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Abstract: In the present work, we have studied whether cell death could be induced in 

cortical neurons from rats subjected to different period of O2 deprivation and low glucose 

(ODLG). This “in vitro” model is designed to emulate the penumbra area under ischemia. 

In these conditions, cortical neurons displayed loss of mitochondrial respiratory ability 

however, nor necrosis neither apoptosis occurred despite ROS production. The absence  

of cellular death could be a consequence of increased antioxidant responses such as 

superoxide dismutase-1 (SOD1) and GPX3. In addition, the levels of reduced glutathione 

were augmented and HIF-1/3α overexpressed. After long periods of ODLG (12–24 h) 

cortical neurons showed cellular and mitochondrial membrane alterations and did not 

recuperate cellular viability during reperfusion. This could mean that therapies directed 

toward prevention of cellular and mitochondrial membrane imbalance or cell death through 

mechanisms other than necrosis or apoptosis, like authophagy, may be a way to prevent 

ODLG damage. 

Keywords: cortical neurons; cerebral ischemia; ROS formation; antioxidant defenses; 
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1. Introduction 

The brain requires a continuous supply of oxygen and glucose to maintain central nervous system 

(CNS) functions. The deprivation resulting from stroke or respiratory failure, can rapidly lead to 

transient or permanent neuronal injury as consequence of reduced energy bioavailability; pump 

function or membrane integrity [1]. Cerebral ischemia is an important cause of death and working 

disability in humans [2,3]. Caspase-3, an effecter enzyme involved in apoptosis [4], may contribute to 

the pathophysiology of cerebral ischemia. Other mechanisms including inflammation and angiogenesis 

together with ROS formation contribute to cell death in stroke [5–8]. However, ROS production 

protects against H2O2 toxicity [9] and may regulate signal transduction pathways under  

physiological [10,11] and pathological conditions [12–15]. However, controversial data suggests that 

glutamate may play a neurotoxic role in cerebral ischemia [16–23]. 

Cerebral artery occlusion can induce apoptosis or necrotic cell death. This occlusion may induce 

differential damages depending of the lack of O2 and nutrients. These zones are the “core” area and the 

“penumbra” area, which are rendered functionally silent but retain alive cells [24]. Many studies have 

shown that neurons from the ischemic penumbra undergo apoptosis rather than necrosis, suggesting 

that this area can be potentially and functionality recovered [25–27], however, the molecular 

mechanisms involved are not well known. 

Hypoxia-inducible factors (HIFs) are transcriptional mediators of adaptive responses that decrease 

oxygen availability, a characteristic of ischemic-hypoxia conditions [28]. HIFs are ubiquitously 

expressed in several mammalian cell types [29]. Since its discovery, the HIFs cascade has been 

extensively studied and plays a role in both physiological, as tissue repair, and pathological  

process [30–32], as ischemia [33,34]. 

The model of oxygen deprivation-low glucose (ODLG) chosen for our study is a reliable and 

validated method to study cellular damage in cortical neurons subjected to partial ischemia (penumbra 

area). In our study, cultured cortical neurons were subjected to oxygen-deprivation and low glucose 

(ODLG model). We studied whether neuronal damage, at different ODLG times (1, 3, 5, 12, and 24 h) 

could exist under these vulnerability conditions, by evaluating whether (1) ROS formation and 

expression of antioxidant enzymes (SOD-1 and GPX3) together with the mitochondrial enzyme 

cytochrome oxidase (CO) might be differentially regulated under ODLG; (2) to study whether  

HIF-1/3α stabilization could prevent neuronal loss in these cortical neurons; (3) evaluate whether 

cellular and membrane mitochondrial integrity were affected by measuring membrane potential after 

ODLG as well as (4) possible cellular dysfunctions of neurotransmission during reperfusion by testing 

Asp, Glu, Gly and GABA release by HPLC. 

2. Results 

2.1. Presence of “HIF” Factor during Hypoxia 

The first objective was to demonstrate whether the cortical neurons cultured, under hypoxia, are 

truly under anoxic conditions. It has been reported that transcription factors (HIF) can be induced in 

cellular and animal models of cerebral ischemia [35,36]; consequently, the presence of this factor in 

our preparations was checked by RT-PCR. Data in Figure 1 indicate that under our experimental 
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conditions, cortical neurons significantly upregulated HIF-1α and HIF-3α transcription factors. 

Reperfusion reversed HIF-1α and HIF-3α upregulation although the values were always higher than 

the controls. 

