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Abstract: Determining the complex relationships between diseases, polymorphisms in 

human genes and environmental factors is challenging. Multifactor dimensionality 

reduction (MDR) has been proven to be capable of effectively detecting the statistical 

patterns of epistasis, although classification accuracy is required for this approach. The 

imbalanced dataset can cause seriously negative effects on classification accuracy. 

Moreover, MDR methods cannot quantitatively assess the disease risk of genotype 

combinations. Hence, we introduce a novel weighted risk score-based multifactor 

dimensionality reduction (WRSMDR) method that uses the Bayesian posterior probability 

of polymorphism combinations as a new quantitative measure of disease risk. First, we 

compared the WRSMDR to the MDR method in simulated datasets. Our results showed 

that the WRSMDR method had reasonable power to identify high-order gene-gene 

interactions, and it was more effective than MDR at detecting four-locus models. Moreover, 

WRSMDR reveals more information regarding the effect of genotype combination on the 

disease risk, and the result was easier to determine and apply than with MDR. Finally,  
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we applied WRSMDR to a nasopharyngeal carcinoma (NPC) case-control study and 

identified a statistically significant high-order interaction among three polymorphisms: 

rs2860580, rs11865086 and rs2305806. 

Keywords: gene-gene interaction; weighted risk score; multifactor dimensionality reduction; 

nasopharyngeal carcinoma 

 

1. Introduction 

Complex interactions among genes and environmental factors are known to play a role in common 

human disease etiology. However, the identification and characterization of gene-gene interactions for 

common complex human diseases remain a challenge for human geneticists. Traditional statistical 

methods are not well suited for detecting such interactions, especially when the data are highly 

dimensional (having many attributes or independent variables) or when interactions occur between 

more than two polymorphisms [1]. To address these issues, a variety of bioinformatics methods for 

identifying gene-gene interactions have been developed [2–4], and one such method is multifactor 

dimensionality reduction (MDR) [5–12]. The MDR method uses constructive induction to collapse 

high-dimensional genotype combinations into one-dimensional variables with two levels, high risk and 

low risk, using a threshold that is a function of the number of cases and controls [9]. Cross-validation 

and permutation testing are used to limit overfitting and false positives due to multiple testing. Since 

its initial description by Ritchie [5], many modifications and extensions to the MDR approach have 

been proposed. These include entropy-based interpretation methods [9], the use of odds ratios [13],  

log-linear methods [14], generalized linear models [15], methods for imbalanced data [16], 

permutation testing methods [17,18], methods for addressing missing data [19], parallel 

implementations [20,21], different evaluation metrics [22,23], methods for quantitative traits [24], 

balancing function methods [25] and the aggregated-multifactor dimensionality reduction method [26]. 

These extensions and modifications of MDR have each addressed different limitations, although 

classification accuracy is required for this approach. For example, when the proportion of cases in a 

study is extremely different from that of the real population, which is common in case-control studies, 

then the classification accuracy is difficult to determine and apply. Moreover, MDR methods cannot 

quantitatively assess the disease risk of genotype combinations; instead, they offer only a binary 

measure (high or low) of disease risk. Zhang and Liu proposed a Bayesian epistasis association 

mapping (BEAM) algorithm for identifying both single-marker and epistasis associations in 

population-based case-control studies [27]. The BEAM algorithm treats disease-associated markers 

and their interactions via a Bayesian partitioning model and computes, via Markov chain Monte Carlo, 

the posterior probability that each marker set is associated with the disease. In the simulated datasets, 

the BEAM method was considerably more powerful than existing methods for epistasis mapping.  

The research showed that the posterior probability could be an appropriate measure to assess  

epistatic interactions. 

Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma that arises in the epithelial lining 

of the nasopharynx [28]. This neoplasm has a remarkable ethnic and geographic distribution, with a 
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high prevalence in Southern China, Southeast Asia, Northern Africa and Alaska [29]. Hildesheima and 

Wang [30] reviewed genetic association studies of NPC and found consistent evidence for associations 

with a handful of genes, including immune-related HLA class I genes, the DNA repair gene, 

RAD51L1, cell cycle control genes MDM2 and TP53 and the cell adhesion/migration gene, MMP2. 

