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Abstract: A three-dimensional (3D) representative volume element (RVE) model was 

developed for analyzing effective mechanical behavior of fiber-reinforced ceramic matrix 

composites with imperfect interfaces. In the model, the fiber is assumed to be perfectly 

elastic until its tensile strength, and the ceramic material is modeled by an elasto-plastic 

Drucker-Prager constitutive law. The RVE model is then used to study the elastic 

properties and the tensile strength of composites with imperfect interfaces and validated 

through experiments. The imperfect interfaces between the fiber and the matrix are taken into 

account by introducing some cohesive contact surfaces. The influences of the interface on the 

elastic constants and the tensile strengths are examined through these interface models. 

Keywords: fiber-reinforced ceramic matrix composites; homogenization; interface effect; 

tensile strength; finite element method 

 

1. Introduction 

As an important type of ceramic matrix composites, fiber-reinforced ceramics (FRCs) such as  

carbon-fiber/silicon-carbide (C/SiC) are becoming popular and important due to their unique thermal, 
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mechanical and chemical stability in various environments, high strength and excellent thermal shock 

resistance of ceramics, and high toughness of carbon fibers at elevated temperature [1]. The 

assessment of mechanical properties of such composites is, however, much more complex than that of 

conventional ceramics, as the composites may be partly or highly anisotropic. Usually, the physical 

and mechanical properties of FRCs depend on properties of their constituents and the corresponding 

geometry and concentration (e.g., volume fraction of fibers, fiber/matrix interphase structure, fiber 

weave architecture, and matrix properties). It is noted that when the fibers are embedded into the 

ceramic matrix to form composites, the matrix bonds fibers together and transfers loads to the fibers 

through the interfaces between them. Thus, the fiber/matrix interfaces govern to some extent the 

transverse tensile strength and the fracture behavior of the composite [2]. Experimental studies [3,4] 

revealed that interfacial properties also play an important role in affecting the macroscopically 

effective properties of FRCs. 

Existing schemes for predicting macroscopically effective properties of composites include  

Mori-Tanaka method [5,6], self-consistent method [7,8], generalized self-consistent method [9], 

combination of the Mori-Tanaka method and the iso-stress or iso-strain assumptions [10], 

Christensen’s approach [11], and various mathematical homogenization methods [12,13]. Many works, 

for example [14–16], have been done to study the effects of interfacial properties on effective 

properties of composites, but the components of composites were usually assumed to be elastic for 

simplicity in the most existing theoretical models. Ju and Yanase [17] proposed an elasto-plastic 

damage formulation to predict the overall transverse mechanical behavior of continuous fiber 

reinforced ductile matrix composites with the framework of micromechanics and homogenization by 

incorporating the interfacial damage. Alternatively, through investigating interphase effect on elastic 

and thermal conductivity response of polymer composite materials, Mortazavi et al. [18,19] compared 

the capability of the Mori-Tanaka method and the three-dimensional (3D) finite element (FE) analysis 

and concluded that despite complexities for modeling of high volume concentrations and aspect ratios 

for fillers, FE simulations are more reliable and promising than the other schemes. Based on FE 

method, Taliercio and Coruzzi [20] estimated in-plane transverse strengths using a representative 

volume element (RVE), in which the perfect bonding is assumed. Yang and Qin [21,22] investigated 

effective elastic-plastic properties of fiber-reinforced composites. Caporale et al. [23] implemented an 

interfacial failure model by connecting the fibers and the matrix at the finite element nodes by normal 

and tangential brittle-elastic springs, in which the matrix and fibers are considered homogeneous, 

isotropic and linearly elastic. Rahul-Kumar et al. [24] concluded that the cohesive element can be used 

to describe the polymer interfacial fracture. These works did not, however, couple the brittle material 

constitutive law and interfacial debonding in the approaches mentioned above. In addition, those 

models are not easy to be realized in practical analysis on the effect of interfacial properties on the 

macroscopically effective elastoplastic properties of composites. 