Figure 1. Induction of HIF 1α (A) and HIF-3α gene expression (B) in cortical neurons 

after exposure to ODLG conditions during 24 h. C = control, ODLG = 24 h treatment, 

ODLG + R = 24 h treatment followed by 24 h reperfusion. ns = no significant (vs. control) 

(***) or (•••) = p < 0.005; (***) = vs. control; (•••) = vs. ischemia with or  

without reperfusion.  

 

Figure 2. Effect of different ODLG treatment time on ROS formation.  

Reperfusion = Cortical neurons after the ODLG treatments were subjected to 24 h  

under a normal atmosphere after the ODLG treatment. Results are means ± SEM of three 

experiments with cells from different cultures, each one performed in triplicate with 

different batches of cells (9 measurements/condition). ns = no significant (vs. control);  

(***) or (•••) = p < 0.005, (*) (vs. control), (•) (vs. ischemia with or without reperfusion). 
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2.2. ROS Formation 

Since oxygen radicals (ROS) are suspected to be involved in cellular injury and death, we analyzed 

whether hypoxia and hypoglycemia (ODLG) could modulate ROS production “in vitro”. Results in 

Figure 2 indicate that cortical neurons subjected to these hypoxic and hypoglycemic conditions, 

generated ROS at the moment in which the cells were in a normal atmosphere. This ROS production 

increased progressively under hypoxia. In addition, when these neurons were subjected to 24 h of 

reperfusion, ROS production was completely reversed, reaching values similar to those in control cells. 

2.3. Cell Viability 

Since ROS formation could play a pivotal role in cell death, cell viability was tested by  

two methods, crystal violet, which measures cell viability (Figure 3A) and the XTT assay, which 

measures the metabolic activity of these neurons (Figure 3B). The crystal violet test showed an 

absence of neuronal loss in cortical neurons at all studied times (Figure 3A). However, the XTT assay 

showed a time-dependent loss of cell viability (Figure 3B). Reperfusion did not reverse the loss of 

viability in cells subjected to 5 to 24 h of ODLG, although at shorter times showed levels similar  

to controls. 

Figure 3. (A) Cells were subjected to ODLG for 0 to 48 h before evaluating cell viability 

with the crystal violet method; (B) Cells were subjected to 3, 5 or 24 h of ODLG times, 

followed or not by reperfusion. Then, cell viability was measured by the XTT assay. 

Results are expressed as means ± SEM from two/three experiments with cells from 

different cultures, each experiment performed in triplicate with different batches of cells 

(6–9 measurements/condition). ns = no significant (vs. control); NS = no significant  

(vs. ischemia with or without reperfusion); (*) = p < 0.05 (vs. control); (***) = p < 0.005 

(vs. control). 

 

2.4. Cellular Death (LDH Assay) 

The lack of cellular viability in the XTT assay has two interpretations: (1) cell death or (2) loss of 

metabolic ability. In order to check these options, LDH activity was also measured to evaluate necrotic 

death and caspase-3 activation (a sensor of apoptosis) was quantified. Results in Figure 4A show that 

cortical neurons at 1 to 24 h of ODLG did not significantly increase their LDH release. 
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Figure 4. Evaluation of cellular death. (A) Necrosis was evaluated by LDH release;  

(B) Apoptosis was evaluated by caspase-3 activity. Results are means ± SEM of  

three experiments with cells from different cultures, each one was performed in triplicate 

with different batches of cells (9 measurements/condition). ns = no significant (vs. control); 

(••) = p < 0.01 (vs. ischemia with or without reperfusion); (***) (vs. control) or  

(•••) = p < 0.005 (vs. ischemia with or without reperfusion).  

 

2.5. Caspase-3 Activation 

Regarding caspase-3 activity, there was a significant proportional decline in caspase-3 activity with 

the increase in ODLG times (Figure 4B). Reperfusion did not reverse the caspase-3 inactivation 

produced by 1–5 h of ODLG. In fact, caspase 3 activity was even lower during reperfusion at this time. 

The inhibitory effects were more evident after 1–3 h of ischemia. Caspase-3 was significantly 

overproduced at 24 h during reperfusion as compared to values obtained in the non reperfused cells. 

2.6. Cytochrome Oxidase 

Results in Figure 5 show that cytochrome oxidase activity (CO), the terminal enzyme of the 

respiratory chain, decreased during the first hour of ODLG but returned to basal values at longer 

hypoxia times. During reperfusion, CO decreased at 1 h of ODLG and reached values close to control 

levels at 3 to 48 h of ODLG. 

