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Abstract: Maternal dietary modifications determine the susceptibility to metabolic diseases 

in adult life. However, whether maternal high-fat feeding can modulate glucose and lipid 

metabolism in the early life of offspring is less understood. Furthermore, we explored the 

underlying mechanisms that influence the phenotype. Using C57BL/6J mice, we examined 

the effects on the offspring at weaning from dams fed with a high-fat diet or normal chow 

diet throughout pregnancy and lactation. Gene array experiments and quantitative real-time 

PCR were performed in the liver tissues of the offspring mice. The offspring of the dams fed 

the high-fat diet had a heavier body weight, impaired glucose tolerance, decreased insulin 

sensitivity, increased serum cholesterol and hepatic steatosis at weaning. Bioinformatic 

analyses indicated that all differentially expressed genes of the offspring between the two 

groups were mapped to nine pathways. Genes in the peroxisome proliferator-activated 

receptor (PPAR) signaling pathway were verified by quantitative real-time PCR and these 

genes were significantly up-regulated in the high-fat diet offspring. A maternal high-fat diet 

during pregnancy and lactation can modulate hepatic glucose, lipid homeostasis, and gene 

expression in the PPAR signaling in the early life of offspring, and our results suggested that 

potential mechanisms that influences this phenotype may be related partially to up-regulate 

some gene expression in the PPAR signalling pathway. 
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1. Introduction 

Maternal nutrition has historically been a key determinant for offspring health, and gestation is the 

critical time window that can affect the growth and development of offspring. The developmental 

origins of health and disease (DOHaD) hypothesis proposes that exposures during early life play a 

critical role in determining the risk of developing metabolic diseases in adulthood [1]. Currently, there 

are substantial epidemiological studies and experimental animal models that have demonstrated 

nutritional disturbances during the critical periods of early life development can significantly impact the 

predisposition to developing adverse health outcomes in later life [2–5]. 

It has been widely accepted that undernutrition during early life increases the risk for intrauterine 

growth restriction and metabolic disease in adult life [6]. The incidence of obesity during pregnancy and 

gestational diabetes mellitus have recently been rapidly escalating, and the global prevalence of 

hyperglycaemia in pregnant women (20–49 years) is 16.9% [7]. Therefore, an increased number of 

studies have focused on maternal overnutrition during pregnancy; these studies indicated a maternal 

high fat diet can contribute to obesity, impaired glucose tolerance and dyslipidemia in offspring [8]. 

However, most feeding studies have utilized animal models that examined long-term paradigms.  

For example, a maternal high-fat diet is provided before pregnancy and during gestation and lactation 

periods, and the offspring are continuously fed a high-fat diet from young adulthood (post-weaning) to 

various durations that range from 8 to 36 weeks [3,9–11]. As a consequence, these studies were confined 

to long-term modifications in the maternal and offspring’s diets. Thus, the phenotype would be 

interfered by providing the offspring with a high-fat diet post weaning. Moreover, the consumption of a 

high-fat diet only during pregnancy and suckling is very common in humans. This issue is particularly 

important in light of the increasingly greater consumption of refined foods and the concerns regarding 

the critical periods of gestation and the suckling period. 

However, whether maternal high-fat feeding can impact glucose and lipid metabolism during the 

early life of offspring is not well understood. We hypothesized that a maternal high-fat diet only during 

pregnancy and lactation may contribute to the development of obesity and the metabolic syndrome in the 

early life of the offspring at weaning. Furthermore, the mechanistic link between the maternal high-fat 

diet and the metabolic diseases of their offspring is not completely understood. Therefore, we explored 

the underlying mechanisms that influence the phenotype without the interference of the maternal diet 

condition before pregnancy or the offspring’s diet condition post weaning. 
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2. Results 

2.1. Offspring of the Dams Fed a High-Fat Diet Had a Lower Birth Weight and a Heavier Body Weight 

at Weaning 

The offspring of the dams fed a high-fat diet had a lower birth weight (p < 0.05, Figure 1A). However, 

after three weeks, the offspring had a higher body weight compared with the normal chow diet group at 

weaning (p < 0.05, Figure 1B). During this period, the calorie intake of the dams was not significantly 

different between the high-fat diet and normal chow diet groups. 

Figure 1. Birth weight and body weight at weaning in the offspring from the high-fat diet 

and normal chow diet groups. (A) Birth weight; and (B) body weight. Data represented as 

the mean ± standard deviation (S.D.) (n = 16, per group, 8 male and 8 female). * p < 0.05 vs. 

the normal chow diet group. HFD, high-fat diet; NCD, normal chow diet. 