The purpose of this study is to develop a 3D RVE model based on a unidirectional,  

long-fiber-reinforced ceramic matrix composites, using the computational homogenization FE method 

which can handle imperfect interface between the fiber and the matrix. Then, the model is incorporated into 

the commercial FE software ABAQUS through a user subroutine interface. In the RVE, the fiber is 

assumed to be linear elastic before the stress reaches its tensile strength and the ceramic material is 

modeled by an elasto-plastic Drucker-Prager constitutive law. The imperfect interfaces between fiber and 
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matrix are taken into account by introducing some cohesive contact surfaces. Making use of the proposed 

model, comprehensive analyses on the influence of interfacial properties on the macroscopically effective 

elasto-plastic properties of composites, including the macroscopic stiffness and strength are conducted. 

2. Results and Discussion 

2.1. Model Validation 

The reliability of both the present periodic boundary condition (PBC) and homogeneous boundary 

conditions (HPC) models is first assessed in estimating the effective elastic constants of FRCs by 

comparing them with theoretical results. The macroscopic elastic constants of the composites obtained 

using the present PBCs and HBCs models are depicted in Table 1. For comparison, the overall 

properties estimated using the Mori-Tanaka method [6,25], the self-consistent method [7,26] and the 

modified self-consistent method [8], are also calculated here and listed in Table 1. It can be seem from 

Table 1 that results from the present model show a good agreement with the theoretical results. 

Table 1. Comparison of the present PBC and HBC models with some other theoretical solutions. 

Models E1 (GPa) E3 (GPa) G12 (GPa) G23 (GPa) v23 

Present PBC model 392.0 391.0 164.9 165.6 0.179 
Present HBC model 391.1 393.5 167.6 173.5 0.174 

Mori-Tanaka’s method [6,25] 391.7 391.0 165.6 165.1 0.179 
Self-consistent method [7,26] 391.6 391.0 165.5 165.2 0.180 

Modified self-consistent method [8] 386.6 389.0 161.6 165.6 0.179 

2.2. Influence of the Interfacial Properties on the Overall Elastic Properties 

In the cohesive model, the interface penalty stiffness Kinterface is defined as a function of the interface 

thickness, hinterface, and the elastic modulus of the interface, Einterface, i.e., interface interface interface= /K E h . We 
introduce an interfacial stiffness dimensionless parameter interface interface( ) 2m fk K E E h = + 

  to 

represent relative modulus compared with the average of elastic moduli of matrix and fiber. In all 

simulations, we assume the interfacial thickness hinterface as one tenth of the carbon-fiber radius. 1k =  
when Einterface equals to ( ) 2m fE E+ . Knn = Ktt = Kss = Kinterface, and the other Kij ( i j≠ ) are specified as 

zero. The damage initiation criterion and evolution law are not defined in this subsection because they 

influence the macroscopic elastic properties slightly in the initial small elastic deformation stage. 

Figure 1 plots the change trends of the macroscopic elastic constants with respect to the interfacial 

stiffness. It can be seen from Figure 1 that the overall elastic constants E1, G12 and G23 decrease 

gradually as the interfacial stiffness decreases, but they change slightly when the interface is stronger 

than the average value of the fiber and the matrix. The longitudinal Young’s modulus E3 along the 

fiber direction and v23 are independent of the interfacial stiffness. We list the contour plots of the stress 

influence functions obtained in the linear perturbation steps including tension along y1, tension along 

y3, shear along y1y2, and shear along y2y3 directions in case of 51 10k −= ×  in Figure 2, from which it 

can be found that the bonding of the fiber and the matrix in the composites, subject to the longitudinal 

tension, will not be affected by the low interfacial stiffness. 
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Figure 1. Influence of interface stiffness on the effective elastic constants (the arrows in 

red and in lightblue represent prefect interface and ෨݇  = 1, respectively). 

 

Figure 2. Stress influence functions obtained in the (a) tension along the y1; (b) tension 

along the y3; (c) shear along y1y2; and (d) shear along y2y3 linear perturbation steps in case  

of 51 10k −= × . 

 

 

2.3. Mesh-Sensitive Analysis and Model Validation in Estimating the Ultimate Tensile Strength 

Before investigating the ultimate tensile strength, a nonlinear numerical study is first performed  

to study the sensitivity of the predicted macroscopic responses of the considered FRCs to mesh 
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refinement. Three mesh densities for the unit cell are considered, namely a “coarse”, a “medium” and a 

“fine” mesh, as shown in Figure 3. 