2.7. Possible Mechanisms which Protect against ROS Damage 

As our results do not seem to indicate the existence of cellular death, even despite the high ROS 

formation, it seems possible that cortical neurons were able to activate defense mechanisms against 

ROS levels. In fact, glutathione (Figure 6), SOD1 and GPX3 (Figure 7A,B) levels were significantly 

increased during the first 24 h of ODLG treatment. At 48 h of ODLG, glutathione reached values 

similar to controls. Reperfusion reversed the SOD1 and GPX3 upregulation although these values still 

remained higher than in controls (Figure 7A,B). Conversely, during reperfusion, when cells were 
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subjected to 1 to 5 h of hypoxia, glutathione levels were higher than in controls. However, these values 

were similar to controls at 24 and 48 h of ischemia (Figure 6). 

Figure 5. Effect of 1 to 48 h of ODLG on cytochrome oxidase activity. Results are  

means ± SEM in two experiments with cells from different cultures, each one performed  

in triplicate with different batches of cells (6 measurements/condition). ns = not significant 

(vs. control); NS = no significant (vs. ischemia with or without reperfusion); (*) = p < 0.05 

(vs. control); (**) = p <0.01 (vs. control); (•••) = p < 0.005 (vs. ischemia with or  

without reperfusion). 

 

Figure 6. Action of 1, 3, 5, 24 and 48 h of ODLG treatment on reduced glutathione levels, 

before and after 24 h of reperfusion. Results are means ± SEM of two experiments with 

cells from different cultures, each one performed in triplicate (6 measurements/condition). 

ns = no significant (vs. control); NS = no significant (vs. ischemia with or without 

reperfusion; (**) (vs.control) or (••) (vs. ischemia with or without reperfusion) = p < 0.01. 
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Figure 7. Effect of ODLG treatment on (A) SOD1 gene and (B) on GPX3 gene induction. 

ODLG = 24 h of ODLG exposure, ODLG + R = 24 h of ODLG exposure  

plus 24 h reperfusion. (***) (vs. control) or (•••) (ODLG vs. ODLG + R) = p < 0.005. 

 

2.8. Cellular and Mitochondrial Membrane Potential 

Twenty-four h of hypoxia plus hypoglycemia enhanced cellular membrane potential, suggesting 

that membrane depolarization was induced by ODLG (Figure 8A). However, low levels of ODLG did 

not alter the cellular membrane potential. A similar effect was observed in the mitochondrial 

membrane potential (PMM), which was increased at 12 h of ODLG (Figure 8B), again suggesting 

depolarization. These effects were not reversed during reperfusion. Shorter ODLG treatment times  

(1–3 h) did not affect the mitochondrial membrane potential. 

Figure 8. (A) Effect of 1, 2, 3 and 24 h of ODLG exposure on cell membrane potential; 

(B) Effect of ODLG on cell mitochondrial membrane potential at different ODLG 

exposure time. Results are means ± SEM of two experiments with cells from  

different cultures, each one performed in triplicate with different batches of cells  

(6 measurements/condition). ns = not significant (vs. control); NS = no significant  

(vs. I and IR); (•)= p < 0.05 (vs. I and IR) and (***)= p < 0.005 (vs. control).  

 

2.9. Cellular Functionality (Amino Acid Release) 

Finally, since neurotransmission regulates neuronal function, we used HPLC to measure amino acid 

neurotransmitter release mediated by high KCl in neurons subjected to ODLG for 24 h as well as in 
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controls neurons (Figure 9). Our data indicate that Gly and GABA release were affected as compared 

to control release in controls. Gly release was higher in control than in ODLG-treated neurons; 

however the high KCl-induced GABA release was higher in treated neurons as compared to their 

controls. Nevertheless, ODLG treatment did not affect Asp and Glu release, suggesting that ischemia 

had only affected inhibitory synapses “in vitro”. 

Figure 9. Effect of ODLG on amino acid neurotransmitter release evoked by high 

potassium levels (60 mM). Results are means ± SEM of two experiments with cells from 

different cultures, each one performed in triplicate with different batches of cells  

(6 measurements/condition). The statistical significance was assessed by comparisons 

between controls and cells subjected to ODLG for 24 h. ns = not significant (vs. control); 

(*) = p < 0.05 (vs. control); (***) = p <0.005 (vs. control). 

