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Abstract: Proliferating thyroid cells are more sensitive to UV-C radiations than quiescent 

cells. The effect is mediated by nuclear phosphatidylcholine and sphingomyelin metabolism. 

It was demonstrated that proton beams arrest cell growth and stimulate apoptosis but until 

now there have been no indications in the literature about their possible mechanism of 

action. Here we studied the effect of protons on FRTL-5 cells in culture. We showed that 

proton beams stimulate slightly nuclear neutral sphingomyelinase activity and inhibit 

nuclear sphingomyelin-synthase activity in quiescent cells whereas stimulate strongly 

nuclear neutral sphingomyelinase activity and do not change nuclear sphingomyelin-synthase 

activity in proliferating cells. The study of neutral sphingomyelinase/sphingomyelin-synthase 

ratio, a marker of functional state of the cells, indicated that proton beams induce FRTL-5 

cells in a proapoptotic state if the cells are quiescent and in an initial apoptotic state if the 

cells are proliferating. The changes of cell life are accompanied by a decrease of nuclear 

sphingomyelin and increase of bax protein. 
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1. Introduction 

Proton beams induced chromosomal aberrations [1,2]. The relative biological effectiveness was 

both dose- and depth-dependent [3]. In HTB63 human melanoma cells, proton beams inhibited cell 

growth with G2/M and G1/G0 arrest of the cell cycle and appearance of apoptotic nuclei, even 48 h 

after irradiation [4]. 

To date we have very little information on the effect of protons on the endocrine system. Just a 

paper exists about the thyroid, an endocrine gland that regulates the metabolism of cardiovascular, 

musculoskeletal, immune and nervous system by influencing body equilibrium [5]. The authors 

showed that the sensitivity of thyroid follicular cells (FRTL-5 cell line) to proton irradiation was 

independent of their ability to communicate through connexin 32 gap junctions, but there are no 

indications in the literature on their possible mechanism of action. We have previously demonstrated 

that UV-C radiation induced apoptosis of FRTL-5 cells, by changing nuclear lipid metabolism in 

relation to the physiological state of cells [6]. We used FRTL-5 cells because in vitro they permanently 

express most of in vivo tissue-specific thyroid characteristics, such as thyroglobulin synthesis and 

secretion, iodide active transport, peroxidase production and thyrotropin (TSH) sensitivity [7].  

It is known that TSH treatment induced thyroid cells to the proliferative state whereas TSH starvation 

rendered them quiescent [8]. Proliferating cells were more sensitive to UV-C radiation treatment than 

quiescent cells by changing phosphatidylcholine (PC) and sphingomyelin (SM) metabolism, specially 

in lipid localised at nuclear level. In nuclei purified from proliferating cells, irradiation stimulated 

neutral-sphingomyelinase (N-SMase) activity and inhibited sphingomyelin-synthase (SM-synthase) 

and phosphatidylcholine-specific phospholipase C (PC-PLC) with the consequent increase in the 

ceramide/diacylglycerol ratio. This effect was low in quiescent cell nuclei. The results suggested that 

quiescent FRTL-5 cells were more resistant to the effects of UV-C radiation because their nuclear PC 

and SM metabolism was less modified than that of proliferating cells [6]. In the stratosphere, depletion 

of ozone resulted in an enrichment of UV radiation content and global warming. It is interesting to 

notice that in a space environment the FRTL-5 cell changes occurred according to their physiological 

state, the effect being stronger in proliferating than in quiescent cells [9]. Cells did not present signs of 

DNA fragmentation characteristic of apoptotic process but, in contrast, showed strongly altered lipid 

metabolism with activation of nuclear N-SMase and inhibition of PC-PLC and SM-synthase [8].  