Figure 3. Mesh-sensitivity analysis in the nonlinear analyses: (a) coarse; (b) medium; and 

(c) fine mesh densities. 

 

The three meshes are employed to simulate the macroscopic uniaxial tension tests along y1 axis. The 

macroscopic elastoplastic responses of FRCs with perfect interfaces are considered here. Figure 4 

shows the macroscopic stress-strain curves obtained with the three meshes. The medium and fine 
meshes predict the same tensile macroscopic 1σ εc c

x−  curves, whereas the coarse mesh overestimates 

the 1 1σ εc c−  curve. Thus, no improvement seems to come from the use of a mesh finer than the medium 

one. The medium mesh will be used in all subsequent simulations. Figure 4 also indicates a good 

agreement between the FE predictions and the experimental results measured by Heredia et al. [27]. 

They measured the transverse ultimate tensile strength of C/SiC composites with 22% carbon fibers as 

320 ± 30 MPa. 

Figure 4. Influence of the mesh size on the macroscopic response of C/SiC composites 

subject to uniaxial tension along y1 direction. 
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2.4. Influence of the Interfacial Properties on the Macroscopic Strength 

As mentioned below, the HBCs are less time consuming than PBCs, hence they are more suitable 

for sufficiently large RVEs or nonlinear analyses. In this subsection, HBCs are chosen to predict the 

macroscopically ultimate strengths of the composites in order to save the computational time. If we 

assume the fiber volume fraction to be constant, composite structures may vary their stiffness and 

strength due to damage accumulation such as matrix cracking and fiber breakage during the loading 

process of the composite members. 
We define the initial damage traction dimensionless parameter interface tt t f= , where tnn = tss = ttt = 

tinterface. The interface fracture energy, Ginterface, as an interfacial property, is selected to define the 

evolution of debonding in terms of the energy required for failure after the initiation of debonding. As 

depicted in Section 3.3, the fracture energy Gc is equal to the area under the traction-separation curve, 

i.e., it must be larger than ( ) ( )2

interface interface2t K
. So we introduce an interfacial critical fracture energy 

dimensionless parameter ( )2
interface i nterface interfaceG G t K=  to represent the relative fracture energy. Since 

the tinterface and Kinterface are varied in the simulations, for simplicity, we define the critical fracture 

energy dimensionless parameter as
( )2

interface
interface

( )
0.1 0.1

2
m f

t

E E
G G f

h

+ 
=  

 


. 

2.4.1. Uniaxial Transverse Tensile Strength along y1 Direction 

The uniaxial transverse tension along y1 direction is simulated by using the present HBC models. 
The relations of the macroscopic stresses 1σ

c  with the loading strain for the C/SiC composites with 

different interfacial stiffness are plotted in Figure 5a, where the critical interfacial damage strength and 

the critical interfacial fracture energy are assumed to be constant, i.e., 0.1t =  and G  = 100. The 

singularity associated with the FE modeling is inevitable at the interface between the fiber and the 

matrix or the boundaries of the RVE. It must be noted that the Drucker-Prager model is a “smeared 

crack model”, since it does not describe a single crack, but rather associates to any integration point 

with degraded mechanical properties. So the singularity affects slightly the overall response of the 

composites. It can be seen from Figure 5a that the interfacial stiffness plays an important role on the 

uniaxial transverse tensile strength. If we assume that the thickness of the interface is approximately 

one tenth of the fiber radius, the interface effect can be ignored when the interfacial modulus is 

stronger than the average of the Young’s moduli of the fiber and the matrix. As the interfacial stiffness 

decreases, the transverse tensile strength decreases significantly. The FE results show a difference in 

the damage onset in the matrix of the composites with different interfaces. For a perfect interface, the 

present model predicts the initiation of the damage in four regions near the corner of the RVE, as 

shown in Figure 5b. For a strong interface, the damage commences near both the corner and the 

interface, as shown in Figure 5c, while for a weak interface, it commences only near the interface as 

shown in Figure 5d. 