 

3. Discussion 

3.1. HIF1α and HIF3α Are Upregulated during ODLG 

Our data clearly demonstrate that, under ODLG hypoxia factors HIF1α and HIF3α are upregulated 

in cortical neurons “in vitro”. This suggests that cortical neurons could develop adaptative responses to 

O2 deprivation “in vitro”. Although HIF1α levels were lower during reperfusion, they were still higher 

than in control conditions. In concordance with our findings, several authors have reported that HIF 1α 

and HIF 3α upregulation can prevent cell death from hypoxia [37,38]. Wu et al. [39] point out that 

HIF-1α contributes to early brain injury (EBI) after subarachnoid hemorrhage consisting of cell 

apoptosis, blood-brain-barrier (BBB) disruption, and brain edema through VEGF upregulation. These 

detrimental effects were prevented in the presence of the VEGF inhibitor, 2ME2. Our findings suggest 

that HIF-1α and HIF-3α upregulation may lead to adaptative responses against O2 deprivation in 

cortical neurons during hypoxia and even during reperfusion because although during this time the 

levels of HIF-1α and HIF-3α were decreased, the levels of these molecules were slightly higher than  

in controls. 
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3.2. ROS Generation and Antioxidant Mechanisms 

Unexpectedly, cortical neurons were able to survive in our experimental conditions of ODLG 

despite the very high ROS production. Thus, we are interested to understand the mechanisms involved 

in cell protection during this time. Our data indicate that increased glutathione together with SOD1  

and GPX3 overproduction under ODLG and even during reperfusion may prevent ROS-mediated 

damage in cortical neurons “in vitro”. In support of the antioxidant effects observed in our study,  

Chen et al. [40] showed that SOD1 was increased during the ischemia in astrocytes culture following 

oxygen glucose deprivation and reperfusion. 

Thus, SOD-1 overexpression may be an essential antioxidant mechanism that prevents neuronal 

death. Another study in rabbit spinal cords agreed with our findings and indicated that SOD1 protected 

neuron from spinal ischemic damage by both decreasing lipid peroxidation and maintaining catalase 

levels [41]. 

Collectively, these observations suggest that SOD-1 together with GPX3 overexpression is an 

adaptative response to oxygen deprivation that also occurred in our study. The reduced antioxidant 

SOD1 and GPX3 levels observed during reperfusion could decrease antioxidant responses during this 

time; this would coincide with strong caspase-3 activation during the reperfusion of cortical neurons 

subjected to ODLG during 24 h in the present study. 

Another point deserving mention is the formation of ROS during hypoxia/reperfusion. ROS 

formation requires O2 and, under O2 deprivation (hypoxia), cortical neurons are in an atmosphere of 

95% N2/5% CO2. ROS formation during hypoxia has been reported by several authors, who 

demonstrated ROS generation in complex III of the mitochondria respiratory chain during  

hypoxia [42]. In our opinion, the presence of ROS during hypoxia would be possible because during 

this process, NADH may accumulate. At the moment that cells are rescued from hypoxia, they have 

enough O2 to produce ROS despite the recent hypoxic conditions. Thus, ROS would not be formed 

during hypoxia although NADH might further accumulate. In fact, Livnat et al. [43] found increased 

NADH levels in the core and penumbra areas. 

3.3. Cytochrome Oxidase and ODLG 

During ODLG, cytochrome oxidase is lower during the first hour of hypoxia in cortical neurons but 

afterwards the enzyme shows a progressive recuperation in which it can even reach values similar to 

the control. This rise could reflect adaptative responses under vulnerability conditions. Cellular 

adaptation during ischemia has been previously reported by others who showed that preconditioning 

can protect against subsequent cellular insults [44–46]. 

3.4. ODLG and Cellular Death 

Although neuronal death by necrosis or apoptosis did not occur under ODLG conditions, there were 

deficits in physiological cellular respiration together with defective neurotransmission that could  

affect normal neuronal function. The decreases in metabolic ability generated during reperfusion  

could be due to ATP depletion. If ATP levels were depleted, caspase-3 might not be activated during 

reperfusion (as occurred in our experiments). As a consequence, neuronal survival could be preserved 
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during this period such as has been reported by Mattson and coworkers [47]. ATP depletion in cortical 

neurons during oxygen glucose deprivation (OGD) has been reported by others [48,49]. The lack of 

ATP does not necessarily induce cell death; thus, Yager et al. [50], studying hypoxic-ischemic damage 

in astrocytes, found that low ATP was not responsible for cell death. On the other hand, the lethargic 

state of cortical neurons during ODLG observed in our study by the XTT assay may protect them since 

such mechanisms can save energy, nutrients and O2 under vulnerable conditions. However, the lack of 

neuronal viability during reperfusion after 5 and 24 h of ODLG in our study suggests that: (1) there 

was cellular death or (2) there was an absence of recovery of the normal status during reperfusion. 