 

2.2. Offspring of the Dams Fed a High-Fat Diet Exhibited Impaired Glucose Tolerance and Decreased 

Insulin Sensitivity 

The blood glucose levels of the offspring of the dams fed a high-fat diet at weaning were significantly 

higher at 30 min (p < 0.001) and 60 min (p < 0.01) after intraperitoneal glucose administration  

(Figure 2A). Furthermore, as shown in Figure 2B, the area under the curve (AUC) was significantly 

larger for the high-fat diet group (p < 0.001, Figure 2C). To determine whether the high-fat diet reduced 

insulin sensitivity in the offspring, the levels of serum insulin were determined. There was no significant 

difference between the two groups (Figure 2D). However, the homeostasis model assessment of insulin 

resistance (HOMA-IR) was significantly higher in the high-fat diet offspring (p < 0.05, Figure 3B). 

2.3. Offspring of the Dams Fed a High-Fat Diet Modulated Lipid Homeostasis 

We determined that the total cholesterol was significantly elevated in the offspring of the dams fed  

a high-fat diet during pregnancy and lactation (p < 0.001, Figure 3A). However, no significant difference 

was detected of the serum triacylglycerol between the two groups (Figure 3B). However, there was no 

significant difference between HFD (high-fat diet) and NCD (normal chow diet) groups in female 

offspring (Table 1). Histological examination of the liver showed that the offspring of the dams fed a 

normal chow diet had normal liver structure at weaning (Figure 3C). However, we only observed lipid 

vacuoles of various sizes within the hepatocytes of the male offspring of the dams fed a high-fat diet at 

weaning (Figure 3D). 
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Figure 2. Glucose metabolism parameters of the offspring at weaning in the high-fat  

diet and normal chow diet groups. (A) IPGTT; (B) AUC; (C) Serum insulin levels;  

(D) HOMA-IR. Data represented as the mean ± S.D. (n =16, per group, 8 male and  

8 female). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the normal chow diet group. HFD, 

high-fat diet; NCD, normal chow diet; IPGTT, intraperitoneal glucose tolerance test; AUC, 

area under the curve; HOMA-IR, the homeostasis model assessment of insulin resistance. 

 

Figure 3. Lipid metabolism parameters of the offspring at weaning in the high-fat diet and 

normal chow diet groups. (A) Serum triacyglycerol and (B) total cholesterol; (C) Liver histology 

of haematoxylin and eosin staining in the offspring from the dams fed a normal chow diet 

had normal liver structure; (D) Lipid vacuoles (red arrow) of various sizes were observed 

within the hepatocytes of the offspring from the dams fed a high-fat diet. Original magnification, 

40×. Data represented as the mean ± S.D. (n =16, per group, 8 male and 8 female).  

*** p < 0.001 vs. the normal chow diet group. HFD, high-fat diet; NCD, normal chow diet. 
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2.4. The Comparison of Biochemical Parameters of the Male and Female Offspring at Weaning 

Furthermore, the metabolic parameters of the male and female offspring at weaning were compared 

between the high-fat diet and normal chow diet groups. It is indicated that body weight, AUC of 

intraperitoneal glucose tolerance test (IPGTT) and serum total cholesterol were significantly higher in 

male offspring of HFD group than NCD group. However, there was no significant difference between 

HFD and NCD groups in female offspring of these metabolic parameters (Table 1). 

Table 1. The comparison of biochemical parameters of the male and female offspring at 

weaning in the high-fat diet and normal chow diet groups. Data represented as the mean ± S.D. 

(n = 8 per group of male and female). * p < 0.05, ** p < 0.01, *** p < 0.001 vs. the normal 

chow diet group. 

Biochemical Parameters 
Male Female 

NCD HFD p Value NCD  HFD  p Value 

FBG (mmol/L) 3.89 ± 1.56 5.19 ± 3.17 0.21 3.54 ± 1.72 4.89 ± 2.96 0.18 

Body weight (g) 8.74 ± 1.14 9.73 ± 0.79 0.038 * 8.79 ± 1.42 9.33 ± 0.53 0.32 

AUC of IPGTT (mmol/L·h) 8.08 ± 1.49 16.45 ± 5.95 0.0016 ** 10.24 ± 2.69 12.97 ± 4.03 0.12 

Serum insulin (µU/mL) 0.56 ± 0.37 0.37 ± 0.20 0.55 0.69 ± 0.19 0.51 ± 0.25 0.35 

Triglyceride (mmol/L) 1.11 ± 0.43 0.83 ± 0.19 0.15 1.10 ± 0.71 0.62 ± 0.18 0.11 

Total cholesterol (µg/uL) 1.24 ± 0.12 1.77 ± 0.21 <0.0001 *** 1.12 ± 0.17 1.22 ± 0.13 0.054 