Two recent independent genome-wide association studies (GWAS) supported the HLA region as an 

NPC risk locus in Cantonese [31] and Taiwanese populations [32]. A Ras-independent pathway  

in the natural killer cell-mediated cytotoxicity (NK cell pathway) [33], regulates the role of NK cells  

in the immune response and involves HLA genes. Thus, we hypothesize that interactions among 

polymorphisms involved in the NK cell pathway may have a synergistic effect on the pathogenesis  

of NPC. 

In this paper, we introduce a novel weighted risk score-based multifactor dimensionality reduction 

(WRSMDR) method for detecting and characterizing high-order gene-gene interactions in case-control 

studies. This WRSMDR method uses the Bayesian posterior probability of each genotype combination 

as a quantitative measure of disease risk and computes the proportion of each genotype combinations in 

all samples as the weight. WRSMDR exhaustively searches all possible combinations of polymorphisms 

to identify the one that can divide the samples into the best risk sub-groups. We first evaluated 

WRSMDR using simulated multi-locus data with epistatic effects and then compared it to the original 

MDR method. Next, we applied the WRSMDR method to identify multiple single-nucleotide 

polymorphisms (SNP) associated with nasopharyngeal carcinoma. 

2. Results and Discussion 

Section 3.1 describes the WRSMDR method in detail. The MDR software package was downloaded 

from [34]. To compare the WRSMDR and MDR methods, we defined four rates: 

Specific detection rate = the proportion of simulated datasets in which the true model was detected 

as the overall best model [23]. 

Detection rate = the proportion of simulated datasets in which a multi-locus model, including the 

true model, was detected as the overall best model [23]. 

Error rate = the proportion of simulated datasets in which the overall best model did not include the 

true model. 

No detection rate = the proportion of simulated datasets in which the method did not detect any 

statistically significant model. 

2.1. Comparison of WRSMDR with MDR 

We applied the WRSMDR and MDR methods to balanced and imbalanced simulated datasets,  

and the results are shown in Tables 1 and 2, respectively. For the balanced datasets of two- and  

three-locus models, there was no significant difference between the detection rate and specific 

detection rate for the two methods (p > 0.05). The detection rates of the WRSMDR and MDR methods 

were 100% for the two- and three-locus simulated datasets. For the balanced four-locus datasets, the 

specific detection rates of the WRSMDR and MDR were 92% and 46%, respectively, and this 

difference was statistically significant (p < 0.05). The detection rates of the WRSMDR and MDR were 

97% and 56%, respectively, and this difference was also statistically significant (p < 0.05). For the  
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100 balanced simulated four-locus datasets, the WRSMDR method did not produce statistically 

significant results in two datasets and produced error results in one dataset; the MDR method produced 

error results in 44 datasets. For the imbalanced datasets of three-locus models, there was no significant 

difference between the detection rate and the specific detection rate of the two methods (p > 0.05). For 

the imbalanced two- and four-locus models, the specific detection rate and the detection rate of the 

WRSMDR method were higher than the rates of the MDR method, and their respective differences 

were statistically significant (p < 0.05). In the simulated datasets, the WRSMDR method demonstrated 

reasonable power to identify high-order gene-gene interactions, and it was more effective than the 

MDR method at detecting four-locus models. 

Table 1. Power comparison of the MDR and weighted risk score-based multifactor 

dimensionality reduction (WRSMDR) methods in balanced datasets. 

Evaluation Indicator 
Two-Locus Three-Locus Four-Locus 

WRSMDR MDR WRSMDR MDR WRSMDR MDR 

Specific Detection Rate 0.87 0.83 0.74 0.83 0.92 0.46 
Detection Rate 1 1 1 1 0.97 0.56 

Error Rate 0 0 0 0 0.01 0.44 
No Detection Rate 0 0 0 0 0.02 0 

Table 2. Power comparison of the MDR and WRSMDR methods in imbalanced datasets. 