Through the crystal violet test or LDH and caspase-3 assays, our results indicated the absence of cell 

death by necrosis or apoptosis after 5 to 24 h of ODLG. Thus, we should not exclude the possibility 

that autophagy could have occurred during this time period. In fact, Arce et al. [50] showed that 

cortical neurons subjected to oxygen-glucose-deprivation (OGD) regulated BCL3, a protein involved 

in autophagy. Moreover, Zhang et al. [51] have reported that cerebral ischemia-reperfusion induces 

autophagy as a protective mechanism against neuronal injury. 

3.5. ODLG and Cellular Malfunction 

Additionally, cortical neurons may malfunction after a long period of ODLG since defective 

neurotransmission was detected together with dysfunctions in cellular and mitochondrial membrane 

potentials. Reperfusion after ischemia is a critical period that can lead to cell death as a consequence  

of mitochondrial membrane alterations during ODLG. In our study, the mitochondrial membrane 

potential increased at 12 h of ischemia, indicating membrane depolarization. However, this increase 

remained high after 24 h of reperfusion. These findings suggest that mitochondrial alterations cannot 

be reversed by reperfusion after a long ODLG treatment, so, the use of membrane protectors could 

preserve cellular integrity during this period. Our results suggest that mitochondrial alterations after 

ODLG may contribute to neuronal vulnerability even though apoptosis was not observed in our study. 

On the other hand, our results also show cellular membrane depolarization after 24 h of ODLG.  

This could affect neurotransmitter release (mainly glutamate) [47,48] under anoxia and hypoglycemia. 

Nevertheless, glutamate does not seem to be responsible for cellular death in our study, given the 

absence of cell death that was found in our experimental conditions. 

As a whole, our findings suggest that ODLG predisposes cortical neurons to cellular vulnerability 

and could resemble some neurotoxic mechanisms within the penumbra of ischemic rats and humans.  

In these conditions, cells are able to survive by inducing compensatory mechanisms that reduce 

neurodegeneration. The relevance of our findings is its potential to prevent cell death and repair 

damaged neurons in cerebral ischemia. The lack of O2 and low glucose could predispose neurons to 

vulnerable conditions as in the penumbral area, through ROS production. Nonetheless, cells are capable 

of surviving through compensatory defense/protective mechanisms under these vulnerable conditions 

(antioxidant defenses). However, part of these mechanisms could be lost at reperfusion, mainly as a 

consequence of mitochondrial membrane alteration under hypoxia. Cells under hypoxia could activate 

endogenous antioxidant mechanisms to ameliorate cell death and compensate for mitochondrial 

membrane imbalances [50]. Thus, the use of antioxidants does not seem to protect neurons during 

reperfusion because there was a reversion of ROS formation during this period. During induced ODLG, 
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neurons are able to activate endogenous antioxidant responses. Thus, the use of cellular and mitochondrial 

membrane protectors may be a good way to protect neurons during reperfusion after ischemia. 

4. Experimental Section 

4.1. Cell Isolation and Culture 

Brains from fetal (E19) rats of 19 days gestation were used. Brain neurons were obtained according 

to the procedure described by Segal [35] with minor modifications. Isolated neurons were suspended in 

EMEM medium with addition of 0.3 g/L glutamine, 3 g/L glucose, 10% FCS, 100 U/mL penicillin and 

100 µg/mL streptomycin. Cells, at a density of 106 cells/cm well, were placed on plastic Petri dishes 

treated with 10 µg/mL of poly-D-lysine, to attach them to the plates. Cells were then incubated in a 

humidified incubator with 5% CO2/95% air at 37 °C. After 72 h, the incubation medium was replaced 

with a fresh medium containing 10 µM of cytosine arabinoside to prevent glial overgrowth in the 

culture medium. Cells were studied after seven days “in vitro” (7 DIV). Cell purity was checked by 

staining cells both with cresyl violet to identify neurons and anti-GFAP antibody to identify atrocytes. 

Glial contamination was tested following the procedure from Figueroa et al. [36]. 

4.2. ODLG Treatment 

All experiments were performed at seven days of culture. The cultured medium was removed and 

replaced by an EMEM commercial medium containing 1 g/L glucose and 10% of fetal calf serum  

(low glucose). This treatment was performed on two sets of cells. Cells were placed for indicated time, 

in a chamber at 37 °C within an atmosphere of 95% N2/5% CO2 (O2 deprivation). After different times 

of ODLG, a set of cells was taken and several biochemical markers were assayed. 