2.5. Maternal High-Fat Diet Regulated Gene Expression in the Male Offspring 

The differentially expressed genes between the offspring at weaning were identified. There were 380 

differentially expressed genes identified in the liver tissues between the two groups. One hundred and 

four genes (27.4%) were expressed at increased levels, whereas 276 genes (72.6%) were down-regulated 

in the high-fat diet group. Hierarchical clustering based on the similarity in gene expression using all 

differentially expressed genes highlighted the difference in the transcriptional profiles between the 

high-fat diet and normal chow diet groups (Figure 4A). The WebGestalt analysis of all differentially 

expressed genes in the high-fat diet group yielded 19 GO (Gene ontology)-categories (Table 2). The 

WebGestalt annotation tool was used for the identification of the putative KEGG (Kyoto Encyclopedia 

of Genes and Genomes) pathways. The genes were mapped to nine pathways (p < 0.05, Table 3). 

The most common type of enriched pathway was related to the “Cell cycle” (p = 0.0001). The second 

and third most abundant pathways were related to the “Biosynthesis of unsaturated fatty acids”  

(p = 0.0044) and the “peroxisome proliferator-activated receptor (PPAR) signaling pathway” (p = 0.0125), 

respectively. The other pathways included the “Cytokine–cytokine receptor interaction” (p = 0.0232), 

“Glutathione metabolism” (p = 0.0232), “Inositol phosphate metabolism” (p = 0.0232), “Adipocytokine 

signaling pathway” (p = 0.0311), “Nitrogen metabolism” (p = 0.0311), and “Phosphatidylinositol 

signaling system” (p = 0.0369). In particular, we focused on the “PPAR signaling pathway” because 

PPARs have emerged as central regulators of glucose and lipid homeostasis. Four genes in this pathway, 

including Cd36, Aqp7 (aquaporin 7), Cpt1b (carnitine palmitoyltransferase 1b), and Fabp2 (fatty acid 

binding protein 2), were significantly differentially expressed on the gene array. The expression ratios 

are presented as the log2 (fold change) (Figure 4B). All four genes were up-regulated in this pathway. 
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Figure 4. Gene array data analysis of the offspring between the high-fat diet and normal 

chow diet groups. (A) Heatmap diagram: this diagram illustrates the differential expression 

of hepatic mRNAs in the high-fat diet (n = 3) compared with the normal chow diet offspring 

(n = 3). The tree was based on the log2 transformation of the normalised probe signal 

intensity using hierarchical clustering. The hierarchical clustering was based on 380 differentially 

expressed mRNAs; the expression levels were differentially expressed in the high-fat diet 

group, with red representing increased expression and green representing decreased expression; 

(B) The Volcano Plot graphs: this graph shows the log2 of the fold change in each gene’s 

expression between the two group and its p value from the t-test. The blue lines indicate that 

the fold change in the gene expression threshold is 2. The pink line indicates that the p value 

of the t-test threshold is 0.05. There were four genes, which showed significantly different 

expression between the two groups, in the peroxisome proliferator-activated receptor (PPAR) 

signaling pathway. Aqp7, aquaporin 7; Cpt1b, carnitine palmitoyltransferase 1b; Fabp2, 

fatty acid binding protein 2; HFD, high-fat diet; NCD, normal chow diet. 

 
(A) (B) 

2.6. Hepatic Gene Expression for the Validation of Array Analysis 

We used qRT-PCR assays to verify some genes identified from our array results. Cd36, Aqp7, Cpt1b, 

and Fabp2 were selected for verification because of their true positive expression differences in the 

“PPAR signaling pathway” between the two groups, which is an essential pathway of glucose and lipid 

metabolism. All of them were significantly up-regulated in the high-fat diet group. A strong consistency 

between the array and qRT-PCR results was observed for all four genes, which indicated the reliability 

of our array assays. Furthermore, we examined expression of the PPAR isoforms alpha, gamma and 

delta, which may likely to explain the regulation of the PPAR pathway genes that we found.  

It is indicated that PPAR alpha and gamma increased significantly in the HFD group (p = 0.038 and  

p = 0.012, respectively. However, the expression of PPAR delta is very low, which even cannot be 

detected in some samples (Table 4). 
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Table 2. Gene ontology (GO) groups with differentially expressed genes in the high-fat diet offspring (p < 0.05). 