The spaceflight impaired cell growth of FRTL-5 exposed to TSH; thus, the cells became similar to 

quiescent cells with similar SMase and SM-synthase activities. More precisely the space environment 

induced the cells into a pro-apoptotic state, similar to that obtained with both TSH starvation and 

serum withdrawal [9]. Comparing the results in different experimental models [6,9], we demonstrated 

that the SMase/SM-synthase ratio changed in various functional states of the cells since its value was 

very high in apoptotic cells, medium in pro-apoptotic cells, low in proliferating cells and very low in 

quiescent cells. This parameter has been suggested to be a specific marker for cell function [9]. In fact, 
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its value is low in quiescent cells and gradually increases in proliferating, pro-apoptotic and apoptotic 

cells [9]. Since thyroid cells are particularly sensitive to UV-C and space environment and there are no 

data in the literature about the effects of protons on these cells, here we studied for the first time if the 

proton beams could change SM metabolism in nuclei-free lysates (NFL) and/or in purified nuclei (N) 

prepared from thyroid FRTL-5 at the end to identify their role on functional state of the cells. 

2. Results and Discussion 

2.1. Proton Beams Promote Bax Expression in FRTL-5 Cells in Relation to Their Physiological State 

It has been demonstrated that proton beams inhibited cell growth and induced apoptosis in 

melanoma cells [2]. To demonstrate if the effect of protons was specific for proliferating cells, such as 

tumor cells or others, we used an experimental model in which the same cells can be maintained  

in quiescent or proliferating state. Thyroid FTRL-5 cells were cultured in the presence of  

glycil-L-histidyl-L-lysine acetate, hydrocortisone, insulin, somatostatin, transferrin without (TSH−) or 

with TSH (TSH+). As previously reported, TSH+ cells are proliferating and TSH− cells are quiescent 

cells [6]. Here we showed that proton beams increased expression of Bax protein specifically in 

proliferating cells (Figure 1). The Bax protein analysis actually showed a stronger immunopositivity  

in irradiated cells in comparison to control samples (Figure 1a). Bax protein levels increased 

approximately 1.6 and 6.2 fold, respectively in TSH− and TSH+ cells exposed to proton irradiation, 

compared to unirradiated quiescent and proliferating controls (Figure 1b). The changes of Bax protein 

levels were evaluated by the analysis of the area of immunoblotting bands as previously reported [10]. 

Figure 1. Bax analysis in quiescent control sample (TSH−C) and quiescent proton-irradiated 

sample (TSH−P), in proliferating control sample (TSH+C) and proliferating proton-irradiated 

sample (TSH+P). C, control; P, proton. (a) Immunoblots of proteins (30 µg) were probed 

with anti-Bax antibodies (apparent molecular weight 23 kDa) and visualized by ECL;  

(b) The area density was evaluated by densitometry scanning and analysed with Scion 

Image; data represent the means ± S.D. of four separate experiments. irradiated samples 

significance ** p < 0.01 versus control. 
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2.2. Proton Beams Act on Nuclear Sphingomyelin Metabolism 

In both NFL and N fractions N-SMase activity was higher in proliferating than in quiescent cells 

whereas SM-synthase activity did not change significantly with cell state (Figure 2a,b), supporting 

previous results [6]. In NFL sample, protons increased N-SMase activity 1.45 and 1.52 times in 

quiescent and proliferating cells, respectively (Figure 2a). In addition, while N-SMase activity 

increased only 1.09 times in N purified from quiescent cells, in N purified from proliferating cells its 

value increased 12.44 times (Figure 2b). Irradiation unchanged SM-synthase activity in NFL prepared 

from both cells and in N from proliferating cells whereas it was inhibited 1.9 times in N purified from 

quiescent cells (Figure 2a,b). 

As a consequence, N-SMase/SM-synthase ratio, was 8.6 in NFL and 1.77 in N prepared from 

proliferating cells whereas its value was 6 in NFL and 1.06 in N prepared from quiescent cells (Figure 3), 

similar to that previously reported [9]. The proton treatment increased the value of N-SMase/SM-synthase 

ratio to 11.75 and 8.46 in NFL and N respectively in quiescent cells and to 11.39 and 22.97 in NFL 

and N respectively (Figure 3). Thus, the effect of protons was stronger in nuclear fraction than in NFL. 

Figure 2. Effect of proton irradiation on neutral-sphingomyelinase (N-SMase) and 

sphingomyelin-synthase (SM-synthase) activity in: (a) nuclei-free lysates (NFL) and  

(b) purified nuclei (N). C, control; P, proton. Data are expressed as pmol/mg protein/min 

and represent the mean and range of three separated experiments. 
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Figure 3. Effect of proton irradiation on neutral-sphingomyelinase/sphingomyelin-synthase 

(N-SMase/SM-synthase) ratio of nuclei-free lysates (NFL) and purified nuclei (N) prepared 

from quiescent (TSH−) and proliferating (TSH+) cells. C, control; P, proton. 