Parallel control experiments were performed. In this case, the neurons were cultured with 

commercial EMEM medium plus 3 g/L of glucose under normal atmosphere (95% air/5% CO2). Thus, 

the controls were not under ODLG. 

4.3. Reperfusion 

After cells were subjected to ODLG for several periods of time (1, 3, 5, 12, 24 and 48 h), the 

medium was removed and replaced by normal medium (medium with serum plus antibiotics 

containing 3 g/L glucose plus 0.3 g/L glutamine). After this, cells were placed for 24 h, in a cell 

incubator containing 95% air/5% CO2 and 37 °C. At the end of this protocol, all parameters were 

evaluated for each experimental condition. 

4.4. Assessment of Cell Viability 

Cell viability was tested by crystal violet and the XTT assay. 

4.4.1. Crystal Violet Determination 

Cortical neurons were washed twice with PBS (8.1 mM Na2HPO4, 2.7 mM KH2PO4, 173 mM 

NaCl, pH 7.4) and then exposed to 0.2% crystal violet in 2% ethanol for 20 min. After this time, cells 
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were washed with distilled water until the excess dye was removed and then were lysed by adding 1% 

sodium dodecyl sulfate (SDS). Finally, absorbance was measured at 560 nm. 

4.4.2. XTT Determination 

This assay is based on the ability of live metabolically active cells to reduce yellow tetrazolium salt 

(XTT) to form an orange formazan dye. Thus, this conversion can only occur in living cells. The 

newly-formed formazan dye is directly quantified using a scanning multi-well spectrophotometer at a 

wavelength of 492 nm (reference wavelength 690). The amount of orange formazan formed, as 

monitored by the absorbance, directly correlates to the number of living cells. Control and treated 

neurons were washed with PBS and incubated with the XTT solution (final concentration 0.3 mg/mL) 

according to Kit specifications. After this incubation period, orange dye solution was 

spectrophotometrically quantified at a wavelength of 492 nm (reference wavelength 690 nm). Results 

were expressed as percentages as compared to control cells, which were considered as 100%. 

4.5. Measurement of ROS Formation 

To assay ROS formation, 2,7-dichlorodihydrofluorescein diacetate (H2DCF-DA), a non-fluorescent 

lipophilic reagent, was used. H2DCF-DA enters the cells, where it is transformed into  

2,7-dichlorodihydrofluorescein (H2DCF) by the action of intracellular stearases. H2DCF is oxidized to 

fluorescent DCF by hydrogen peroxide. H2DCF-DA (5 µM) was added to the cells, before subjecting 

to different ODLG conditions. After each treatment, the incubation medium was removed and the  

cells were washed twice with PBS. Finally, fluorescence was measured in an FL600-BioTek 

spectrofluorometer (Winooski, VT, USA) with filters of 485/20 nm excitation and 530/25 nm 

emission. Results are expressed as arbitrary fluorescence units (AFU). 

4.6. Lactate Dehydrogenase (LDH) Release 

For LDH determination, the culture media from the control and experimental cultures treatments 

were collected and the neurons lysed by adding 0.1 M Tris-HCl (pH 7.4), containing 0.1% Triton  

X-100, and then centrifuged at 13,000 rpm using an Eppendorf centrifuge. LDH activity was measured 

in culture medium as well as in the cells according to López et al. [52]. Activity of LDH release is 

given as a percentage compared to the total LDH content (LDH in the supernatant + LDH inside  

the cells). 

4.7. Caspase-3 Activity Measurement 

Control and treated cortical neurons were washed with PBS and lysed with cell lysis buffer  

(10 mM Tris-HCl, 10 mM NaH2PO4/Na2HPO4, pH 7.5, 130 mM NaCl, 0.5% Triton X-100,  

10 mM Na4P2O7 and 2 mM dithiothreitol (DTT). Lysates were centrifuged at 13,000× g for 5 min. 

Caspase-3 activity was measured in the supernatants. Supernatants were incubated at 37 °C for 2–4 h 

in caspase-3 assay buffer (20 mM HEPES, pH 7.5, 10% glycerol, 2 mM DTT containing 20 µM Ac. 

N-acetyl-Asp-Glu-Val-Asp-(7-amino-4-methylcoumarin (AcDEVD-AMC). The fluorogenic  

7-amino-methylcoumarin (AMC) liberated from Ac-DEVD-AMC was monitored using a spectrofluorometer 
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Bio-Tek FL 600, at excitation wavelength of 360/20 nm and an emission wavelength range 460/20. 