The influence of the interfacial strength on the ultimate transverse tensile strength is shown in  

Figure 6 for different t  where k  = 0.1 and 100G = , It can be seen that the interfacial strength is not 

the major factor in determining the ultimate transverse tensile strength of the fiber-reinforced ceramic 
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matrix composites. In the calculation, interfaces with different interfacial fracture energy are also 

considered. Figure 7a shows that the ultimate transverse tensile strength is very sensitive to the 

interfacial fracture energy when G  is lower than 50. We find that the composite will damage first due 

to the debonding of the interfaces (seen in Figure 7b) and then begin cracking near the interface in the 

ceramic matrix (seen in Figure 7c). 

Figure 5. (a) Simulated macroscopic stresses with respect to the loading strain for the 

C/SiC composites with different interfacial stiffness subject to transverse tension along y1 

sdirection; inset (b) cracking near the interface for a weak interfacial stiffness;  

(c) cracking near the corners for a perfectly bonded interface between the fiber and the 

ceramics; and (d) cracking near the interface and the corners almost at the same time. The 

black arrows point different loading strain, and the red arrow represents the descent 

direction of k . 

 

Figure 6. Simulated macroscopic stresses with respect to the loading strain for the C/SiC 

composites with different interfacial strengths subject to transverse tension along the y1 
direction. Both the black and red arrows represent the descent direction of t . 
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Figure 7. (a) Simulated macroscopic stresses with respect to the loading strain for the 

C/SiC composites with different interfacial fracture energy subject to transverse tension 

along y1 direction; inset (b) debonding on the interface; and (c) cracking near the interface 

in the matrix. The black arrows point different loading strain, and the red arrow represents 

the descent direction of G . 

 

The ultimate transverse tensile strength is analytically given as [28]: 

( )1 max 1 1 max
(σ ) εT TE=

 
(1)

The ultimate tensile strain of composites ( )1 max
εT  can be expressed in terms of ( )

max
εT

m  as, 

( ) ( )1 max max

2 2
ε 1 εT Tm

m
f

Er r

s E s

  = + −  
     

(2)

where the overall transverse Young’s modulus is 1E  which can be found in Table 1, s represents the 

distance between centre of fibers, r is the radius of fibers, and ( )
max

εT
m  is the tensile failure strain of 

matrix. Figure 8 shows that the ultimate transverse tensile strength of C/SiC composites with perfect or 

imperfect interfaces is insensitive to the fiber volume fraction, and the imperfect interface may reduce 

the strength enormously. When the fiber volume fraction is very low (1.2% in our simulations), it can 

be seen from Figure 8 that those three values converge to one certain value (i.e., the tensile strength of 

the matrix), implying that the interface effect can be ignored only when the fiber volume fraction is  

very low. 
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Figure 8. Ultimate transverse tensile strength with respect to the fiber volume fraction. 

 

2.4.2. Uniaxial Longitude Tensile Strength along y3 Direction 

The uniaxial longitude tension along y3 direction is simulated by using the present HBC model. The 
relations of the macroscopic stresses 3σ

c  with the loading strain for the C/SiC composites, considering 

imperfect interfaces with different interfacial properties, are plotted in Figure 9. It can be found that the 

longitudinal tensile strength of the C/SiC composites is almost independent on the interfacial 

properties. The composites with a weaker interface have a bit higher longitudinal tensile strength 

because the weaker interface inhibits the interaction of the brittle matrix and the fiber. 
The fiber tensile strength is expressed as f f

t f tf E e= , and the matrix tensile strength is expressed as
m m

t m tf E e= . The composite tensile stress 3σ
c  can be written as the function of the loading strain e as: 

( )
3

1           
σ

                                   <  

m
f f m f tc

m f
f f t t

E V E V e e e

V E e e e e

  + − ≤  = 
≤  

(3)

As the loading strain e increases until m
te , the composite tensile stress increases and then drops 

sharply because of the crack of the ceramic matrix when e equals m
te . The corresponding failure 

strength is ( )1cm m
t f f m f tf E V E V e = + −  ), as shown in Figure 9a,b. After the matrix fails, only the 

fibers of the composite are subjected to the loading, so the composite’s ultimate longitudinal tensile 
strength is cf f

t f f tf V E e= , as shown in Figure 9a. From our theoretical and simulated curves shown in 