GO Classification GO Term GO ID C O E R Rawp Adjp 

Biological process Response to pheromone  GO:0019236 101 9 1.3 6.93 6.37 × 10−6 0.0075
Biological process G-protein coupled receptor signaling pathway GO:0007186 2041 48 26.26 1.83 3.32 × 10−5 0.0196
Biological process Response to chemical stimulus  GO:0042221 2194 49 28.23 1.74 9.92 × 10−5 0.0391
Biological process  Response to organic substance  GO:0010033 1538 37 19.79 1.87 0.0002 0.0394
Biological process Response to stimulus  GO:0050896 7009 119 90.19 1.32 0.0002 0.0394
Biological process Very long-chain fatty acid metabolic process GO:0000038 24 4 0.31 12.95 0.0002 0.0394
Biological process Regulation of mRNA processing  GO:0050684 46 5 0.59 8.45 0.0003 0.0443
Molecular function Signal transducer activity  GO:0004871 2351 56 29.57 1.89 2.10 × 10−6 0.0001
Molecular function Molecular transducer activity  GO:0060089 2351 56 29.57 1.89 2.10 × 10−6 0.0001
Molecular function Pheromone binding  GO:0005550 91 9 1.14 7.86 2.22 × 10−6 0.0001
Molecular function Pheromone receptor activity  GO:0016503 99 9 1.25 7.23 4.49 × 10−6 0.0001
Molecular function Signaling receptor activity  GO:0038023 2127 52 26.76 1.94 2.47 × 10−6 0.0001
Molecular function Transmembrane signaling receptor activity  GO:0004888 2039 49 25.65 1.91 8.11 × 10−6 0.0002
Molecular function G-protein coupled receptor activity  GO:0004930 1612 37 20.28 1.82 0.0003 0.0063
Molecular function Glutathione transferase activity  GO:0004364 26 4 0.33 12.23 0.0003 0.0063
Molecular function Palmitoyl-CoA hydrolase activity  GO:0016290 15 3 0.19 15.9 0.0008 0.0153
Molecular function Acyl-CoA hydrolase activity  GO:0047617 19 3 0.24 12.55 0.0016 0.0283
Molecular function CoA hydrolase activity  GO:0016289 22 3 0.28 10.84 0.0025 0.0411
Molecular function Carboxylesterase activity  GO:0004091 48 4 0.6 6.62 0.0031 0.0475

C, the number of reference genes in the category; O, the number of genes in the gene set and category; E, the expected number in the category; R, ratio of enrichment;  

Rawp, p value from the hypergeometric test; Adjp, p value adjusted by the multiple test adjustment. 
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Table 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with differentially expressed genes in the high-fat diet offspring  

(fold change > 2.0, p < 0.05). 

KEGG ID Pathway Name Gene Symbol C O E R Rawp Adjp 

04110 Cell cycle 
Cdkn1a, Ccnb1, Mad2l1, Ccnb2, Gm5593, 

Wee1, LOC100045924 
127 7 0.8 8.74 2 × 10−5 0.0003

01040 Biosynthesis of unsaturated fatty acids Acot4, Acot3, Acot2 25 3 0.16 19.02 0.0005 0.0044
03320 PPAR signaling pathway Aqp7, Fabp2, Cpt1b, Cd36 80 4 0.5 7.93 0.0017 0.0125
04060 Cytokine-cytokine receptor interaction Il6ra, Il1r1, Il1r1, Cxcl13, Ccl20, Il22ra1 245 6 1.55 3.88 0.0049 0.0232
00480 Glutathione metabolism Gsta2, Gsta1, Mgst3 54 3 0.34 8.81 0.0049 0.0232
00562 Inositol phosphate metabolism Pten, Pik3c2g, Inpp4a 57 3 0.36 8.34 0.0057 0.0232
04920 Adipocytokine signaling pathway Cpt1b, Ppargc1a, Cd36 68 3 0.43 6.99 0.0092 0.0311
04070 Phosphatidylinositol signaling system Pten, Pik3c2g, Inpp4a 78 3 0.49 6.1 0.0134 0.0369

C, the number of reference genes in the category; O, the number of genes in the gene set and also in the category; E, the expected number in the category; R, ratio of 

enrichment; Rawp, p value from the hypergeometric test; Adjp, p value adjusted by the multiple test adjustment. 

Table 4. Fold change of gene expression measured by gene array and qRT-PCR. Aqp7, aquaporin 7; Cpt1b, carnitine palmitoyltransferase 1b; 

Fabp2, fatty acid binding protein 2. 