Evaluation Indicator 
Two-Locus Three-Locus Four-Locus 

WRSMDR MDR WRSMDR MDR WRSMDR MDR 

Specific Detection Rate 0.96 0.61 0.57 0.66 0.94 0.68 
Detection Rate 1 0.81 0.85 0.85 0.98 0.79 

Error Rate 0 0.19 0.03 0.15 0.01 0.21 
No Detection Rate 0 0 0.12 0 0.01 0 

2.2. Application of WRSMDR to NPC Data 

Table 3 summarizes the p-value, consistency and weighted risk score from the WRSMDR analysis 

of the NPC dataset for each two- to five-locus combinations. One three-locus model, which had the 

maximum consistency and the maximum weighted risk score, p < 0.001, was selected by using the 

WRSMDR method. This three-locus model included rs2860580, rs11865086 and rs2305806. Table 4 

summarizes the disease probabilities estimated by Bayes’ posterior probability formula for each 

genotype combination of the three loci. The NPC risk of the different genotype combinations increased 

from approximately one-quarter of to three-times greater than the cumulative risk of the disease. The 

result showed that the influence on disease risk of a genotype at one locus is dependent upon the 

genotypes at the other two loci, which is evidence of gene-gene interactions. 

We also applied the MDR method to explore the NPC data in a further step. The result is shown in 

Table 5. The best model detected by the MDR method was a three-locus combination, which was the 

same as the model detected by the WRSMDR method. For the four- and five-locus models, the results 

of the MDR method were different from the WRSMDR method. Because of the different evaluation 

measures for the best model, we cannot evaluate which method is better in real, unknown NPC data. 
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However, the three-locus model, which was detected by two methods, may be meaningful for 

understanding the pathogenesis of nasopharyngeal carcinoma. 

Table 3. Summary of the results for applying the WRSMDR method to the nasopharyngeal 

carcinoma (NPC) dataset. 

Number 
of Locus 

SNPs 
Weighted 
Risk Score 

Consistency p 

2 rs2860580-rs11865086 1.324 10 <0.001 
3 rs2860580-rs11865086-rs2305806 * 1.332 10 <0.001 
4 rs2860580-rs11865086-rs836475-rs4976028 1.266 4 <0.001 
5 rs2860580-rs11865086-rs836475-rs4976028-rs6488297 1.236 7 <0.001 

* The three-locus combination was selected as the best model by the WRSMDR method. 

Table 4. Summary of the disease probability estimated using Bayes’ posterior probability. 

Genotype Combination of 
the Three SNPs a 

Disease Probability b Fold Increase in Risk c Weight of Genotype d 

GG-CC-AG 0.00077 3.07 0.03 
GG-CC-AA 0.00045 1.78 0.03 
GG-AC-AA 0.00038 1.51 0.09 
GG-AC-AG 0.00037 1.49 0.11 
AG-CC-AG 0.00036 1.43 0.03 
GG-AA-AA 0.00034 1.36 0.08 
AG-AC-AA 0.00032 1.29 0.09 
GG-AA-AG 0.00031 1.24 0.08 
GG-AA-GG 0.00031 1.23 0.02 
GG-AC-GG 0.00027 1.07 0.03 
AG-CC-AA 0.00026 1.03 0.02 
AG-AC-GG 0.00019 0.77 0.03 
AG-AC-AG 0.00019 0.77 0.09 
AG-AA-AG 0.00017 0.67 0.07 
AG-AA-GG 0.00016 0.66 0.02 
AG-AA-AA 0.00016 0.62 0.08 
AA-AC-AG 0.00013 0.52 0.02 
AA-AC-AA 0.00010 0.39 0.02 
AA-AA-AG 0.00008 0.33 0.01 
AA-AA-AA 0.00006 0.26 0.01 

a The three SNPs = rs2860580-rs11865086-rs2305806; b the disease probability is calculated by Bayes’ 

posterior probability formula, which represents the disease probability of an individual who carries a specific 

multi-locus genotype combination; c the fold increase in risk compared to the cumulative risk of NPC;  
d the weight of the genotype is the proportion of samples with the specific genotype combination. 