Figure 9 it can be seen that the matrix fractures first and then the carbon fiber fractures, because carbon 
fiber’s failure strain f

te  is greater than SiC failure strain m
te . The comparison shows a great agreement 

between the simulated results and the theoretical curve. 
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Figure 9. (a) Simulated macroscopic stresses in respect to the loading strain for the C/SiC 

composites with different interfacial properties subject to longitudinal tension along the  

y3 direction; and (b) the enlarged view in the range of loading strain 0.0 to 0.002. 

 

For C/SiC composites having fiber failure strain greater than matrix failure strain, the variation of 

composite longitudinal tensile strength with fiber volume fraction is governed by: 

( ) min

min

+ 1           0

                                  1

m
mt

f f t f f fc
mt
f

f t f f

f
E V f V V V

Ef

V f V V


− ≤ ≤= 

 < ≤  

(4)

where minfV  is the minimum fiber volume fraction below which by adding the fibers to the matrix, the 

C/SiC will have lower ultimate longitude tensile strength than the matrix. Figure 10 shows that as the 

fiber volume fraction increases, the ultimate longitude tensile strength of C/SiC composites increases 

sharply, which satisfies the mixture rule. 
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Figure 10. Ultimate longitudinal tensile strengths with respect to the fiber volume fraction. 

The arrow represents the ultimate longitudinal tensile strength with respect to the fiber 

volume fraction calculated using Equation (4). 

 

3. Experimental Section 

3.1. Homogenized 3D RVE for FRCs 

In the assumption of the two-scale asymptotic homogenization method, unidirectional and  

long-fiber composites are simplified as composites constructed by periodically and uniformly 

distributed unit cells, as shown in Figure 11a. An enlarged unit cell (also called RVE) is shown in 

Figure 11b. Making use of mathematical homogenization, a linear elastic static problem with periodic 

conditions could be decomposed into uncoupled fine and coarse scale problems. The macroscopically 

effective mechanical properties of the FRCs could be determined through the estimation of one unit 

cell at fine scale using the perturbation technology. The computational homogenization approach for 

linear and nonlinear solid problems, presented in [29] is used in our analysis. 
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Figure 11. (a) Sketch of fiber-reinforced ceramic matrix composites; and (b) an enlarged  

3D unit cell. 

 

For coarse scale problem we have: 

,ε 0
j

c
ijmn mn x iL b+ =

 on Ω (5)

( )c
i iu u=x

 on uΓ ; σij j in t=  on tΓ  (6)

where Ω  is the domain of the coarse scale problem; uΓ  and tΓ  the displacement and traction 

boundaries, respectively; x is the coarse scale position vectors, respectively; ζ  satisfies 0 ζ 1< ≤ ; c
iu  is 

the coarse scale displacement as a function of x; 
1

ε
2

c c
c m n
mn

n m

u u

x x

 ∂ ∂= + ∂ ∂ 
 is the coarse scale strain, and ib

is the average unit cell body force; iu , ib  and σ ij  represent displacement, traction and stress boundary 

conditions, respectively. Summation convention is employed for repeated indices. 

For unit cell problem, 

( )( ),
,

χ 0
lijkl klmnk y mn

y
L I + =   on Θ  (7)

( ) ( )χ χimn imn= +y y Y
on ∂Θ ; ( )χ 0imn =y

 on vert∂Θ
 

(8)

where Θ  is the domain of the unit cell; vert∂Θ  the vertices of the unit cell; ζ=y x  the fine scale 

position vector; Y the period of the associated function; ( )δ δ δ δklmn mk nl nk mlI = + ; 

( ),

χ χ1
χ

2l

kmn lmn
k y mn

l ky y

 ∂ ∂= + ∂ ∂ 
; and the homogenized constitutive tensor ijmnL  is given as: 

( )1
σmn

ijmn ijL d
Θ

= Θ
Θ  y  (9)

where ( )σmn
ij y  is the stress influence function defined as: 
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( ) ( )( ),σ χ
l

mn
ij ijkl klmnk y mnL I= +y  (10)

The two-scale algorithm described here can be generalized to account for material and  

geometric nonlinearities. 