 

The N-SMase/SM-synthase ratio has been proposed to be a specific marker for cell function [9].  

Its value was 8.16 ± 1.00, 5.77 ± 0.60, 14.00 ± 0.9 and 36.73 ± 3.30 in NFL and 1.77 ± 0.2,  

1.06 ± 0.10, 5.39 ± 0.8, 47.80 ± 5.2 in N prepared from proliferating, quiescent, proapoptotic and 

apoptotic cells respectively [8]. Therefore our results indicated that protons induced quiescent cells in 

a propaoptotic state as well as occurred for proliferating cells if you considered the change of  

N-SMase/SM-synthase ratio in NFL. Otherwise, if you considered N-SMase/SM-synthase ratio in 

purified N, its value was between the proapoptotic state and apoptotic state, suggesting that the 

metabolism of the nuclear SM was more sensitive than that of NFL and probably it was the first that 

changed when the cells were induced to apoptosis. It is really hard to indicate exactly why protons 

have more effects on the SM metabolism in N than in NFL. Since the activation of the nuclear SMase 

reduced the amount of SM localized in the inner nuclear membrane where binded to cholesterol 

(CHO) to acts as a platform for DNA duplication and transcription [11] is possible that protons use this 

method to induce apoptosis. These data supported the more expression of bax protein in proliferating 

cells than in quiescent cells treated with protons. 

To study the effect of N-SMase/SM-synthase ratio on nuclear lipids, the most representative species 

of SM and ceramide in the N were studied and they were referred to CHO content. The results showed 

that the change of CHO observed in the samples was not statistically significant. In fact, CHO value 

was 9.18 ± 1.76 and 7.86 ± 2.20 ng/mg protein in TSH− and TSH+ control samples and 10.20 ± 1.2, 

and 11.20 ± 1.34 ng/mg protein in TSH− and TSH+ proton-treated samples. 

The limit of this part of the present study is that we had only one sample for the SM and ceramide 

analysis of proton-exposed samples and we did not have the possibility to repeat the exposure at the 

moment. Therefore, only strong changes were considered. The N fraction of the proliferating cells was 

richer in SM and poorer in ceramide content than that of quiescent cells (Figure 4). The role of nuclear 

SM on cell proliferation has been widely demonstrated [12–14]. SM facilitated DNA stabilization [12]. 

The trimethylammonium group of SM bonded to the phosphate group of DNA, whereas its apolar fatty 

acids bonded to the hydrophobic centers of the internal part of the helical DNA, facilitating its 

stabilization [12]. The increase of the nuclear SM concentration during cell proliferation stimulated the 

SMase activity during the S phase of the cell cycle, thus favoring the initiation of DNA synthesis [15]. 

Our results, showing the high level of SM and SMase activity in purified N of proliferating FRTL-5 
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cells, confirmed previous observation obtained in liver. As N-SMase was more active in proliferating 

cells, we would expect a higher content of ceramide. Instead, the content of ceramide was reduced 

(Figure 4), probably being rapidly moved to the cytoplasm. The most represented species were 

ceramide 18:1 16:0 and ceramide 18:1 24:0 and they were reduced 1.62 and 1.48 times respectively 

with protons (Table 1). 

Figure 4. Effect of proton irradiation on total sphingomyelin (SM) and ceramide species 

under study of nuclei-free lysates (NFL) and purified nuclei (N) prepared from quiescent 

(TSH−) and proliferating (TSH+) cells. C, control; P, proton. Data are expressed as μg/μg 

cholesterol (CHO) and are expressed as mean and range of three separated experiments for 

C samples. Results of P samples are only of one experiment. 

 

The proton beams treatment of quiescent cells induced a low increase of total ceramide (Figure 4) 

due probably to the SM-synthase inhibition more than to the low increase of N-SMase activity (Figure 2). 