The three SNPs are located in the HLA-A, MAPK3 and VAV1 genes, which play important roles in 

the NK cell pathway. NK cells are lymphocytes distinct from B- and T-cells that induce the  

perforin-mediated lysis of tumor cells and virus-infected cells, and the NK cell pathway regulates the 

role of NK cells in the immune response. The highest NPC risk among the three-locus genotype 

combinations was three times greater than the cumulative risk of the disease, which indicates that this 
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pathway may be associated with NPC. To the best of our knowledge, this is the first report describing a 

three-locus interaction associated with NPC, and the results of this study therefore provide new 

insights into the pathogenesis of NPC. 

Table 5. Summary of results applying the MDR method to the NPC dataset. 

Number of 
Locus 

SNPs 
Prediction 
Error (%) 

Cross-Validation 
Consistency 

p 

2 rs2860580-rs11865086 41.65 9/10 <0.001 
3 rs2860580-rs11865086-rs2305806 * 40.48 10/10 <0.001 
4 rs2860580-rs11865086-rs2305806-rs2115485 41.31 8/10 <0.001 

5 
rs2860580-rs11865086-rs2305806 

-rs2115485-rs7166547 
45.35 5/10 <0.022 

* The three-locus combination was selected as the best model by MDR. 

2.3. The Advantages and Limitations of WRSMDR 

The WRSMDR method provides several advantages. First, similar to the original MDR method, the 

WRSMDR method is a non-parametric approach and assumes no particular genetic model; Second, the 

WRSMDR method provides a more robust quantitative measure of disease risk and reveals more 

information regarding the effect of certain genotype combinations on the disease risk, and this also 

represents an important difference from the MDR method, which only discretized the risk into high 

and low. Our results showed that the WRSMDR method had more power than the MDR method in 

detecting four-locus gene-gene interactions in the simulated datasets. For the balanced four-locus 

datasets, the specific detection rates of the WRSMDR and MDR method were 92% and 46%, 

respectively. For the imbalanced four-locus datasets, the specific detection rates of the WRSMDR and 

MDR method were 94% and 68%, respectively. The reason for this difference may lie in the fact that 

the MDR method is vulnerable to false positive and false negative errors when the sample size is small 

or when the number of simultaneously detected loci is large. In the case of this scenario, the number of 

cases and controls with a certain genotype combination is very small, and a small change in the 

frequency can change the classification to the opposite result. With the WRSMDR method, the 

quantitative measure of the disease risk was effected less than binary classification values in this 

scenario; Third, the WRSMDR method uses a weighted risk score rather than classification accuracy 

as the evaluation measure of the multi-locus interaction. The goal of MDR is to search a locus 

combination with maximum classification accuracy. For imbalanced datasets, classifiers seeking an 

accurate performance are not suitable. The imbalanced dataset can cause a seriously negative effect on 

classification accuracy [35]. For extreme situations, the maximum accuracy may occur when all of the 

data classify into the majority class. Foster gave a summary of the related issues in [36]. Weighted  

risk scores are based on the disease probability of genotype combinations. Disease probability was a 

continuous value, which avoids losing information that might be lost when probabilities are discretized 

into a binary classification value. Thus, the imbalanced dataset has less negative effect on the weighted 

risk score than classification accuracy. In the simulated imbalanced datasets, the detection rates of the 

WRSMDR method were higher than for the MDR method for the two- and four-locus model, and the 

WRSMDR method had a reasonable ability to deal with imbalanced data. Moreover, the WRSMDR 
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method provides hypothesis testing for the best model by evaluating the weighted risk score, and only 

a locus combination with p < 0.01 may be selected. These measures provide WRSMDR with reasonable 

power to identify interactions among two or more loci in relatively small samples. 