It is noted that boundary conditions can significantly affect the macro behavior of the RVEs during 

the homogenization simulation process. To study the effect, two types of boundary conditions are 

generally used. If an RVE with 3D periodic boundary conditions (PBCs) is used, the simulation results 

represent a macro structure consisting of periodically repeated cells. While choosing 3D homogeneous 

boundary conditions (HBCs), the simulation results would consider the RVE as the macro structure 

itself with its micro-constituents. HBCs are less time-consuming in computation than periodic 

boundary conditions, hence they are more suitable for sufficiently large RVEs. In the simulation, both 

PBCs and HBCs are chosen to estimate macroscopically effective elastic parameters of the FRCs  

(as shown in Figure 12a), while HBCs are chosen to predict macroscopically ultimate strengths in 

order to save computational time (as shown in Figure 12b). 

Figure 12. (a) An 3D RVE with periodic boundary conditions (PBCs); and (b) 

homogenization boundary conditions (HBCs)―tensile case along y1 direction (only the 

normal directions are fixed at the boundaries). The blue arrow represents the tension 

direction, and the red frame represents the configuration after tension.  

 

3.2. Constitutive Model for the Components 

Unidirectional long fiber-reinforced ceramic matrix composites are investigated in the present 

study. The fibers are supposed to be linear elastic when the stress level is below its tensile strength. 

The brittle behavior of the ceramics is described using the Drucker-Prager yield criterion which has 

already been implemented into the commercial FE software ABAQUS [30]. This model was originally 

developed for plain concrete subjected to multiaxial stresses and has been successfully used to estimate 

the transverse strengths for the ceramic matrix composites [20]. 

The Drucker-Prager failure surface is given by: 

Fs = σ ̅–p tan φ–d = 0 (11)
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where φ is the material’s angle of friction and d is its cohesion (see Figure 13a). The equivalent 
compressive stress p is expressed as a function of the principal stresses 1 2σ ,σ and 3σ : 

( )1 2 3

1
σ σ σ

3
p = − + +  (12)

Here we denote σഥ as the Mises equivalent stress: 

( ) ( ) ( )2 2 2

1 2 2 3 3 1

1
σ σ σ σ σ σ σ

2
 = − + − + −   (13)

We can determine the material’s angle of friction φ and its cohesion d through the uniaxial tensile 
strength tf  and uniaxial compressive strength cf : 

tan φ
( )3 c t

c d

f f

f f

−
=

+
 (14)

2 t c

t c

f f
d

f f
=

+
 (15)

The cohesion d is equal to yield stress in the case of fc = ft, i.e., no difference between compressive 

and tensile strengths. For SiC ceramics, the maximum tensile strength ft and maximum compressive 

strength fc are 310 and 3900 MPa, respectively. Making use of Equations (14) and (15), the calculated 

material’s angle of friction φ = 68.6°, dilation angle θ = φ = 68.6° which satisfies the associate flow. A 

sharp post-peak drop in strength is defined for approaching the behavior of a perfectly brittle ceramic 

material, as shown in Figure 13b. The post-peak strain softening behavior of the ceramics is inputted in 

the Drucker-Prager model, and can be simulated by means of the modified Riks method in ABAQUS. 

For carbon fiber, perfectly elastic behavior and a tensile strength of 1390 MPa is assumed. If the stress 

level exceeds the maximum strength for matrix and/or fiber, the Young’s modulus E is degraded to 1% 

from its initial value at a particular integration point, while the shear modulus G is reduced to 20% of 

the initial value under the assumption that some shear stiffness remains due to the friction still present 

on the failure plane [31], which is realized through the user subroutine USDFLD in ABAQUS. The 

material properties used in the simulations are listed in Table 2. The superscripts m and f appearing in 

Table 1 and afterwards represent the variables associated with the matrix and fiber, respectively. 

Figure 13. (a) Yield surfaces in the p- σ  plane in the Drucker-Prager model; and  

(b) uniaxial stress-strain curve. 
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Table 2. Properties of the component materials of C/SiC composites. 