In particular, ceramide 18:1 20:0 increased (Table 1). In proliferating cells treated with protons, the 

content of total SM was reduced 2.76 times due to the high activity of N-SMase (Figure 2) and the 

content of total ceramides was reduced 2.33 times (Figure 4). All species of ceramide were reduced 

with the exception of ceramide 18:1 18:0 (Table 1). We do not know at the moment if the reduction of 

ceramides could be due to the nucleus-cytoplasm translocation or to the presence of a ceramidase 

enzyme in the N fraction of FTRL-5 cells, which however has not been demonstrated until now. 

Table 1. Species of sphingomyelin (SM) and ceramide in nuclei of FRTL-5 cells. Data of 

proton (P) are expressed as ng/µg cholesterol and represent the mean of two samples very 

similar. TSH−, quiescent cells; TSH+, proliferating cells; C, control; P, proton. Data of 

control (C) are expressed as mean and range of three independent experiments. 

SM Species TSH−C TSH−P TSH+C TSH+P 

SM 18:1 12:0 0.7 (0.5–0.8) 0,9 0.3 (0.2–0.6) 0.15 
SM 18:1 16:0 46 (41–58) 50 64 (55–71) 20 
SM 18:1 18:1 5 (3.3–5.6) 2,2 1.4 (1.1–1.5) 1.4 

SM 24:0 172 (160–203) 184 188 (168–202) 74 
ceramide 18:1 16:0 117 (102–139) 147 72 (62–68) 25 
ceramide 18:1 18:0 31 (23–36) 48 2 (1.6–2.3) 8 
ceramide 18:1 20:0 45 (18–54) 118 62 (40–71) 27 
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3. Experimental Section 

3.1. Reagents and Standards 

PC, SM, non-hydroxy fatty acid ceramide, phenylmethylsulfonylfluoride, acetonitrile, methanol,  

2-propanol, metyl-tert-butyl ether (MTBE), formic acid, chloroform, cholesterol (CHO) were obtained 

from Sigma Chemical Co. (St. Louis, MO, USA.); TLC plates (silica Gel G60) were from Merck 

(Darmstadt, Germany); the radioactive [Me-14C] SM (54.5 Ci/mol, 2.04 GBq/mmol), [Me-3H]  

(L-3-phosphatidyl-[N-Me-3H]-choline-1,2-dipalmitoyl, 81.0 Ci/mmol, 3.03 TBq/mmol) were from 

Amersham Pharmacia Biotech (Rainham, Essex, UK); Ecoscint A was from National Diagnostic 

(Atlanta, GA, USA.). Anti-Bax was obtained from Santa Cruz Biotechnology, Inc. (Dallas, TX, USA). 

SDS-PAGE Molecular Weight Standard was from Bio-Rad Laboratories (Hercules, CA, USA).  

SM 18:1 12:0, SM 18:1 16:0, SM 18:1 18:1, SM 24:0, ceramide 18:1 16:0, ceramide 18:1 18:0, 

ceramide 18:1 20:0, ceramide 18:1 24:0 were purchased from Avanti (Avanti Polar, Alabaster,  

AL, USA). 

3.2. Cell Cultures and Treatments 

FRTL-5 cells were prepared and characterized in the Ambesi-Impiombato laboratory as previously 

reported [9]. Cells were grown in Ham’s modified F-12 with 5% calf serum and 6 hormones:  

10 ng/mL glycil-L-histidyl-L-lysine acetate (Sigma), 10−8 M hydrocortisone (Sigma), 10 µg/mL insulin 

(Sigma), 10 µg/mL somatostatin (Sigma), 5 µg/mL transferrin (Sigma), 10 mU/mL TSH (Sigma). 