However, similar to MDR, WRSMDR has the limitation of being computationally intensive.  

A genome scan with hundreds or thousands of polymorphisms requires robust machine learning 

algorithms, as all of the possible multi-locus combinations cannot be exhaustively searched. This 

requirement, however, is a limitation of any multi-locus method that does not first condition on  

a particular locus showing an independent main effect (e.g., stepwise logistic regression) [5]. 

Consequently, we are currently evaluating machine learning strategies to optimize the selection of 

combinations of polymorphisms, such as greedy algorithms and parallel genetic algorithms. 

3. Experimental Section 

3.1. WRSMDR 

With the WRSMDR method, the disease probability of an individual carrying a multi-locus 

genotype combination was used to assess the susceptibility of the genotype combination, which was 

denoted as P(D/G), with D and G representing the disease status and the genotype combination, 

respectively. P(D/G) is a measure of the disease risk for a genotype combination, with larger values 

corresponding to a higher risk of the genotype leading to disease. With a known cumulative risk of the 

disease and the genotype frequencies in cases and normal controls, this value can be calculated from 

the Bayesian posterior probability formula as follows: 

          
)()/()()/(

)()/(
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In this equation, P(D) represents the cumulative risk of the disease, P(N) = 1 − P(D). P(G/D) and 

P(G/N) represent the genotype combination frequencies in the case and control populations, 

respectively, and these values can be estimated from the case-control genotype dataset. The formula is 

as follows: 
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In this equation, dd and dn represent the number of individuals who carry the genotype combination 

in the case and control groups, respectively, and d and n represent the size of the case and control 

groups, respectively. 

Suppose we want to investigate k-way gene-gene interactions. There are 3k different genotypic 

combinations at most. We denote Gj (where j = 1, 2,...3k) as the genotype combinations of k loci, and 

we denote the relative risk of individuals with genotype Gj as follows: 
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The extent of increased or decreased risk can be defined as follows: 
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The weight of genotype Gj can be defined as follows: 
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Based on the “common disease-common variant” hypothesis, we omit the genotype combinations 

with weights less than 0.01, and the weighted risk score is defined as follows: 
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01.0  (6)

Instead of performing a direct search of the multi-locus combinations with the maximum score 

among the SNP set, which is liable to result in some false-positive loci in the detected multi-locus 

combinations, we used a random sampling method to repress noise in the identification of the 

susceptibility of multi-locus combinations. This procedure included three steps. In Step 1, 90% of the 

samples were randomly selected. The weighted risk scores of k-locus combinations (k ϵ {2,3,4,5}) 

were computed based on the randomly selected samples, and the combination with the maximum score 

within each of the k-locus combinations was selected. After ten repeats for each k-locus combination, 

the multi-locus combination that demonstrated the maximum consistency, that is, the one appearing 

most frequently, was chosen as the candidate susceptibility k-locus combination. The average score of 

each of the selected k-locus combinations was then computed; In Step 2, the significance level of  

each candidate k-locus combination was assessed with the permutation test. Specifically, for every 

1000 permutation datasets simulating the null hypothesis of no association, the weighted risk score of 

the multi-locus combination was computed using the above method. The p-value was then determined 

according to the proportion of the permutation datasets with a greater weighted risk score than the 

average score. The null hypothesis was rejected when the Monte Carlo p-value derived from the 

permutation test was less than 0.01; In Step 3, among the candidate locus combinations, the one with  

p < 0.01, the maximum consistency, and the maximum average weighted risk score was selected as the 

final susceptibility multi-locus combination. Figure 1 describes the procedure of the WRSMDR and 

MDR methods. Additional details describing the MDR method are available in the literature [5–10]. 