Gene Symbol Fold Change (Gene Array) p Value (Gene Array) Fold Change (qRT-PCR) p Value (qRT-PCR)

Cd36 4.674 1.8048 × 10−6 4.9 ± 0.12 <0.0001 
Aqp7 4.104 0.0001288 3.8 ± 0.27 0.0044 
Cpt1b 3.705 0.03375443 3.7 ± 0.05 0.0292 
Fabp2 2.302 0.00010463 2.5 ± 0.18 0.0002 
PPARα 1.318 0.04499 1.32 ± 0.21 0.038 
PPARγ 1.562 0.0041 1.61 ± 0.18 0.012 
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3. Discussion 

The nutrition during several critical periods of early life, such as gestation and/or lactation,  

has significant influences on development and growth. Furthermore, maternal nutrition modification 

during pregnancy and/or lactation has been shown to influence health in the adult life of offspring,  

which can alter their responses to environmental challenges, and thus increase their predisposition to 

disease [12,13]. In the present study, we examined in a mouse model the consequences to the offspring 

of a maternal high-fat dietary regimen limited to the pregnancy and lactation periods. The findings 

indicate that short term maternal HF feeding can contribute to changes in the early life of the offspring’s 

physiology, including a lower birth weight, increased body weight, impaired glucose tolerance, insulin 

resistance and increased circulating total cholesterol levels compared with the normal chow diet group. 

The purpose and results of our study were distinct from some earlier animal experiments, which focused 

on the consequences for the offspring of maternal HF feeding during a substantially longer term HF 

dietary condition [3,14]. 

In the present study, the offspring of the dams fed a high-fat diet had a lower birth weight. However, 

after three weeks, the offspring had a higher body weight compared with the offspring of the dams fed  

a normal chow diet at weaning. The growth rate of the offspring indicates the phenomenon of catch-up 

growth. Increasing evidence suggests that rapid postnatal weight gain determines an increased 

susceptibility to obesity, insulin resistance, and diabetes mellitus [15]. These aberrant glucose and lipid 

metabolic conditions associated with catch-up growth are even severer when the catch-up growth 

operates during the early life stage, such as the lactation period [16]. Patterns of accelerated postnatal 

growth may be considered a physiological adaptation that allows the offspring to reach their genetically 

programmed weights [17]. One similar study indicated that within the first postnatal week pups exposed 

to maternal high-fat diet can consume more milk in tests of independent ingestion than controls [18]. 

Another study also suggested that pups cross-fostered to high-fat dams gained more body weight than 

chow pups by postnatal day 7, and persisted until weaning. Furthermore, postnatal high-fat pups  

had greater adiposity, higher plasma leptin concentration, impaired glucose tolerance, and reduced 

phosphorylated signal transducer and activator of transcription (STAT)3 in response to leptin in the 

arcuate nucleus at weaning [19]. In our study, it is demonstrated that the male offspring are more prone 

to develop abnormal glucose and lipid metabolism than female offspring. Similar phenomena were 

found in adulthood offspring [10,14]. This can be explained by the differential ingestive behavior and 

estrogen level between the male and female offspring due to lower food intake and higher estrogen level 

in female. A recent study found sex differences in pancreatic β-cell function and suggested that oxidative 

stress may play an important role in the sex differences observed [14]. 

In addition to the body mass and specific serum markers of metabolic syndrome that have been 

examined in mice born to mothers given a high-fat diet during pregnancy and lactation, a substantial 

number of lipid vacuoles within the hepatocytes were observed in the high-fat diet offspring, but not the 

normal chow diet offspring at weaning. A previous study in rats indicated that the offspring of high-fat 

fed dams during pregnancy and lactation had an increased liver weight and liver triacylglycerols  

content [20]. Another study in mice also demonstrated that the offspring of high-fat diet fed dams had 

profound metabolic defects. More specifically, the offspring developed non-alcoholic fatty liver disease 

and non-alcoholic steatohepatitis at 15 weeks of age. More severe forms of non-alcoholic fatty liver 
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disease and non-alcoholic steatohepatitis developed at 30 weeks of age [9]. It has been reported in 

humans that hypercholesterolemia and non-alcoholic fatty liver disease were strongly associated with an 

increased risk of metabolic symdrome [21]. Therefore, our research suggested that a maternal high-fat 

diet can induce metabolic syndrome and hepatic steatosis in the early life stages of offspring. These 

findings may be utilized as convincing evidence for the prevention and intervention of metabolic 

diseases from the early stage of life. 

In our gene array research, all differentially expressed genes in the high-fat diet group were mapped 

to nine pathways by WebGestalt and KEGG pathway analyses. The third most significant pathway was 

the “PPAR signaling pathway” (p = 0.0125), and qRT-PCR further verified these results. This study 

shows for the first time that a maternal high-fat diet only during the pregnancy and lactation periods 

leads to metabolic syndrome in the early life of the mice offspring through the PPAR signaling pathway. 