FRTL5 were maintained at 37 °C in 5% of CO2, 95% humidity incubator. The cells cultured in the 

presence of TSH that stimulates cell proliferation were called TSH+ cells, whereas the cells cultured 

without TSH remained in the quiescent state and were called TSH− cells [6]. Cells were counted and 

seeded at 5 × 105/60 mm plastic dish concentration in TSH+ medium to permit adhesion. After 24 h, 

culture continued for 7 days in TSH+ or TSH− medium. For the experiment, proliferating and 

quiescent FRTL-5 cells were collected and then seeded at a density of 1 × 106 cells/1.0 cm2 chamber 

with 1 mL TSH+ or TSH− medium for 24 h in incubator to permit adhesion and then each chamber 

placed inside boxes suitable for cultivation where the temperature was set at 37 °C. After plating, the 

cells were submitted to proton beams produced and accelerated by the CERN (Geneva, Switzerland) 

accelerators. Radio-frequency linear accelerators were used as injectors for synchrotrons and as  

stand-alone accelerators for the production of intense particle beams, thanks to their ability to 

accelerate high beam currents at high repetition rates. The cells were used in part for NFL and N 

preparation and in part for the analysis of Bax apoptotic protein. Both NFL, containing all cell 

membranes except nuclear membranes, and purified N were used to analyze the effect of proton beams 

on SM localized in different subcellular compartments. NFL and N were prepared as previously 

reported [6]. Cells were washed twice with PBS and centrifuged at 800× g for 10 min. The pellet was 

suspended in hypotonic buffer (1.5 M sucrose, 3 mM CaCl2, 2 mM Mg acetate, 0.5 mM dithiothreitol, 

1 mM PMSF, 3 mM Tris–HCl pH 8.0, 1 mL/106 cells) and gently homogenized by a tight-fitting 

teflon-glass homogenizer. Part of the homogenate was centrifuged at 500× g for 30 min at 4 °C for 

NFL preparation and part was used for nuclei isolation. At this end homogenized cells were treated 

with 1% Triton X-100 in hypotonic buffer (0.5:1 v/v); the cellular suspension was stirred on a vortex 
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mixer for 30 s and the buffer, containing 1.5 M sucrose, was added (0.25:1 v/v). After centrifugation at 

2000× g for 10 min the pellet containing nuclei was washed twice with Barnes et al. solution [16] 

0.085 M KCl, 0.0085 M NaCl, 0.0025 M MgCl2, trichloroacetic acid–HCl 0.005 M, pH 7.2). 

3.3. Lipid Extraction 

Lipid extraction was performed according to Matyash et al. 2008 [17]. Pellets of NFL and N were 

diluted with 1 mL methanol. Exactly 3 mL ultra pure water and 3 mL MTBE were added. Each sample 

was vortexed for 1 min and centrifuged at 3000× g for 5 min. The supernatant was recovered.  

The extraction with MTBE was repeated on the pellet and the supernatant was added to the first.  

The organic phase was dried under nitrogen flow and resuspended in 500 µL of methanol. 

3.4. Ultra Fast Liquid Chromatography Tandem Mass Spectrometry (UFLC-MS/MS) 

Lipid standards (SM 18:1 12:0, SM 18:1 16:0, SM 18:1 SM 18:1, ceramide 18:1 16:0, ceramide 

18:1 18:0, ceramide 18:1 20:0, ceramide 18:1 24:0; sphinganine 18:1; glucosyl ceramide 18:1 16:0  

and CHO) were prepared according to Matyash et al. [17]. Standards were dissolved in 

chloroform/methanol (9:1 v/v) at 10 μg/mL final concentration. The stock solutions were stored at  

−20 °C. Working calibrators were prepared by diluting stock solutions with methanol to 500:0, 250:0, 

100:0, 50:0 ng/mL final concentrations. Twenty micro liters of standards or lipids extracted from NRL 

or N samples were injected after purification with specific nylon filters (0.2 µm). 

Analyses were carried out according to Rabagny et al. [18] by using Ultra Performance Liquid 

Chromatography system tandem Mass Spectometer Applaied biosistem (Shimadzu Italy s.r.l.,  

Milano, Italy). The lipid species were separated, identified and analyzed by following the methods of 

Rabagny et al. [18]. 

3.5. Neutral-Sphingomyelinase Assay 

The N-SMase activity was detected as previously reported [6] in NFL and in N. The reaction 

mixture contained 0.1 M Tris–HCl pH 7.6, 0.1 mM-14C SM, 6 mM MgCl2, 0.1% Triton X-100  

and 100 μg protein of NFL or N to a final volume of 0.1 mL. Incubations were performed at 37 °C  

for 45 min. The reaction was stopped by adding 2 mL chloroform and methanol (2:1), 0.4 mL of  

0.5% NaCl was added to the tubes and vortexed. After centrifugation at 2000 rpm × 10 min, the upper 

phase was removed and 0.5 mL was diluted in counting vials with 10 mL Ecoscint A and 1 mL 

distilled water; radioactivity was measured with a Packard liquid scintillation analyzer. Protein 

determination was performed as previously reported [6] and the enzyme activity was referred to 

protein content. 