3.2. Data Simulation 

To evaluate the WRSMDR method, we simulated six sets of 100 replicates using three different 

multi-locus genetic models. Three sets were balanced, and the simulated dataset was composed of  

400 cases and 400 controls. The other three sets are imbalanced, and the simulated dataset was 

composed of 1200 cases and 400 controls. All the genetic models and datasets were generated using 

the Genetic Architecture Model Emulator for Testing and Evaluating Software (GAMETES) [37].  

In particular, GAMETES is designed to generate epistasis models that we refer to as pure and strict. 

Purely and strictly epistasis models constitute the most difficult type of disease association model to 

detect, as such associations may be observed only if all n-loci are included in the disease model. This 

requirement makes these types of models an attractive gold standard for simulation studies of complex 
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multi-locus effects. The parameters of the three models are shown in Table 6. A large heritability 

implies a strong correlation between phenotype and genotype, such that loci with an effect on the trait 

can be more easily detected [38]. To demonstrate the detection ability of the WRSMDR method in 

difficult models, we selected a relatively small value of 0.05 for the heritability. Datasets simulated 

using GAMETES demonstrated two types of attributes (SNPs): predictive attributes and non-predictive 

attributes. Predictive attributes were those specified in the genetic model, whereas non-predictive 

attributes included all other attributes with no specified association with affected status (i.e., case or 

control). The six datasets consisted of 10 SNPs, including 2, 3 and 4 predictive SNPs and up to  

8 randomly generated non-predictive SNPs. 

Figure 1. The procedure for the WRSMDR and MDR methods. 

Divide data into 10 subsets

The procedure for MDR

Classify subsets into 9 training dataset and 1 
testing dataset

For each possible k-locus combination of SNPs, 
compute the misclassification error using the 

training data

Choose the k-locus combination that has the 
minimum misclassification error

For the selected combination, compute the 
prediction error using the testing data

Repeat for each training and testing 
data?

For the selected combinations of each k-locus, 
compute cross-validation consistency and  the 

average prediction error

Repeat for each k-locus combination
(k = 2, 3, 4, 5) ?

For each k-locus combination, choose the best 
combination that has minimum average 

prediction error

Among the best combinations, choose the best 
one that has the minimum average prediction 

error and maximum cross-validation 
consistency

No

YesYes

90% of the samples were randomly selected

The procedure for WRSMDR

For each possible k-locus combination of SNPs, 
compute the weighted risk score 

Choose the k-locus combination that has the 
maximum weighted risk score 

Repeat for each k-locus combination
(k = 2, 3, 4, 5) ?

No

Repeat for next random sampling?

For the selected combinations of each  k-locus, 
compute repetition times (consistency) and the 

average weighted risk score  

For each  k-locus combination, choose the best 
combination that has maximum consistency

For the best combination of each k-locus, the 
significance level of average weighted risk 
score  was assessed with permutation test

Among the best combinations, choose the best 
one that has the maximum consistency, 

maximum average weighted risk score, and 
p < 0.01

No

No

Yes

Yes

For the best combination of each k-locus, the 
significance level of cross-validation 

consistency  was assessed with permutation test
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Table 6. The parameter settings of the three models. 

Parameters Two-Locus Model Three-Locus Model Four-Locus Model

Number of predictive SNPs 2 3 4 
Number of non-predictive SNPs 8 7 6 

Heritability 0.05 0.05 0.05 
MAF of predictive SNPs 0.2 0.2 0.2 

MAF of non-predictive SNPs (0.01~0.5) (0.01~0.5) (0.01~0.5) 

MAF = minor allele frequency. 