Material Properties SiC Carbon-Fiber 

Young’s modulus (GPa) Em 400 Ef 350 
Poisson’s ratio vm 0.14 vf 0.3 

Tensile strength (MPa) 
m

tf  310 f
tf  1380 

Compressive strength (MPa) 
m

cf  3900 - 

Volume fraction Vm 0.78 fV  0.22 

3.3. Cohesive Interfacial Model for Fiber/Matrix Interfaces 

The cohesive elements employ failure criteria that combine aspects of strength-based analysis to 

predict the onset of the softening process at the interface and fracture mechanics to predict debonding 

propagation. If the interface thickness is negligibly small, it can be straightforward to define the  

surface-based cohesive response of the cohesive layer directly in terms of traction versus separation 

(see Figure 14a), which will spend less computational time compared with the cohesive element in 

ABAQUS. The available traction-separation model in ABAQUS assumes initially linear elastic 

behavior followed by the initiation and evolution of damage. 

The nominal traction stress vector, t, consists of three-components: tn, ts and tt, which represent the 

normal (along the local 3-direction) and the two shear tractions (along the local 1- and 2-directions), 

respectively. The corresponding separations are denoted by δn, δs and δt. Denoting T0 as the original 

thickness of the cohesive element, the nominal strains can be defined as: 

0 0 0

δ δ δ
ε ,ε ,εn s t

n s tT T T
= = =  (16)

The elastic behavior can then be written as: 

δ

δ

δ

n nnn ns nt

s sn ss st s

tn ts ttt t

t K K K

t t K K K

K K Kt

    
    = =    
        

 (17)

Damage of the traction-separation response for cohesive surface is defined within the same general 

framework used for conventional materials [32]. A quadratic stress damage initiation criterion and an 

energy damage evolution law are defined for modeling the debonding of the interfaces, as shown in 

Figure 14b. The quadratic stress criterion suggests that damage initiates when a quadratic interaction 

function involving the contact stress ratios reaches the value of one. This criterion can be represented as: 

2 2 2

0 0 0
1n s t

n s t

t t t

t t t

     
+ + =     
      

(18)

where tn, ts, and tt represent the contact stress normal to the interface, along the first and the second 
shear directions, respectively 0

nt , 0
st  and 0

tt  represent the peak values of the contact stress when the 

separation is either purely normal to the interface or purely in the first or the second shear direction, 
respectively. The symbol  represents the Macaulay bracket with the usual interpretation, indicating 

that a purely compressive stress state does not initiate damage. In the damage evolution criterion, 
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damage evolution can be defined based on the energy that is dissipated as a result of the damage 
process, also called the fracture energy. The fracture energy cG  is equal to the area under the  

traction-separation curve shown in Figure 14b. 

Figure 14. (a) Imperfect interface defined by surface-based cohesive behavior; and  

(b) typical traction-separation response. 

 

 

4. Conclusions 

Based on the homogenization method with periodic or homogenization boundary conditions, a 3D 

RVE model is developed. The proposed model has been validated with the theoretical results for the 

composites with perfect bonding between the fiber and the matrix. From the study, we found that for 

composites with imperfect interfaces, as the interface stiffness decreases, the E1, G12 and G23 decrease, 

but E3 and v23 remain almost as constants. 

The obtained numerical results for the transverse tensile strength of the composites with perfect 

bonding agree well with those from experiments. 
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The imperfect interfaces between the fiber and the matrix are taken into account by introducing 

cohesive contact surfaces. The influences of the interface on the elastic constants and the tensile 

strengths are examined using the interfacial model. It is found that the imperfect interface can induce 

different damage onset in the matrix of the composites with different interfacial properties. In contrast 

the interfacial strength, the interfacial stiffness and fracture energy can significantly influence the 

transverse tensile strength of the composites, while the longitudinal tensile strength of the composites 

is almost independent of the interfacial properties, and it increases sharply with an increase in the fiber 

volume fraction, satisfying the mixture rule. The results indicate that the proposed approach is simple to 

use and efficient for performing realistic numerical analyses on complex 3-D fiber-reinforced composites. 
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