3.6. Sphingomyelin-Synthase Assay 

The SM-synthase activity was detected as previously reported [6] in NFL and in N. The reaction 

mixture contained 0.1 M Tris–HCl, 0.3 mM 3H-PC, 2 mM CaCl2, 0.1% Triton X-100, 0.15 mM  

non-hydroxy fatty acid ceramide and 100 µg protein of NFL or N, to a final volume of 0.1 mL. 

Incubations were performed at 37 °C for 45 min. The reaction was stopped by adding 2 mL 
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chloroform and methanol (2:1), 0.4 mL of 0.5% NaCl was added to the tubes and vortexed. After 

centrifugation at 2000 rpm × 10 min, the lower phase was dried under nitrogen flow, lipids were  

re-suspended with chloroform and separated with thin-layer silica gel chromatography (TLC), using 

chloroform/methanol/ammonia (65:25:4) as solvent. In the sample, exogenous SM was added to the 

tubes before chromatography. SM was localized with iodine vapor, scraped into counting vials  

and diluted with 10 mL Ecoscint A and 1 mL water. Radioactivity was measured as reported for  

N-SMase activity. 

3.7. Immunoblotting Analysis 

Bax protein was evaluated with western blot analysis. About 30 µg proteins were loaded onto  

SDS-PAGE electrophoresis in 10% polyacrylamide slab gel and transferred into nitrocellulose in  

75 min as previously reported [6]. Membranes were blocked for 30 min with 0.5% no fat-dry milk  

in PBS, pH 7.5, and incubated over night at 4 °C with anti-Bax antibodies. Blots were treated  

with horseradish-conjugated secondary antibodies for 90 min. Visualization was performed with the 

enhanced Chemiluminescence’s kit from Amersham Pharmacia Biotech. Immunoblot bands were 

quantified by Scion Image program. 

3.8. Statistical Analysis 

Data represent the median and range of three separated samples for enzyme activities and lipids and 

the means ± S.D. of four separate experiments for Bax analysis. 

4. Conclusions 

Proton beams induced epithelial thyroid cells in a proapoptotic state if the cells were quiescent 

whereas in an initial apoptotic state if the cells were proliferating, by changing particularly the nuclear 

SM metabolism. In cell N the strong activation of SMase reduced SM content that was important for 

the DNA stability. The produced ceramide probably was translocated to the cytoplasm where could be 

metabolized to sphingosine and sphingosine-1-phosphate, mediators involved in apoptosis. Our data 

indicate that nuclear SM metabolism is involved in proton-induced damage. 

Acknowledgments 

This work has been partially supported by grants from Agenzia Spaziale Italiana (ASI). 

Author Contributions  

Elisabetta Albi designed the experiments, analyzed the data and wrote the paper; Giuseppina Perrella 

did the experiments and analyzed the data; Andrea Lazzarini, Samuela Cataldi, Remo Lazzarini and 

Alessandro Floridi did the experiments; Francesco Saverio Ambesi-Impiombato designed the experiments 

and revised the paper Francesco Curcio designed the experiments and analysed the data. 



Int. J. Mol. Sci. 2014, 15 11564 

 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Geard, C.R.; Colvett, R.D.; Rohrig, N. On the mechanics of chromosomal aberrations: A study 

with single and multiple spatially-associated protons. Mutat. Res. 1980, 69, 81–99. 

2. Wu, H.; Durante, M.; George, K.; Yang, T.C. Induction of chromosome aberrations in human 

cells by charged particles. Radiat. Res. 1997, 48, 102–107. 

3. Skarsgard, L.D.; Wouters, B.G. Substructure in the cell survival response at low radiation dose: 

Effect of different subpopulations. Int. J. Radiat. Biol. 1997, 71, 737–749. 