Enzymatic activity is expressed as arbitrary fluorescence unit after 2 h per µg protein (AFU/2 h/µg 

protein). The amount of proteins in lysed cells was monitored by Bradford [53]. 

4.8. Cytochrome Oxidase Activity 

After each treatment, the incubation medium was removed and cells were washed with PBS and 

lysed with 200 µL of 0.1 M potassium phosphate buffer pH 7.5 which contained 0.5% Triton X-100. 

The lysed cells were centrifuged at 13,000 rpm for 5 min before collecting supernatants. Reduced 

cytochrome c (7 mg) was dissolved in 1 mL of 0.1 M of potassium phosphate buffer pH 7.5 and 

dithionite was added to ensure cytochrome reduction. Excess dithionite was removed by passing the 

cytochrome c solution through a Sephadex G-25 column equilibrated with the buffer (Amersham 

Bioscience, Arlington, MA, USA). The eluyent was taken and adjusted to an optic density of  

0.7 absorbance. The extract was added to 1 mL of this solution and absorbance measured at 550 nm. 

Activity was expressed as OD/10 min/mg protein. 

4.9. Measurement of Glutathione 

After treatments, the cultured medium was removed and cells washed with PBS. The cells were 

placed under ice and 300 µL of 0.1 M of sodium phosphate-EDTA pH = 8 and 100 µL of 25% 

phosphoric acid were added to each well. The cell suspension was centrifuged at 13,000× g for 5 min 

and the supernatant was taken. Glutathione concentration was expressed as AFU/µg protein. Reduced 

glutathione was evaluated following the protocol from Hissin and Hilf [54]. 

4.10. Measurement of Amino Acid Secretion 

HPLC analysis of amino acids was performed following a procedure from Márquez et al. [55].  

The cellular medium was removed and cells were washed twice with PBS. Cells were stimulated 

during 15 min at 37 °C with 0.5 mL of fresh Locke medium containing 60 mM KCl. After stimulation, 

the solution was taken and the amino acids in the solution were dansylated with dansyl chloride. 

Separation of dansyl-derivates was carried out in a 5 µM Spherisorb-ODS-2 column (15 × 0.46 cm; 

Sigma Aldrich, St. Louis, MO, USA) using a reversed-phase high-performance liquid chromatography 

with UV detection at 254 nm. Peaks were integrated using a Spectraphysic integrator (Sigma Aldrich) 

and quantified by comparison with simultaneously-prepared amino acid standards. Cells were lysed by 

adding 0.5 mL distilled water. The lysed cells were centrifuged at 13,000 rpm in an Eppendorf 

centrifuge (Hamburg, Germany) for 5 min and the supernatants were collected and proteins were 

measured. The amount of protein in the lysed cells was quantified using the Bradford assay [31]. 

Results were expressed as nmols of neurotransmitter/mg protein. 

4.11. Membrane Potential Measurement 

Changes in the membrane potential of neurons were monitored with the fluorescent dye bisoxonol 

(bis-[1,3-diethyl-thio-barbiturate]-trimethineoxonol), according to the Waggonet method [56].  

The control neurons, and neurons after treatment were washed and incubated with 0.2 µM bisoxonol 
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for 30 min. After this treatment, bisoxonol was removed and the cells were washed with PBS and 

suspended in PBS. Finally, fluorescence was measured at wavelengths of 540 nm excitation and  

565 nm emission, and monitored with a FL600-BioTek spectrofluorimeter Fluorescence (Winooski, 

VT, USA) intensity was reported as arbitrary fluorescence units. 

4.12. Mitochondrial Membrane Potential Assay 

Mitochondrial membrane potential was measured following the protocol by Tenneti et al., [57], 

with minor modifications. Control and treated cells were washed with PBS and incubated for 30 min 

with 500 nM of tetramethylrhodamine methyl ester (TMRM) and dissolved in Locke medium  

(140 mM NaCl, 4.4 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4, 1.2 mM KH2PO4, 4 mM NaHCO3,  

5.5 mM glucose and 10 mM HEPES, adjusted to pH 7.5). Finally, cells were washed with PBS, and 

the fluorescence was measured using a FL600-BioTek spectrofluorimeter at 530/25 nm exc. and 

590/20 nm em. 

4.13. Analysis of Gene Expression 

Total RNA was isolated from 5 × 106 cells of primary neuron cultures, using a RNase mini kit from 

Qiagen, Hilden, Germany) following the manufacturer’s instructions with the optional RNase-free 

DNase step to avoid contamination with genomic DNA. RNA concentration was determined by 

spectrophotometer, reading absorbance at 260 nm and defining one optical density unit as equivalent  

to 40 µg/mL. The ratio between the absorbance values at 260 and 280 nm gave an estimation of  

RNA purity. 