3.3. NPC Data 

This NPC data were based on a large GWAS of NPC that was performed on Southern Chinese 

individuals by genotyping 620,901 SNPs in 1615 cases and 1025 controls of persons of Han Chinese 

descent from Guangdong and an additional 1008 Singapore Chinese controls, who share the same 

ancestral origin with Han Chinese individuals in Southern China [31]. After stringent quality control 

filtering, 464,328 autosomal SNPs in 1583 cases and 1894 controls (972 Guangdong subjects and  

922 Singapore subjects) were retained for statistical analysis. Principal component analysis (PCA) 

showed that the 1583 cases and 972 Guangdong controls were genetically well matched, although  

the inclusion of the 922 Singapore controls caused moderate population stratification in the GWAS  

sample [31]. Consequently, only the genome-wide data for 1583 cases and 972 Guangdong controls of 

Guangdong subjects were included in this study. To extract the SNP data for the NK cell pathway, we 

performed three steps. In step 1, we identified the genes in the NK cell pathway based on the BioCarta 

database; In step 2, we selected the SNPs within 20-kb upstream or downstream of each gene’s coding 

region (National Center of Biotechnology Information’s human genome 18, hg18 database); In step 3, 

for each SNP selected in step 2, we performed genotype-phenotype association analysis using the 

Cochran-Armitage trend test with PLINK (v1.07) [39]. We selected the SNP with the maximum  

chi-square value to represent each gene. In this way, we obtained 19 SNPs involved in the NK cell 

pathway (see Table 7). 

3.4. Data Analysis 

Prior to applying WRSMDR to the NPC dataset, the method was evaluated using the simulated 

multi-locus datasets. For every 100 replicates generated by each of the three multi-locus epistasis 

models, we applied the WRSMDR algorithm as described in the subsection “WRSMDR”. An 

exhaustive search of all possible two- to five-locus models was performed. Then, the WRSMDR 

method was applied to the NPC dataset with the cumulative risk of the disease equal to 0.00025 [29]. 

Finally, we used a chi-square test to evaluate significant differences among the four rates between the 

WRSMDR and MDR methods. 
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Table 7. NK cell pathway SNPs involved in this study. 

SNP Chr. Locus MA Chi-Square Value 

rs2860580 6 HLA-A A 89.95 
rs11865086 16 MAPK3 C 14.96 
rs4976028 5 PIK3R1 G 9.98 

rs11150675 16 LAT A 7.47 
rs6488297 12 KLRC1 A 7.05 
rs941831 10 ITGB1 G 5.88 
rs836475 7 RAC1 A 4.80 

rs2733840 12 KLRC4 G 3.02 
rs2733840 12 KLRC3 G 3.02 

rs10109834 8 PTK2B C 2.71 
rs2115485 9 SYK A 2.68 
rs2305806 19 VAV1 G 2.57 
rs7166547 15 MAP2K1 A 2.35 
rs744167 12 PTPN6 A 1.97 

rs7301582 12 KLRC2 A 1.45 
rs3019238 11 PAK1 G 1.23 
rs7645550 3 PIK3CA A 0.76 

rs11214093 11 IL18 G 0.70 
rs12310310 12 KLRD1 A 0.58 

rs4780 15 B2M G 0.23 

Chr., chromosome; MA, minor allele. 

4. Conclusions 

In this study, we introduced WRSMDR as a method for detecting gene-gene interactions in  

case-control studies. We compared the WRSMDR and MDR methods in simulated datasets. Our result 

showed that the WRSMDR method had reasonable power to identify high-order interactions in 

simulated datasets. In particular, for the four-locus datasets, the detection rate and specific detection 

rate of the WRSMDR method were higher than the MDR method, whereas the error rate of the 

WRSMDR method was lower than the MDR method; these differences were statistically significant. 

The WRSMDR method was more effective than the MDR method at detecting four-locus models in 

the simulated datasets. Moreover, the WRSMDR method reveals more information regarding the effect 

of genotype combinations on the disease risk. We then applied WRSMDR to identify gene-gene 

interaction effects in the NK cell pathway related to the risk of NPC, and we found a statistically 

significant, high-order interaction among three polymorphisms. For ease of use, the source code and 

binaries are freely available for download at [40]. However, the WRSMDR method has the limitation 

of being computationally intensive, and we are currently exploring new strategies to optimize  

this approach. 
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