well and the 

plate was incubated for another 4 h and subjected to the MTT assay. The percentage of target cells 

killed (% lysis) was calculated as Equation (2): 

T S E

T

O.D. (O.D. O.D. )
100

O.D.

− − ×   (2)

where O.D.T is the optical density value of target cells control, O.D.S is the optical density value of test 

samples, and O.D.E is the optical density value of effector cells control. 

4.14. Measurement of Antigen-Specific Antibody 

Antigen-specific IgG, IgG1, and IgG2a antibody in serum were detected by an indirect ELISA as 

described in the previous study [43]. The absorbance value was measured with an ELISA reader at 490 nm. 

Data were expressed as the mean absorbance of the samples minus the mean absorbance of the  

normal control. 

4.15. Statistical Analysis 

The data were expressed as mean ± SD and were examined for their statistical significance of 

difference with analysis of variance and Student’s t-test. A p-value <0.05 was considered to be 

statistically significant. 

5. Conclusions 

MFE stimulated the production of cytokines via TLR4 and the tumoricidal activity of macrophages. 

Macrophage activation was induced through TLR4-mediated NF-κB and MAPK signaling pathways, 

which initiated the release of cytokines like TNF-α and IL-12 and effector molecules like NO. MFE 

not only significantly inhibited the growth of colon cancer cells, but markedly increased spleen weight, 

splenocyte proliferation, activity of NK cells and CTL activity, the level of IFN-γ, and serum  

antigen-specific antibody levels in xenograft mice. All these results indicate the possibility that  

MFE may be able to improve both specific and nonspecific cellular and humoral immune response  
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(Figure 6). Thus, MFE is implicated in the defense against cancer by enhancing immune system 

function through TLR4 signaling-mediated activation of cytokines and immune cells. Morus alba L. 

fruits should be further explored as a potential anti-tumor immunomodulatory agent. 

 

Figure 6. Summary of the effects of Morus alba L. fruit extract against cancer. 
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