4.13.1. RT-PCR Analysis 

RNasy Mini Kit (Qiagen, Valencia, CA, USA) was used for total RNA isolation. Reverse 

transcription (RT) was carried out for 1 h at 55 °C with oligodeoxythymidylate primer using 5 µg of 

total RNA from each sample for complementary DNA synthesis. 

Real time quantitative PCR to determine the levels of rat HIF1, HIF3, SOD1, GPX3 and 

housekeeping GAPDH mRNAs were performed using specific primers (See Table 1) synthesized at 

Sigma-Genosys (Oakville, ON, Canada). 

Table 1. mRNA primers. 

mRNA Primers 
HIF1α 5'-GAAACTCCAAAGCCACTTCG-3' (forward) 

5'-CTGGCTGATCTTGAATCTGG-3' (reverse) 
HIF3α 5'-GCTTATCTGTGAAGCCATCC-3' (forward) 

5'-CAACTTCTGCAATCCTCTCG-3' (reverse) 
SOD1 5'-GATGAAGAGAGGCATGTTGG-3' (forward) 

5'-CCAATGATGGAATGCTCTCC-3' (reverse) 
GPX3 5'-CATGAAGATCCATGACATCC-3' (forward) 

5'-GATGTCCATCTTGACGTTGC-3' (reverse) 
GAPDH 5'-AAGGGCTCATGACCACAGTC-3' (forward) 

5'-TTCAGCTCTGGGATGACCTT-3' (reverse) 
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4.13.2. Real-Time PCR 

The SYBR Green PCR Master Mix (Applied Biosystems, and the 7900 HT Fast Real-Time PCR 

System (Applied Biosystems, Foster City, CA, USA) were used to detect the real-time quantitative 

PCR products of reverse-transcribed cDNA samples, according to the manufacturer’s instructions.  

q-PCR conditions used are as follows: 95 °C (10 min), 40 cycles of 15 s at 95 °C and annealing for  

1 min at 60 °C. Two independent quantitative PCR assays were performed for each gene and measured 

in triplicate. Two non-template controls were run for each quantitative PCR assay, and genomic DNA 

contamination of total RNA minus controls (samples without the reverse transcriptase). 

4.14. Statistical Analysis 

Data are presented as means ± SEM of three/four independent experiments using different cell 

cultures, each one performed in triplicate with different batches of cells. Statistical comparisons 

between two or more populations were made using the ANOVA on rank test to evaluate the  

normality and variance of the data. If both parameters are confirmed then the Holme-Sidak test  

detects significant differences between groups. When one of these parameters is absent, we did a 

Kruskal-Wallis non-parametric analysis as well as Dunn’s pos Hoc test using the SigmaPlot  

11.0 software (Systat Software, Inc., San Jose, CA, USA).  

4.15. Ethics Statement 

Pregnant rats were obtained from the “Laboratory Animal form the Universidad Complutense of 

Madrid (U.C.M)”; License number #ES280790000086. The work was also approved by the University 

Animal Care Committee (C.E.A = Committee of Experimental Research and Ethics) from Universidad 

Complutense de Madrid (U.C.M); form number RD # 53/2013 for research and it was carried out in 

strict accordance with Guidelines for the Care and Use of Laboratory (European Council Directive 

86/609/EEC). All surgery was performed under sodium pentobarbital anesthesia, and all efforts were 

made to minimize suffering of animals. 

5. Conclusions 

The major points of the investigation presented here may be stated as follows: (1) Cortical neurons 

subjected to ODLG conditions (1–5 h) do not die but remain in lethargic stage. This condition protects 

neurons by saving energy and nutrients; (2) During this ODLG time cortical neurons showed 

protective mechanisms in their upregulation of HIF-1α and HIF-3α production as well as of 

antioxidant enzymes (reduced glutathione, SOD-1 and GPX3), which could help cells recover during 

reperfusion; and (3) After long ODLG times (12–24 h), cortical neurons are under the same conditions 

as those at shorter ODLG times, but during this longer period there is cell damage and mitochondrial 

membrane alterations which do not allow recovery during reperfusion. Taken together, these molecular 

events in our ODLG model are in accordance with some molecular aspects reported within the 

penumbra of ischemic rats [58]. Consequently, drugs that can induce HIF-1 and SOD-1 could helpful 

to recover after short periods of ischemia. 
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