A previous study in rats also demonstrated that a maternal HF diet leads to alterations in PPAR gene 

expression in the offspring. However, the period of maternal HF diet was much longer, i.e., the dams 

were fed the corresponding diet 6 weeks before mating and throughout gestation and lactation [22]. 

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, 

which belong to the nuclear hormone receptor super-family. PPARs have in three isoforms: PPARα, 

PPARβ/Δ and PPARγ [23]. With regard to lipid and carbohydrate metabolism, PPARs have emerged as 

major regulators [24]. They are considered central regulators of glucose and lipid homeostasis. 

Furthermore, they are the molecular targets for drugs to treat hypertriglyceridaemia and type 2 diabetes 

mellitus [25]. In our study, it is indicated that PPARα and PPARγ increased significantly in the  

HFD group. Similarly, the offspring of suboptimal maternal nutrition were obese at weaning, and 

accompanied by elevated gene expression for PPARγ (PPARG) and its co-activator PGC1α [26].  

A previous study in rats also demonstrated that maternal malnutrition leads to alterations in PPAR  

gene expression (PPARα and PPARγ) in the offspring at 18 months of age [27]. Another study indicated 

that short-term Pioglitazone (a potential role for drugs that activate PPARγ receptors) therapy in  

the offspring of obese mothers attenuates metabolic changes associated with the developmental 

programming of metabolic syndrome [28]. A recent study demonstrated that maternal diet induced 

obesity contributed to metabolism disorder, hepatic lipotoxicity, and liver steatosis in the offspring, and 

Bezafibrate, which targets PPAR, had beneficial effects in ameliorating these disorders, predominately 

through the PPARγ activation and the increased PPARα/PPARγ ratio in the liver [29]. Some synthetic 

PPAR ligands have been widely used in the treatment of dyslipidemia (e.g., fibrates–PPARα activators) 

and diabetes mellitus (e.g., thiazolidinediones–PPARγ agonists) [30,31]. New generation drugs, such as 

PPARα/γ dual agonists, prevent the development of obesity and reduce the lipid accumulation in cardiac 

cells, even during a high-fat diet [32]. These findings suggest that the PPAR signaling pathway may play 

an important role in regulating lipid and glucose homeostasis, and the PPARs and their modulators have 

been suggested for the treatment of metabolic disorders, such as hyperglycaemia and dyslipidemia. 
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4. Materials and Methods 

4.1. Animals and Experimental Protocol 

Seven-week-old C57BL/6J mice were obtained from the Institute of Laboratory Animal Science, 

Chinese Academy of Medical Sciences and Peking Union Medical College (Beijing, China; 

RSCXK-2013-0107). The animals were maintained under controlled conditions (room temperature at  

22 ± 2 °C; 12 h light/dark cycle) and fed a normal chow diet. After one week for acclimatization after 

arrival, the dams were mated to the high-fat diet fed C57Bl/6J males. The females were checked daily 

for postcopulatory plugs, and the presence of a plug in the morning after mating was considered d 0.5 of 

pregnancy. Then, the pregnant mice were randomly assigned to two groups and were fed a high-fat diet 

or normal chow diet. The high-fat diet contained (kcal %): fat, 58%; carbohydrate, 25.6%; and protein, 

16.4% and the energy density was 23.4 kJ/g, whereas the normal chow diet was containing (kcal %): fat, 

11.4%; carbohydrate, 62.8%; and protein, 25.8%. and the energy density was 12.6 kJ/g, as previous 

described [33]. The dames were fed a high-fat diet or normal chow diet during pregnancy and lactation. 

They had free access to food and water, and their daily food consumption was estimated by weighing the 

remaining food. The litter sizes were standardized to 6 pups as 3 males and 3 females to ensure no litter 

was nutritionally biased. All offspring were weaned at 3 weeks of age. At weaning, the mice (n = 16,  

8 male and 8 female per group, one male and female offspring per litter) were sacrificed. Blood samples 

were taken from the intraorbital retrobulbar plexus after 10-h of fasting in anesthetised mice, and the 

liver samples were quickly removed, snap frozen in liquid nitrogen, and stored at −80 °C for further 

analysis. All surgeries were performed under chloral hydrate anaesthesia, and all efforts were made to 

minimize suffering. The animal care and use committee of the Peking Union Medical College Hospital 

(Beijing, China, MC-07-6004, 3 May, 2013) approved all the procedures. All the operations involving 

animals were conducted according to the Guide for the Care and Use of Laboratory Animals [34]. 