4. Ristic-Fira, A.; Nikolic, D.; Petrovic, I.; Ruzdijic, S.; Raffaele, L.; Sabini, M.G.; Cirrone, G.A.; 

Cuttone, G.; Farruggia, G.; Masotti, L.; et al. The late effects of proton irradiation on cell growth, 

cell cycle arrest and apoptosis in a human melanoma cell line. J. Exp. Clin. Cancer Res. 2001, 20, 

135–143. 

5. Green, L.M.; Tran, D.T.; Murray, D.K.; Rightnar, S.S.; Todd, S.; Nelson, G.A. Response of thyroid 

follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32. 

Radiat. Res. 2002, 158, 475–485. 

6. Albi, E.; Cataldi, S.; Rossi, G.; Viola Magni, M.; Toller, M.; Casani, S.; Perrella, G. The nuclear 

ceramide/diacylglycerol balance depends on the physiological state of thyroid cells and changes 

during UV-C radiation-induced apoptosis. Arch. Biochem. Biophys. 2008, 478, 52–58. 

7. Ambesi-Impiombato, F.S.; Parks, L.A.; Coon, H.G. Culture of hormone-dependent functional 

epithelial cells from rat thyroids. Proc. Natl. Acad. Sci. USA 1980, 77, 3455–3459. 

8. De Grassi, A.; Monaco, M.C.; Lisignoli, G.; Belvedere, O.; Toneguzzi, S.; Malangone, W.; 

Bonora, M.L.; Piacentini, A.; Lavaroni, S.; Scarbolo, M.; et al. Cell cycle synchronization of 

FRTL5 cells. A physiological model system. J. Exp. Clin. Cancer Res. 1998, 17, 527–532. 

9. Albi, E.; Ambesi-Impiombato, S.; Villani, M.; de Pol, I.; Spelat, R.; Lazzarini, R.; Perrella, G. 

Thyroid cell growth: Sphingomyelin metabolism as non-invasive marker for cell damage acquired 

during spaceflight. Astrobiology 2010, 10, 811–820. 

10.  Albi, E.; Curcio, F.; Lazzarini, A.; Floridi, A.; Cataldi, S.; Lazzarini, R.; Loreti, E.; Ferri, I.; 

Ambesi-Impiombato, F.S. A firmer understanding of the effect of hypergravity on thyroid tissue: 

Cholesterol and thyrotropin receptor. PLoS One 2014, 27, e98250. 

11. Cascianelli, G.; Villani, M.; Tosti, M.; Marini, F.; Bartoccini, E.; Magni, M.V.; Albi, E.  

Lipid microdomains in cell nucleus. Mol. Biol. Cell 2008, 19, 5289–5295. 

12. Novello, F.; Muchmore, J.H.; Bonora, B.; Capitani, S.; Manzoli, F.A. Effect of phospholipids on 

the activity of DNA polymerase I from E. coli. Ital. J. Biochem. 1975, 24, 325–334. 

13. Albi, E.; Viola Magni, M.P. Sphingomyelin: A small-big molecule in the nucleus. Recent Res. 

Dev. Biophys. Biochem. 2006, 661, 211–227. 

14. Ledeen, R.W.; Wu, G. Nuclear sphingolipids: Metabolism and signaling. J. Lipid Res. 2008, 49, 

1176–1186. 



Int. J. Mol. Sci. 2014, 15 11565 

 

 

15. Albi, E.; Lazzarini, A.; Cataldi, S.; Lazzarini, R.; Floridi, A.; Damaskopoulou, E.; Curcio, F. 

Nuclear lipid microdomain as place of interaction between sphingomyelin and DNA during Liver 

regeneration. Int. J. Mol. Sci. 2013, 14, 6529–6541. 

16. Barnes, D.W.H.; Esnouf, M.P.; Stocken, L.A. Some experiments in favour of the cellular hypothesis 

for the speen curative factor. Adv. Radiobiol. 1957, 211–213. 

17. Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid extraction by 

methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008, 49, 1137–1146. 

18. Rabagny, Y.; Herrmann, W.; Geisel, J.; Kirsch, S.H.; Obeid, R. Quantification of plasma 

phospholipids by ultra performance liquid chromatography tandem mass spectrometry.  

Anal. Bioanal. Chem. 2011, 401, 891–899. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