4.2. Measurement of Body Weight 

The maternal weights on day 0.5 and day 20 of gestation and the neonatal weights on day 0.5 after 

birth were measured. The offspring’s body weights were then measured from birth to weaning twice per 

week for each mouse. 

4.3. Glucose Tolerance Tests 

After the mice had fasted for 10-h, glucose (2.0 g/kg body weight) was intraperitoneally 

administered. BG (Blood Glucose) levels were measured before the injection (time 0) and at 30, 60,  

and 120 min after the injection using a Contour TS glucometer (Bayer, Beijing, China) with blood from 

a tail bleed. The area under the curve (AUC) of intraperitoneal glucose tolerance test (IPGTT) was 

calculated by the trapezoid formula: AUC = 0.5 × (BG0 + BG30)/2 + 0.5 × (BG30 + BG60)/2 + 1 × 

(BG60 + BG120)/2 [35]. 
  



Int. J. Mol. Sci. 2014, 15 14978 

 

 

4.4. Measurement of Serum Insulin, Triacylglycerol and Total Cholesterol Levels 

At 3 weeks of age, the offspring mice were euthanized, and the blood samples were collected.  

The blood samples were centrifuged at 4000× g for 10 min, and the serum was stored in aliquots at  

−80 °C. The serum insulin concentrations were measured using the Mouse Ultrasensitive Insulin ELISA 

kit from ALPCO Diagnostics (80-INSMSU-E01, Salem, NH, USA). The intra-assay coefficients of 

variation for the insulin measurements were 4.2%. The insulin sensitivity was assessed using the 

homeostasis model assessment of insulin resistance (HOMA-IR). The HOMA-IR was calculated as the 

fasting insulin concentration (μU/mL) × fasting glucose concentration (mmol/L)/22.5 [36]. The serum 

cholesterol (K603-100, kits from BioVision Inc., Mountain View, CA, USA) and triacylglycerol 

(K622-100, kits from BioVision Inc.) were measured by colorimetric methods. 

4.5. Liver Histological Analysis 

The liver tissues were fixed with formaldehyde solution and embedded in paraffin. Then, 8 μm 

sections were cut using a microtome and mounted on glass slides. Deparaffinized and fixed sections 

were stained with haematoxylin and eosin. Microscopic examination was performed on stained liver 

sections from representative offspring mice in each group. 

4.6. RNA Preparation and Gene Array Experiments 

Because there was no significant difference between HFD and NCD groups in female offspring. 

Liver tissues of male offspring mice to perform the array experiments. Total RNA from the liver tissues 

was extracted using TRIzol reagent (Life Technologies Inc., Carlsbad, CA, USA), according to the 

manufacturer’s instructions. The concentrations of total RNA were measured using a Nanodrop 

(ND-1000, NanoDrop products, Bancroft Building, Wilmington, DE, USA). All samples had high 

quality and showed no signs of DNA contamination or RNA degradation. The RNA samples were 

immediately frozen and stored at −80 °C until further analysis. The gene expression profiles in the liver 

tissues from the mice were determined using whole genome-wide gene expression array analyses. 

Because of financial constraints, we could not perform a whole genome array for each biological 

replicate. Thus, each group contained three biological replicates, which can obtain a relatively reliable 

estimate of the mean gene expression. Therefore, a total of six gene arrays were analyzed. The samples 

were processed following Affymetrix recommendations, and the cDNA was hybridized to the 

Affymetrix Mouse Gene ST 1.0 array (Affymetrix, Santa Clara, CA, USA). Both the background 

correction and normalization were done using a PLIER (Probe Logarithmic Intensity Error) algorithm. 

t-test was used for pre-processing and statistical analysis. The fold change and p-value were used to 

identify the probe sets that showed significant differential expression between the experimental 

conditions. Specifically, the probes with a |fold change| >2 and a significant difference (p < 0.05)  

were chosen for further analysis. Differentially expressed genes were hierarchically clustered using 

g-plots R package. 
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4.7. Gene Array Data Analysis 

The signals were averaged for liver tissues from the high-fat diet and normal chow diet groups, and 

the fold changes were calculated based on the average values from each group. The genes were selected 

as significant using a combined criterion for true positive expression differences of a |fold change| >2.0 

and a p-value <0.05. Cluster analyses were done using the software of g-plots R package. To identify the 

biological significance of the group of genes with changed expression, the subset of genes that met the 

above criteria was analyzed with the GO (Gene Ontology) classification system and the KEGG (Kyoto 

Encyclopedia of Genes and Genomes) pathways using the web-based tool WebGestalt (WEB-based 

GEne SeT AnaLysis Toolkit) [37]. The over-representation of genes with altered expression within 

specific GO categories was determined through a hypergeometric test [38]. 

4.8. Quantitative RT-PCR Experiment 

For validation of the array results, four genes from the gene list were selected for qRT-PCR analysis 

by expanding the quantity samples in male offspring (n = 8 per group). Furthermore, we examined 

expression of the PPAR isoforms α, γ and ∆, which may likely to explain the regulation of the PPAR 

pathway genes that we found. Prior to PCR, each total RNA was processed with Rnase-free Dnase 

(Qiagen, New York, NY, USA). The RNA was reverse transcribed by 1 μg of total RNA from each 

sample using the Power cDNA Synthesis kit (A3500, Promega BioSciences LLC, Sunnyvale, CA, 

USA). The cDNA (2 μL) was amplified with a SYBR® Green PCR Master Mix (RR420A, Takara Bio 

Inc., Otsu, Shiga, Japan) in a final volume of 20 μL. We used Oligo 7.0 software (Molecular Biology 

Insights, Inc., Cascade, CO, USA) to design the following sequences of the primers for Cd36, Aqp7 

(aquaporin 7), Cpt1b (carnitine palmitoyltransferase 1b), Fabp2 (fatty acid binding protein 2), PPARα 

(peroxisome proliferator activator receptor alpha), PPARΔ (peroxisome proliferator activator receptor 

delta), PPARγ (peroxisome proliferator activator receptor gamma) and β-actin: Cd36, forward 

5'-CAAGCTATTGCGACATGATT-3' reverse 5'-CGAACACAGCGTAGATAGAC-3'; Aqp7, forward 

5'-CTCGTGATAGGCATCCTTGT-3' reverse 5'-AGCCAGCAATGAAAGTGAAC-3'; Cpt1b, forward 

5'-TATTACCGCATGGAGACATT-3' reverse 5'-TTAGTTGCCCACCATGACTT-3'; Fabp2, forward 

5'-GACAATGGAAAGGAGCTGAT-3' reverse 5'-CCAGGCTCTGAGAAGTTGAC-3'; PPARα, 

forward 5'-CTGTCCGCCACTTCGAGTC-3' reverse 5'-GATACGCCCAAATGCACCAC-3'; PPARΔ, 

forward 5'-TCACCAGCAGCCTAAAAGCA-3' reverse 5'-CCGGCGAGAAGAAAGGAAGT-3'; 

PPARγ, forward 5'-CGGGCTGAGAAGTCACGTT-3' reverse 5'-TGCGAGTGGTCTTCCATCAC-3'; 

β-actin, forward 5'-TGTTACCAACTGGGACGACA-3' reverse 5'-GGGGTGTTGAAGGTCTCAAA-3'. 

The reaction production was accurately measured in the exponential phase of amplification by the ABI 

prism Vii7 Sequence Detection System (ABI Prism® Vii7, Applied Biosystems, Life Technologies). The 

reaction conditions consisted of an initial activation step (30 s at 95 °C) and a cycling step (denaturation 

for 5 s at 95 °C and annealing for 34 s at 60 °C for 40 cycles). All reactions were carried out with  

three biological replicates, and each analysis consisted of three technical replicates and a melting curve 

analysis that was performed after each run. The sequences of the primers used are listed in Table 1.  

The signal of the housekeeping gene β-actin was used for normalization, and the relative expression levels 

were quantified by the 2−ΔΔCt method, with the relative fold changes normalized to the control values [39]. 
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4.9. Statistical Analysis 

The data were normally distributed and were expressed as the mean ± standard deviation (S.D.). 

Statistical analyses were performed with ANOVA followed by Student’s t-test. A p value <0.05 was 

considered statistically significant. All statistical analyses were calculated with SPSS 15.0 (SPSS Inc., 

Chicago, IL, USA). 

5. Conclusions 

In conclusion, our data suggest that a maternal high-fat diet during pregnancy and lactation 

predisposes the offspring to the development of obesity, glucose intolerance and dyslipidemia in the 

early stages of life. More importantly, the PPAR signaling pathway may be the underlying mechanism 

that accounts for the phenomenon, which indicates that maternal nutrition can impair glucose and  

lipid metabolism in the early life of the offspring. However, the long-term effects of these metabolic 

abnormalities must be further examined. Pregnancy and lactation are the pivotal periods of growth and 

development. It is expected to facilitate the future development of a novel drug for the prevention and 

intervention of metabolic diseases during the early stage of life. 
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